This file is indexed.

/usr/include/opencascade/gp_Elips2d.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_Elips2d_HeaderFile
#define _gp_Elips2d_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _gp_Ax22d_HeaderFile
#include <gp_Ax22d.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_Storable_HeaderFile
#include <Standard_Storable.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _gp_Ax2d_HeaderFile
#include <gp_Ax2d.hxx>
#endif
#ifndef _gp_Pnt2d_HeaderFile
#include <gp_Pnt2d.hxx>
#endif
#ifndef _Standard_PrimitiveTypes_HeaderFile
#include <Standard_PrimitiveTypes.hxx>
#endif
class Standard_ConstructionError;
class gp_Ax2d;
class gp_Ax22d;
class gp_Pnt2d;
class gp_Trsf2d;
class gp_Vec2d;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Elips2d);


//! Describes an ellipse in the plane (2D space). <br>
//! An ellipse is defined by its major and minor radii and <br>
//! positioned in the plane with a coordinate system (a <br>
//! gp_Ax22d object) as follows: <br>
//! -   the origin of the coordinate system is the center of the ellipse, <br>
//! -   its "X Direction" defines the major axis of the ellipse, and <br>
//! -   its "Y Direction" defines the minor axis of the ellipse. <br>
//! This coordinate system is the "local coordinate system" <br>
//! of the ellipse. Its orientation (direct or indirect) gives an <br>
//! implicit orientation to the ellipse. In this coordinate <br>
//! system, the equation of the ellipse is: <br>
//! X*X / (MajorRadius**2) + Y*Y / (MinorRadius**2) = 1.0 <br>
//! See Also <br>
//! gce_MakeElips2d which provides functions for more <br>
//! complex ellipse constructions <br>
//! Geom2d_Ellipse which provides additional functions for <br>
//! constructing ellipses and works, in particular, with the <br>
//! parametric equations of ellipses <br>
class gp_Elips2d  {

public:
  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! Creates an indefinite ellipse. <br>
      gp_Elips2d();
  
//!  Creates an ellipse with the major axis, the major and the <br>
//!  minor radius. The location of the MajorAxis is the center <br>
//!  of the  ellipse. <br>
//!  The sense of parametrization is given by Sense. <br>
//!  Warnings : <br>
//!  It is possible to create an ellipse with <br>
//!  MajorRadius = MinorRadius. <br>
//!  Raises ConstructionError if MajorRadius < MinorRadius or MinorRadius < 0.0 <br>
      gp_Elips2d(const gp_Ax2d& MajorAxis,const Standard_Real MajorRadius,const Standard_Real MinorRadius,const Standard_Boolean Sense = Standard_True);
  //!  Creates an ellipse with radii MajorRadius and <br>
//!   MinorRadius, positioned in the plane by coordinate system A where: <br>
//!   -   the origin of A is the center of the ellipse, <br>
//!   -   the "X Direction" of A defines the major axis of <br>
//!    the ellipse, that is, the major radius MajorRadius <br>
//!    is measured along this axis, and <br>
//!   -   the "Y Direction" of A defines the minor axis of <br>
//!    the ellipse, that is, the minor radius MinorRadius <br>
//!    is measured along this axis, and <br>
//!   -   the orientation (direct or indirect sense) of A <br>
//!    gives the orientation of the ellipse. <br>
//!  Warnings : <br>
//!  It is possible to create an ellipse with <br>
//!  MajorRadius = MinorRadius. <br>
//! Raises ConstructionError if MajorRadius < MinorRadius or MinorRadius < 0.0 <br>
  Standard_EXPORT   gp_Elips2d(const gp_Ax22d& A,const Standard_Real MajorRadius,const Standard_Real MinorRadius);
  //! Modifies this ellipse, by redefining its local coordinate system so that <br>
//! -   its origin becomes P. <br>
  Standard_EXPORT     void SetLocation(const gp_Pnt2d& P) ;
  //! Changes the value of the major radius. <br>
//! Raises ConstructionError if MajorRadius < MinorRadius. <br>
  Standard_EXPORT     void SetMajorRadius(const Standard_Real MajorRadius) ;
  //! Changes the value of the minor radius. <br>
//! Raises ConstructionError if MajorRadius < MinorRadius or MinorRadius < 0.0 <br>
  Standard_EXPORT     void SetMinorRadius(const Standard_Real MinorRadius) ;
  //! Modifies this ellipse, by redefining its local coordinate system so that <br>
//!    it becomes A. <br>
  Standard_EXPORT     void SetAxis(const gp_Ax22d& A) ;
  //! Modifies this ellipse, by redefining its local coordinate system so that <br>
//!   its origin and its "X Direction"  become those <br>
//! of the axis A. The "Y  Direction"  is then <br>
//!   recomputed. The orientation of the local coordinate <br>
//!   system is not modified. <br>
  Standard_EXPORT     void SetXAxis(const gp_Ax2d& A) ;
  //! Modifies this ellipse, by redefining its local coordinate system so that <br>
//!   its origin and its "Y Direction"  become those <br>
//! of the axis A. The "X  Direction"  is then <br>
//!   recomputed. The orientation of the local coordinate <br>
//!   system is not modified. <br>
  Standard_EXPORT     void SetYAxis(const gp_Ax2d& A) ;
  //! Computes the area of the ellipse. <br>
        Standard_Real Area() const;
  
//!  Returns the coefficients of the implicit equation of the ellipse. <br>
//!  A * (X**2) + B * (Y**2) + 2*C*(X*Y) + 2*D*X + 2*E*Y + F = 0. <br>
  Standard_EXPORT     void Coefficients(Standard_Real& A,Standard_Real& B,Standard_Real& C,Standard_Real& D,Standard_Real& E,Standard_Real& F) const;
  
//!  This directrix is the line normal to the XAxis of the ellipse <br>
//!  in the local plane (Z = 0) at a distance d = MajorRadius / e <br>
//!  from the center of the ellipse, where e is the eccentricity of <br>
//!  the ellipse. <br>
//!  This line is parallel to the "YAxis". The intersection point <br>
//!  between directrix1 and the "XAxis" is the location point of the <br>
//!  directrix1. This point is on the positive side of the "XAxis". <br>
//!  Raised if Eccentricity = 0.0. (The ellipse degenerates into a <br>
//!  circle) <br>
        gp_Ax2d Directrix1() const;
  
//!  This line is obtained by the symmetrical transformation <br>
//!  of "Directrix1" with respect to the minor axis of the ellipse. <br>
//!  Raised if Eccentricity = 0.0. (The ellipse degenerates into a <br>
//!  circle). <br>
        gp_Ax2d Directrix2() const;
  
//!  Returns the eccentricity of the ellipse  between 0.0 and 1.0 <br>
//!  If f is the distance between the center of the ellipse and <br>
//!  the Focus1 then the eccentricity e = f / MajorRadius. <br>
//!  Returns 0 if MajorRadius = 0. <br>
        Standard_Real Eccentricity() const;
  
//!  Returns the distance between the center of the ellipse <br>
//!  and focus1 or focus2. <br>
        Standard_Real Focal() const;
  
//!  Returns the first focus of the ellipse. This focus is on the <br>
//!  positive side of the major axis of the ellipse. <br>
        gp_Pnt2d Focus1() const;
  
//!  Returns the second focus of the ellipse. This focus is on the <br>
//!  negative side of the major axis of the ellipse. <br>
        gp_Pnt2d Focus2() const;
  //! Returns the center of the ellipse. <br>
       const gp_Pnt2d& Location() const;
  //! Returns the major radius of the Ellipse. <br>
        Standard_Real MajorRadius() const;
  //! Returns the minor radius of the Ellipse. <br>
        Standard_Real MinorRadius() const;
  
//!  Returns p = (1 - e * e) * MajorRadius where e is the eccentricity <br>
//!  of the ellipse. <br>
//!  Returns 0 if MajorRadius = 0 <br>
        Standard_Real Parameter() const;
  //! Returns the major axis of the ellipse. <br>
       const gp_Ax22d& Axis() const;
  //! Returns the major axis of the ellipse. <br>
        gp_Ax2d XAxis() const;
  //! Returns the minor axis of the ellipse. <br>//! Reverses the direction of the circle. <br>
        gp_Ax2d YAxis() const;
  
        void Reverse() ;
  
        gp_Elips2d Reversed() const;
  //! Returns true if the local coordinate system is direct <br>
//!            and false in the other case. <br>
        Standard_Boolean IsDirect() const;
  
  Standard_EXPORT     void Mirror(const gp_Pnt2d& P) ;
  
//!  Performs the symmetrical transformation of a ellipse with respect <br>
//!  to the point P which is the center of the symmetry <br>
  Standard_EXPORT     gp_Elips2d Mirrored(const gp_Pnt2d& P) const;
  
  Standard_EXPORT     void Mirror(const gp_Ax2d& A) ;
  
//!  Performs the symmetrical transformation of a ellipse with respect <br>
//!  to an axis placement which is the axis of the symmetry. <br>
  Standard_EXPORT     gp_Elips2d Mirrored(const gp_Ax2d& A) const;
  
  Standard_EXPORT     void Rotate(const gp_Pnt2d& P,const Standard_Real Ang) ;
  
  Standard_EXPORT     gp_Elips2d Rotated(const gp_Pnt2d& P,const Standard_Real Ang) const;
  
  Standard_EXPORT     void Scale(const gp_Pnt2d& P,const Standard_Real S) ;
  
//!  Scales a ellipse. S is the scaling value. <br>
  Standard_EXPORT     gp_Elips2d Scaled(const gp_Pnt2d& P,const Standard_Real S) const;
  
  Standard_EXPORT     void Transform(const gp_Trsf2d& T) ;
  
//!  Transforms an ellipse with the transformation T from class Trsf2d. <br>
  Standard_EXPORT     gp_Elips2d Transformed(const gp_Trsf2d& T) const;
  
  Standard_EXPORT     void Translate(const gp_Vec2d& V) ;
  
//!  Translates a ellipse in the direction of the vector V. <br>
//!  The magnitude of the translation is the vector's magnitude. <br>
  Standard_EXPORT     gp_Elips2d Translated(const gp_Vec2d& V) const;
  
  Standard_EXPORT     void Translate(const gp_Pnt2d& P1,const gp_Pnt2d& P2) ;
  
//!  Translates a ellipse from the point P1 to the point P2. <br>
  Standard_EXPORT     gp_Elips2d Translated(const gp_Pnt2d& P1,const gp_Pnt2d& P2) const;
    const gp_Ax22d& _CSFDB_Getgp_Elips2dpos() const { return pos; }
    Standard_Real _CSFDB_Getgp_Elips2dmajorRadius() const { return majorRadius; }
    void _CSFDB_Setgp_Elips2dmajorRadius(const Standard_Real p) { majorRadius = p; }
    Standard_Real _CSFDB_Getgp_Elips2dminorRadius() const { return minorRadius; }
    void _CSFDB_Setgp_Elips2dminorRadius(const Standard_Real p) { minorRadius = p; }



protected:




private: 


gp_Ax22d pos;
Standard_Real majorRadius;
Standard_Real minorRadius;


};


#include <gp_Elips2d.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif