This file is indexed.

/usr/include/opencascade/gp_GTrsf2d.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_GTrsf2d_HeaderFile
#define _gp_GTrsf2d_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _gp_Mat2d_HeaderFile
#include <gp_Mat2d.hxx>
#endif
#ifndef _gp_XY_HeaderFile
#include <gp_XY.hxx>
#endif
#ifndef _gp_TrsfForm_HeaderFile
#include <gp_TrsfForm.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Integer_HeaderFile
#include <Standard_Integer.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_Trsf2d;
class gp_Mat2d;
class gp_XY;
class gp_Ax2d;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_GTrsf2d);


//!  Defines a non persistent transformation in 2D space. <br>
//!  This transformation is a general transformation. <br>
//!  It can be a Trsf2d from package gp, an affinity, or you can <br>
//!  define your own transformation giving the corresponding <br>
//!  matrix of transformation. <br>
//! <br>
//!  With a GTrsf2d you can transform only a doublet of coordinates <br>
//!  XY. It is not possible to transform other geometric objects <br>
//!  because these transformations can change the nature of non- <br>
//!  elementary geometric objects. <br>
//!  A GTrsf2d is represented with a 2 rows * 3 columns matrix : <br>
//! <br>
//!       V1   V2   T        XY         XY <br>
//!    | a11  a12  a14 |   | x |      | x'| <br>
//!    | a21  a22  a24 |   | y |      | y'| <br>
//!    |  0    0    1  |   | 1 |      | 1 | <br>
class gp_GTrsf2d  {

public:
  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! returns identity transformation. <br>
      gp_GTrsf2d();
  //! Converts the gp_Trsf2d transformation T into a <br>
//!   general transformation. <br>
      gp_GTrsf2d(const gp_Trsf2d& T);
  //! Creates   a transformation based on the matrix M and the <br>
//!    vector V where M defines the vectorial part of the <br>
//!    transformation, and V the translation part. <br>
      gp_GTrsf2d(const gp_Mat2d& M,const gp_XY& V);
  
//! Changes this transformation into an affinity of ratio Ratio <br>
//! with respect to the axis A. <br>
//! Note: An affinity is a point-by-point transformation that <br>
//! transforms any point P into a point P' such that if H is <br>
//! the orthogonal projection of P on the axis A, the vectors <br>
//! HP and HP' satisfy: HP' = Ratio * HP. <br>
  Standard_EXPORT     void SetAffinity(const gp_Ax2d& A,const Standard_Real Ratio) ;
  
//!  Replaces   the coefficient (Row, Col) of the matrix representing <br>
//!  this transformation by Value, <br>
//! Raises OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 3 <br>
        void SetValue(const Standard_Integer Row,const Standard_Integer Col,const Standard_Real Value) ;
  //! Replacesthe translation part of this <br>
//! transformation by the coordinates of the number pair Coord. <br>
  Standard_EXPORT     void SetTranslationPart(const gp_XY& Coord) ;
  
//!  Assigns the vectorial and translation parts of T to this transformation. <br>
        void SetTrsf2d(const gp_Trsf2d& T) ;
  
//! Replaces the vectorial part of this transformation by Matrix. <br>
        void SetVectorialPart(const gp_Mat2d& Matrix) ;
  
//!  Returns true if the determinant of the vectorial part of <br>
//! this transformation is negative. <br>
        Standard_Boolean IsNegative() const;
  //! Returns true if this transformation is singular (and <br>
//! therefore, cannot be inverted). <br>
//! Note: The Gauss LU decomposition is used to invert the <br>
//! transformation matrix. Consequently, the transformation <br>
//! is considered as singular if the largest pivot found is less <br>
//! than or equal to gp::Resolution(). <br>
//! Warning <br>
//! If this transformation is singular, it cannot be inverted. <br>
        Standard_Boolean IsSingular() const;
  
//!  Returns the nature of the transformation.  It can be <br>
//!  an identity transformation, a rotation, a translation, a mirror <br>
//! transformation (relative to a point or axis), a scaling <br>
//! transformation, a compound transformation or some <br>
//! other type of transformation. <br>
        gp_TrsfForm Form() const;
  //!  Returns the translation part of the GTrsf2d. <br>
       const gp_XY& TranslationPart() const;
  
//!  Computes the vectorial part of the GTrsf2d. The returned <br>
//!  Matrix is a 2*2 matrix. <br>
       const gp_Mat2d& VectorialPart() const;
  
//!  Returns the coefficients of the global matrix of transformation. <br>
//! Raised OutOfRange if Row < 1 or Row > 2 or Col < 1 or Col > 3 <br>
        Standard_Real Value(const Standard_Integer Row,const Standard_Integer Col) const;
      Standard_Real operator()(const Standard_Integer Row,const Standard_Integer Col) const
{
  return Value(Row,Col);
}
  
  Standard_EXPORT     void Invert() ;
  
//!  Computes the reverse transformation. <br>
//!  Raised an exception if the matrix of the transformation <br>
//!  is not inversible. <br>
        gp_GTrsf2d Inverted() const;
  
  Standard_EXPORT     void Multiply(const gp_GTrsf2d& T) ;
    void operator *=(const gp_GTrsf2d& T) 
{
  Multiply(T);
}
  
//!  Computes the transformation composed with T and <me>. <br>
//!  In a C++ implementation you can also write Tcomposed = <me> * T. <br>
//!  Example : <br>
//!      GTrsf2d T1, T2, Tcomp; ............... <br>
//!      //composition : <br>
//!        Tcomp = T2.Multiplied(T1);         // or   (Tcomp = T2 * T1) <br>
//!      // transformation of a point <br>
//!        XY P(10.,3.); <br>
//!        XY P1(P); <br>
//!        Tcomp.Transforms(P1);               //using Tcomp <br>
//!        XY P2(P); <br>
//!        T1.Transforms(P2);                  //using T1 then T2 <br>
//!        T2.Transforms(P2);                  // P1 = P2 !!! <br>
        gp_GTrsf2d Multiplied(const gp_GTrsf2d& T) const;
      gp_GTrsf2d operator *(const gp_GTrsf2d& T) const
{
  return Multiplied(T);
}
  
//! Computes the product of the transformation T and this <br>
//! transformation, and assigns the result to this transformation: <br>
//! this = T * this <br>
  Standard_EXPORT     void PreMultiply(const gp_GTrsf2d& T) ;
  
  Standard_EXPORT     void Power(const Standard_Integer N) ;
  
//!  Computes the following composition of transformations <br>
//!  <me> * <me> * .......* <me>, N time. <br>
//!  if N = 0 <me> = Identity <br>
//!  if N < 0 <me> = <me>.Inverse() *...........* <me>.Inverse(). <br>
        gp_GTrsf2d Powered(const Standard_Integer N) const;
  
        void Transforms(gp_XY& Coord) const;
  
        gp_XY Transformed(const gp_XY& Coord) const;
  
//!    Applies this transformation to the coordinates: <br>
//! -   of the number pair Coord, or <br>
//! -   X and Y. <br>
//! <br>
//! Note: <br>
//! -   Transforms modifies X, Y, or the coordinate pair Coord, while <br>
//! -   Transformed creates a new coordinate pair. <br>
        void Transforms(Standard_Real& X,Standard_Real& Y) const;
  
//! Converts this transformation into a gp_Trsf2d transformation. <br>
//! Exceptions <br>
//! Standard_ConstructionError if this transformation <br>
//! cannot be converted, i.e. if its form is gp_Other. <br>
  Standard_EXPORT     gp_Trsf2d Trsf2d() const;
    const gp_Mat2d& _CSFDB_Getgp_GTrsf2dmatrix() const { return matrix; }
    const gp_XY& _CSFDB_Getgp_GTrsf2dloc() const { return loc; }
    gp_TrsfForm _CSFDB_Getgp_GTrsf2dshape() const { return shape; }
    void _CSFDB_Setgp_GTrsf2dshape(const gp_TrsfForm p) { shape = p; }
    Standard_Real _CSFDB_Getgp_GTrsf2dscale() const { return scale; }
    void _CSFDB_Setgp_GTrsf2dscale(const Standard_Real p) { scale = p; }



protected:




private: 


gp_Mat2d matrix;
gp_XY loc;
gp_TrsfForm shape;
Standard_Real scale;


};


#include <gp_GTrsf2d.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif