/usr/include/opencascade/Bnd_B3x.gxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | // File: Bnd_B3x.gxx
// Created: 08.09.05 20:32:39
// Author: Alexander GRIGORIEV
// Copyright: Open Cascade 2005
inline Standard_Boolean _compareDist (const RealType aHSize[3],
const RealType aDist [3])
{
return (Abs(aDist[0]) > aHSize[0] ||
Abs(aDist[1]) > aHSize[1] ||
Abs(aDist[2]) > aHSize[2]);
}
inline Standard_Boolean _compareDistD (const gp_XYZ& aHSize,const gp_XYZ& aDist)
{
return (Abs(aDist.X()) > aHSize.X() ||
Abs(aDist.Y()) > aHSize.Y() ||
Abs(aDist.Z()) > aHSize.Z());
}
//=======================================================================
//function : Add
//purpose : Update the box by a point
//=======================================================================
void Bnd_B3x::Add (const gp_XYZ& thePnt) {
if (IsVoid()) {
myCenter[0] = RealType(thePnt.X());
myCenter[1] = RealType(thePnt.Y());
myCenter[2] = RealType(thePnt.Z());
myHSize [0] = 0.;
myHSize [1] = 0.;
myHSize [2] = 0.;
} else {
const RealType aDiff[3] = {
RealType(thePnt.X()) - myCenter[0],
RealType(thePnt.Y()) - myCenter[1],
RealType(thePnt.Z()) - myCenter[2]
};
if (aDiff[0] > myHSize[0]) {
const RealType aShift = (aDiff[0] - myHSize[0]) / 2;
myCenter[0] += aShift;
myHSize [0] += aShift;
} else if (aDiff[0] < -myHSize[0]) {
const RealType aShift = (aDiff[0] + myHSize[0]) / 2;
myCenter[0] += aShift;
myHSize [0] -= aShift;
}
if (aDiff[1] > myHSize[1]) {
const RealType aShift = (aDiff[1] - myHSize[1]) / 2;
myCenter[1] +=aShift;
myHSize [1] +=aShift;
} else if (aDiff[1] < -myHSize[1]) {
const RealType aShift = (aDiff[1] + myHSize[1]) / 2;
myCenter[1] += aShift;
myHSize [1] -= aShift;
}
if (aDiff[2] > myHSize[2]) {
const RealType aShift = (aDiff[2] - myHSize[2]) / 2;
myCenter[2] +=aShift;
myHSize [2] +=aShift;
} else if (aDiff[2] < -myHSize[2]) {
const RealType aShift = (aDiff[2] + myHSize[2]) / 2;
myCenter[2] += aShift;
myHSize [2] -= aShift;
}
}
}
//=======================================================================
//function : Limit
//purpose : limit the current box with the internals of theBox
//=======================================================================
Standard_Boolean Bnd_B3x::Limit (const Bnd_B3x& theBox)
{
Standard_Boolean aResult (Standard_False);
const RealType diffC[3] = {
theBox.myCenter[0] - myCenter[0],
theBox.myCenter[1] - myCenter[1],
theBox.myCenter[2] - myCenter[2]
};
const RealType sumH[3] = {
theBox.myHSize[0] + myHSize[0],
theBox.myHSize[1] + myHSize[1],
theBox.myHSize[2] + myHSize[2]
};
// check the condition IsOut
if (_compareDist (sumH, diffC) == Standard_False) {
const RealType diffH[3] = {
theBox.myHSize[0] - myHSize[0],
theBox.myHSize[1] - myHSize[1],
theBox.myHSize[2] - myHSize[2]
};
if (diffC[0] - diffH[0] > 0.) {
const RealType aShift = (diffC[0] - diffH[0]) / 2; // positive
myCenter[0] += aShift;
myHSize [0] -= aShift;
} else if (diffC[0] + diffH[0] < 0.) {
const RealType aShift = (diffC[0] + diffH[0]) / 2; // negative
myCenter[0] += aShift;
myHSize [0] += aShift;
}
if (diffC[1] - diffH[1] > 0.) {
const RealType aShift = (diffC[1] - diffH[1]) / 2; // positive
myCenter[1] += aShift;
myHSize [1] -= aShift;
} else if (diffC[1] + diffH[1] < 0.) {
const RealType aShift = (diffC[1] + diffH[1]) / 2; // negative
myCenter[1] += aShift;
myHSize [1] += aShift;
}
if (diffC[2] - diffH[2] > 0.) {
const RealType aShift = (diffC[2] - diffH[2]) / 2; // positive
myCenter[2] += aShift;
myHSize [2] -= aShift;
} else if (diffC[2] + diffH[2] < 0.) {
const RealType aShift = (diffC[2] + diffH[2]) / 2; // negative
myCenter[2] += aShift;
myHSize [2] += aShift;
}
aResult = Standard_True;
}
return aResult;
}
//=======================================================================
//function : Transformed
//purpose :
//=======================================================================
Bnd_B3x Bnd_B3x::Transformed (const gp_Trsf& theTrsf) const
{
Bnd_B3x aResult;
const gp_TrsfForm aForm = theTrsf.Form();
const Standard_Real aScale = theTrsf.ScaleFactor();
const Standard_Real aScaleAbs = Abs(aScale);
if (aForm == gp_Identity)
aResult = * this;
else if (aForm== gp_Translation || aForm== gp_PntMirror || aForm== gp_Scale)
{
aResult.myCenter[0] =
(RealType)(myCenter[0] * aScale + theTrsf.TranslationPart().X());
aResult.myCenter[1] =
(RealType)(myCenter[1] * aScale + theTrsf.TranslationPart().Y());
aResult.myCenter[2] =
(RealType)(myCenter[2] * aScale + theTrsf.TranslationPart().Z());
aResult.myHSize[0] = (RealType)(myHSize[0] * aScaleAbs);
aResult.myHSize[1] = (RealType)(myHSize[1] * aScaleAbs);
aResult.myHSize[2] = (RealType)(myHSize[2] * aScaleAbs);
} else {
gp_XYZ aCenter ((Standard_Real)myCenter[0],
(Standard_Real)myCenter[1],
(Standard_Real)myCenter[2]);
theTrsf.Transforms (aCenter);
aResult.myCenter[0] = (RealType)aCenter.X();
aResult.myCenter[1] = (RealType)aCenter.Y();
aResult.myCenter[2] = (RealType)aCenter.Z();
const Standard_Real * aMat = &theTrsf.HVectorialPart().Value(1,1);
aResult.myHSize[0] = (RealType)(aScaleAbs * (Abs(aMat[0]) * myHSize[0]+
Abs(aMat[1]) * myHSize[1]+
Abs(aMat[2]) * myHSize[2]));
aResult.myHSize[1] = (RealType)(aScaleAbs * (Abs(aMat[3]) * myHSize[0]+
Abs(aMat[4]) * myHSize[1]+
Abs(aMat[5]) * myHSize[2]));
aResult.myHSize[2] = (RealType)(aScaleAbs * (Abs(aMat[6]) * myHSize[0]+
Abs(aMat[7]) * myHSize[1]+
Abs(aMat[8]) * myHSize[2]));
}
return aResult;
}
//=======================================================================
//function : IsOut
//purpose : Intersection Box - Sphere
//=======================================================================
Standard_Boolean Bnd_B3x::IsOut (const gp_XYZ& theCenter,
const Standard_Real theRadius,
const Standard_Boolean isSphereHollow) const
{
Standard_Boolean aResult (Standard_True);
if (isSphereHollow == Standard_False) {
// vector from the center of the sphere to the nearest box face
const Standard_Real aDist[3] = {
Abs(theCenter.X()-Standard_Real(myCenter[0])) - Standard_Real(myHSize[0]),
Abs(theCenter.Y()-Standard_Real(myCenter[1])) - Standard_Real(myHSize[1]),
Abs(theCenter.Z()-Standard_Real(myCenter[2])) - Standard_Real(myHSize[2])
};
Standard_Real aD (0.);
if (aDist[0] > 0.)
aD = aDist[0]*aDist[0];
if (aDist[1] > 0.)
aD += aDist[1]*aDist[1];
if (aDist[2] > 0.)
aD += aDist[2]*aDist[2];
aResult = (aD > theRadius*theRadius);
} else {
const Standard_Real aDistC[3] = {
Abs(theCenter.X()-Standard_Real(myCenter[0])),
Abs(theCenter.Y()-Standard_Real(myCenter[1])),
Abs(theCenter.Z()-Standard_Real(myCenter[2]))
};
// vector from the center of the sphere to the nearest box face
Standard_Real aDist[3] = {
aDistC[0] - Standard_Real(myHSize[0]),
aDistC[1] - Standard_Real(myHSize[1]),
aDistC[2] - Standard_Real(myHSize[2])
};
Standard_Real aD (0.);
if (aDist[0] > 0.)
aD = aDist[0]*aDist[0];
if (aDist[1] > 0.)
aD += aDist[1]*aDist[1];
if (aDist[2] > 0.)
aD += aDist[2]*aDist[2];
if (aD < theRadius*theRadius) {
// the box intersects the solid sphere; check if it is completely
// inside the circle (in such case return isOut==True)
aDist[0] = aDistC[0] + Standard_Real(myHSize[0]);
aDist[1] = aDistC[1] + Standard_Real(myHSize[1]);
aDist[2] = aDistC[2] + Standard_Real(myHSize[2]);
if (aDist[0]*aDist[0]+aDist[1]*aDist[1]+aDist[2]*aDist[2]
> theRadius*theRadius)
aResult = Standard_False;
}
}
return aResult;
}
//=======================================================================
//function : IsOut
//purpose : Intersection Box - transformed Box
//=======================================================================
Standard_Boolean Bnd_B3x::IsOut (const Bnd_B3x& theBox,
const gp_Trsf& theTrsf) const
{
Standard_Boolean aResult (Standard_False);
const gp_TrsfForm aForm = theTrsf.Form();
const Standard_Real aScale = theTrsf.ScaleFactor();
const Standard_Real aScaleAbs = Abs(aScale);
if (aForm == gp_Translation || aForm == gp_Identity ||
aForm == gp_PntMirror || aForm == gp_Scale)
{
aResult =
(Abs (RealType(theBox.myCenter[0]*aScale + theTrsf.TranslationPart().X())
- myCenter[0])
> RealType (theBox.myHSize[0]*aScaleAbs) + myHSize[0] ||
Abs (RealType(theBox.myCenter[1]*aScale + theTrsf.TranslationPart().Y())
- myCenter[1])
> RealType (theBox.myHSize[1]*aScaleAbs) + myHSize[1] ||
Abs (RealType(theBox.myCenter[2]*aScale + theTrsf.TranslationPart().Y())
- myCenter[2])
> RealType (theBox.myHSize[2]*aScaleAbs) + myHSize[2]);
}
else {
// theBox is transformed and we check the resulting (enlarged) box against
// 'this' box.
const Standard_Real * aMat = &theTrsf.HVectorialPart().Value(1,1);
gp_XYZ aCenter ((Standard_Real)theBox.myCenter[0],
(Standard_Real)theBox.myCenter[1],
(Standard_Real)theBox.myCenter[2]);
theTrsf.Transforms (aCenter);
const Standard_Real aDist[3] = {
aCenter.X() - (Standard_Real)myCenter[0],
aCenter.Y() - (Standard_Real)myCenter[1],
aCenter.Z() - (Standard_Real)myCenter[2]
};
const Standard_Real aMatAbs[9] = {
Abs(aMat[0]), Abs(aMat[1]), Abs(aMat[2]), Abs(aMat[3]), Abs(aMat[4]),
Abs(aMat[5]), Abs(aMat[6]), Abs(aMat[7]), Abs(aMat[8])
};
if (Abs(aDist[0]) > (aScaleAbs*(aMatAbs[0]*theBox.myHSize[0]+
aMatAbs[1]*theBox.myHSize[1]+
aMatAbs[2]*theBox.myHSize[2]) +
(Standard_Real)myHSize[0]) ||
Abs(aDist[1]) > (aScaleAbs*(aMatAbs[3]*theBox.myHSize[0]+
aMatAbs[4]*theBox.myHSize[1]+
aMatAbs[5]*theBox.myHSize[2]) +
(Standard_Real)myHSize[1]) ||
Abs(aDist[2]) > (aScaleAbs*(aMatAbs[6]*theBox.myHSize[0]+
aMatAbs[7]*theBox.myHSize[1]+
aMatAbs[8]*theBox.myHSize[2]) +
(Standard_Real)myHSize[2]))
aResult = Standard_True;
else {
// theBox is rotated, scaled and translated. We apply the reverse
// translation and scaling then check against the rotated box 'this'
if ((Abs(aMat[0]*aDist[0]+aMat[3]*aDist[1]+aMat[6]*aDist[2])
> theBox.myHSize[0]*aScaleAbs + (aMatAbs[0]*myHSize[0] +
aMatAbs[3]*myHSize[1] +
aMatAbs[6]*myHSize[2])) ||
(Abs(aMat[1]*aDist[0]+aMat[4]*aDist[1]+aMat[7]*aDist[2])
> theBox.myHSize[1]*aScaleAbs + (aMatAbs[1]*myHSize[0] +
aMatAbs[4]*myHSize[1] +
aMatAbs[7]*myHSize[2])) ||
(Abs(aMat[2]*aDist[0]+aMat[5]*aDist[1]+aMat[8]*aDist[2])
> theBox.myHSize[2]*aScaleAbs + (aMatAbs[2]*myHSize[0] +
aMatAbs[5]*myHSize[1] +
aMatAbs[8]*myHSize[2])))
aResult = Standard_True;
}
}
return aResult;
}
//=======================================================================
//function : IsOut
//purpose :
//=======================================================================
Standard_Boolean Bnd_B3x::IsOut (const gp_Ax3& thePlane) const
{
if (IsVoid())
return Standard_True;
const gp_XYZ& anOrigin = thePlane.Location().XYZ();
const gp_XYZ& aDir = thePlane.Direction().XYZ();
const gp_XYZ aBoxCenter ((Standard_Real)myCenter[0],
(Standard_Real)myCenter[1],
(Standard_Real)myCenter[2]);
const Standard_Real aDist0 = (aBoxCenter - anOrigin) * aDir;
// Find the signed distances from two opposite corners of the box to the plane
// If the distances are not the same sign, then the plane crosses the box
const Standard_Real aDist1 = // proj of HSize on aDir
Standard_Real(myHSize[0]) * Abs(aDir.X()) +
Standard_Real(myHSize[1]) * Abs(aDir.Y()) +
Standard_Real(myHSize[2]) * Abs(aDir.Z());
return ((aDist0 + aDist1) * (aDist0 - aDist1) > 0.);
}
//=======================================================================
//function : IsOut
//purpose :
//=======================================================================
Standard_Boolean Bnd_B3x::IsOut (const gp_Ax1& theLine,
const Standard_Boolean isRay,
const Standard_Real theOverthickness) const
{
const Standard_Real aRes = gp::Resolution() * 100.;
if (IsVoid())
return Standard_True;
Standard_Real
anInter0[2] = {-RealLast(), RealLast()},
anInter1[2] = {-RealLast(), RealLast()};
const gp_XYZ& aDir = theLine.Direction().XYZ();
const gp_XYZ aDiff ((Standard_Real)myCenter[0] - theLine.Location().X(),
(Standard_Real)myCenter[1] - theLine.Location().Y(),
(Standard_Real)myCenter[2] - theLine.Location().Z());
// Find the parameter interval in X dimention
Standard_Real aHSize = (Standard_Real)myHSize[0]+theOverthickness;
if (aDir.X() > aRes) {
anInter0[0]= (aDiff.X() - aHSize) / aDir.X();
anInter0[1]= (aDiff.X() + aHSize) / aDir.X();
} else if (aDir.X() < -aRes) {
anInter0[0]= (aDiff.X() + aHSize) / aDir.X();
anInter0[1]= (aDiff.X() - aHSize) / aDir.X();
} else
// the line is orthogonal to OX axis. Test for inclusion in box limits
if (Abs(aDiff.X()) > aHSize)
return Standard_True;
// Find the parameter interval in Y dimention
aHSize = (Standard_Real)myHSize[1]+theOverthickness;
if (aDir.Y() > aRes) {
anInter1[0]= (aDiff.Y() - aHSize) / aDir.Y();
anInter1[1]= (aDiff.Y() + aHSize) / aDir.Y();
} else if (aDir.Y() < -aRes) {
anInter1[0]= (aDiff.Y() + aHSize) / aDir.Y();
anInter1[1]= (aDiff.Y() - aHSize) / aDir.Y();
} else
// the line is orthogonal to OY axis. Test for inclusion in box limits
if (Abs(aDiff.Y()) > aHSize)
return Standard_True;
// Intersect Y-interval with X-interval
if (anInter0[0] > (anInter1[1] + aRes) || anInter0[1] < (anInter1[0] - aRes))
return Standard_True;
if (anInter1[0] > anInter0[0])
anInter0[0] = anInter1[0];
if (anInter1[1] < anInter0[1])
anInter0[1] = anInter1[1];
if (isRay && anInter0[1] < -aRes)
return Standard_True;
// Find the parameter interval in Z dimention
aHSize = (Standard_Real)myHSize[2]+theOverthickness;
if (aDir.Z() > aRes) {
anInter1[0]= (aDiff.Z() - aHSize) / aDir.Z();
anInter1[1]= (aDiff.Z() + aHSize) / aDir.Z();
} else if (aDir.Z() < -aRes) {
anInter1[0]= (aDiff.Z() + aHSize) / aDir.Z();
anInter1[1]= (aDiff.Z() - aHSize) / aDir.Z();
} else
// the line is orthogonal to OZ axis. Test for inclusion in box limits
return (Abs(aDiff.Z()) > aHSize);
if (isRay && anInter1[1] < -aRes)
return Standard_True;
return (anInter0[0] > (anInter1[1]+aRes) || anInter0[1] < (anInter1[0]-aRes));
}
//=======================================================================
//function : IsIn
//purpose : Test the complete inclusion of this box in transformed theOtherBox
//=======================================================================
Standard_Boolean Bnd_B3x::IsIn (const Bnd_B3x& theBox,
const gp_Trsf& theTrsf) const
{
Standard_Boolean aResult (Standard_False);
const gp_TrsfForm aForm = theTrsf.Form();
const Standard_Real aScale = theTrsf.ScaleFactor();
const Standard_Real aScaleAbs = Abs(aScale);
if (aForm == gp_Translation || aForm == gp_Identity ||
aForm == gp_PntMirror || aForm == gp_Scale)
{
aResult =
(Abs (RealType(theBox.myCenter[0]*aScale + theTrsf.TranslationPart().X())
- myCenter[0])
< RealType (theBox.myHSize[0]*aScaleAbs) - myHSize[0] &&
Abs (RealType(theBox.myCenter[1]*aScale + theTrsf.TranslationPart().Y())
- myCenter[1])
< RealType (theBox.myHSize[1]*aScaleAbs) - myHSize[1] &&
Abs (RealType(theBox.myCenter[2]*aScale + theTrsf.TranslationPart().Y())
- myCenter[2])
< RealType (theBox.myHSize[2]*aScaleAbs) - myHSize[2]);
} else {
// theBox is rotated, scaled and translated. We apply the reverse
// translation and scaling then check against the rotated box 'this'
const Standard_Real * aMat = &theTrsf.HVectorialPart().Value(1,1);
gp_XYZ aCenter ((Standard_Real)theBox.myCenter[0],
(Standard_Real)theBox.myCenter[1],
(Standard_Real)theBox.myCenter[2]);
theTrsf.Transforms (aCenter);
const Standard_Real aDist[3] = {
aCenter.X() - (Standard_Real)myCenter[0],
aCenter.Y() - (Standard_Real)myCenter[1],
aCenter.Z() - (Standard_Real)myCenter[2]
};
if ((Abs(aMat[0]*aDist[0]+aMat[3]*aDist[1]+aMat[6]*aDist[2])
< theBox.myHSize[0]*aScaleAbs - (Abs(aMat[0])*myHSize[0] +
Abs(aMat[3])*myHSize[1] +
Abs(aMat[6])*myHSize[2])) &&
(Abs(aMat[1]*aDist[0]+aMat[4]*aDist[1]+aMat[7]*aDist[2])
< theBox.myHSize[1]*aScaleAbs - (Abs(aMat[1])*myHSize[0] +
Abs(aMat[4])*myHSize[1] +
Abs(aMat[7])*myHSize[2])) &&
(Abs(aMat[2]*aDist[0]+aMat[5]*aDist[1]+aMat[8]*aDist[2])
< theBox.myHSize[2]*aScaleAbs - (Abs(aMat[2])*myHSize[0] +
Abs(aMat[5])*myHSize[1] +
Abs(aMat[8])*myHSize[2])))
aResult = Standard_True;
}
return aResult;
}
|