/usr/include/libmesh/trilinos_epetra_matrix.h is in libmesh-dev 0.7.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | // $Id: trilinos_epetra_matrix.h 4246 2011-03-11 22:24:59Z roystgnr $
// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __trilinos_epetra_matrix_h__
#define __trilinos_epetra_matrix_h__
#include "libmesh_common.h"
#ifdef LIBMESH_HAVE_TRILINOS
// Trilinos includes
#include <Epetra_FECrsMatrix.h>
#include <Epetra_Map.h>
#include <Epetra_MpiComm.h>
// C++ includes
#include <algorithm>
// Local includes
#include "sparse_matrix.h"
namespace libMesh
{
// Forward Declarations
template <typename T> class DenseMatrix;
/**
* Epetra matrix. Provides a nice interface to the
* Epetra data structures for parallel,
* sparse matrices.
*
* @author Benjamin S. Kirk, 2008
*/
template <typename T>
class EpetraMatrix : public SparseMatrix<T>
{
public:
/**
* Constructor; initializes the matrix to
* be empty, without any structure, i.e.
* the matrix is not usable at all. This
* constructor is therefore only useful
* for matrices which are members of a
* class. All other matrices should be
* created at a point in the data flow
* where all necessary information is
* available.
*
* You have to initialize
* the matrix before usage with
* \p init(...).
*/
EpetraMatrix ();
// /**
// * Constructor. Creates a EpetraMatrix assuming you already
// * have a valid Mat object. In this case, m is NOT destroyed
// * by the EpetraMatrix destructor when this object goes out of scope.
// * This allows ownership of m to remain with the original creator,
// * and to simply provide additional functionality with the EpetraMatrix.
// */
// EpetraMatrix (Mat m);
/**
* Destructor. Free all memory, but do not
* release the memory of the sparsity
* structure.
*/
~EpetraMatrix ();
// /**
// * The \p EpetraMatrix needs the full sparsity pattern.
// */
bool need_full_sparsity_pattern () const
{ return true; }
// /**
// * Updates the matrix sparsity pattern. This will
// * tell the underlying matrix storage scheme how
// * to map the \f$ (i,j) \f$ elements.
// */
void update_sparsity_pattern (const SparsityPattern::Graph &);
/**
* Initialize a Petsc matrix that is of global
* dimension \f$ m \times n \f$ with local dimensions
* \f$ m_l \times n_l \f$. \p nnz is the number of on-processor
* nonzeros per row (defaults to 30).
* \p noz is the number of on-processor
* nonzeros per row (defaults to 30).
*/
void init (const unsigned int m,
const unsigned int n,
const unsigned int m_l,
const unsigned int n_l,
const unsigned int nnz=30,
const unsigned int noz=10);
/**
* Initialize using sparsity structure computed by \p dof_map.
*/
void init ();
/**
* Release all memory and return
* to a state just like after
* having called the default
* constructor.
*/
void clear ();
/**
* Set all entries to 0. This method retains
* sparsity structure.
*/
void zero ();
/**
* Call the Petsc assemble routines.
* sends necessary messages to other
* processors
*/
void close () const;
/**
* @returns \p m, the row-dimension of
* the matrix where the marix is \f$ M \times N \f$.
*/
unsigned int m () const;
/**
* @returns \p n, the column-dimension of
* the matrix where the marix is \f$ M \times N \f$.
*/
unsigned int n () const;
/**
* return row_start, the index of the first
* matrix row stored on this processor
*/
unsigned int row_start () const;
/**
* return row_stop, the index of the last
* matrix row (+1) stored on this processor
*/
unsigned int row_stop () const;
/**
* Set the element \p (i,j) to \p value.
* Throws an error if the entry does
* not exist. Still, it is allowed to store
* zero values in non-existent fields.
*/
void set (const unsigned int i,
const unsigned int j,
const T value);
/**
* Add \p value to the element
* \p (i,j). Throws an error if
* the entry does not
* exist. Still, it is allowed to
* store zero values in
* non-existent fields.
*/
void add (const unsigned int i,
const unsigned int j,
const T value);
/**
* Add the full matrix to the
* Petsc matrix. This is useful
* for adding an element matrix
* at assembly time
*/
void add_matrix (const DenseMatrix<T> &dm,
const std::vector<unsigned int> &rows,
const std::vector<unsigned int> &cols);
/**
* Same, but assumes the row and column maps are the same.
* Thus the matrix \p dm must be square.
*/
void add_matrix (const DenseMatrix<T> &dm,
const std::vector<unsigned int> &dof_indices);
/**
* Add a Sparse matrix \p X, scaled with \p a, to \p this,
* stores the result in \p this:
* \f$\texttt{this} = a*X + \texttt{this} \f$.
* It is advisable to not only allocate appropriate memory with
* \p init() , but also explicitly zero the terms of \p this
* whenever you add a non-zero value to \p X. Note: \p X will
* be closed, if not already done, before performing any work.
*/
void add (const T a, SparseMatrix<T> &X);
/**
* Return the value of the entry
* \p (i,j). This may be an
* expensive operation and you
* should always take care where
* to call this function. In
* order to avoid abuse, this
* function throws an exception
* if the required element does
* not exist in the matrix.
*
* In case you want a function
* that returns zero instead (for
* entries that are not in the
* sparsity pattern of the
* matrix), use the \p el
* function.
*/
T operator () (const unsigned int i,
const unsigned int j) const;
/**
* Return the l1-norm of the matrix, that is
* \f$|M|_1=max_{all columns j}\sum_{all
* rows i} |M_ij|\f$,
* (max. sum of columns).
* This is the
* natural matrix norm that is compatible
* to the l1-norm for vectors, i.e.
* \f$|Mv|_1\leq |M|_1 |v|_1\f$.
* (cf. Haemmerlin-Hoffmann : Numerische Mathematik)
*/
Real l1_norm () const;
/**
* Return the linfty-norm of the
* matrix, that is
* \f$|M|_infty=max_{all rows i}\sum_{all
* columns j} |M_ij|\f$,
* (max. sum of rows).
* This is the
* natural matrix norm that is compatible
* to the linfty-norm of vectors, i.e.
* \f$|Mv|_infty \leq |M|_infty |v|_infty\f$.
* (cf. Haemmerlin-Hoffmann : Numerische Mathematik)
*/
Real linfty_norm () const;
/**
* see if Petsc matrix has been closed
* and fully assembled yet
*/
bool closed() const;
/**
* Print the contents of the matrix, by default to libMesh::out.
*/
void print_personal(std::ostream& os=libMesh::out) const;
/**
* Print the contents of the matrix in Matlab's
* sparse matrix format. Optionally prints the
* matrix to the file named \p name. If \p name
* is not specified it is dumped to the screen.
*/
void print_matlab(const std::string name="NULL") const;
/**
* Copies the diagonal part of the matrix into \p dest.
*/
void get_diagonal (NumericVector<T>& dest) const;
/**
* Copies the transpose of the matrix into \p dest, which may be
* *this.
*/
virtual void get_transpose (SparseMatrix<T>& dest) const;
/**
* Swaps the raw PETSc matrix context pointers.
*/
void swap (EpetraMatrix<T> &);
/**
* Returns the raw PETSc matrix context pointer. Note this is generally
* not required in user-level code. Just don't do anything crazy like
* calling MatDestroy()!
*/
Epetra_FECrsMatrix * mat () { libmesh_assert (_mat != NULL); return _mat; }
protected:
// /**
// * This function either creates or re-initializes
// * a matrix called "submatrix" which is defined
// * by the row and column indices given in the "rows" and "cols" entries.
// * This function is implemented in terms of the MatGetSubMatrix()
// * routine of PETSc. The boolean reuse_submatrix parameter determines
// * whether or not PETSc will treat "submatrix" as one which has already
// * been used (had memory allocated) or as a new matrix.
// */
// virtual void _get_submatrix(SparseMatrix<T>& submatrix,
// const std::vector<unsigned int>& rows,
// const std::vector<unsigned int>& cols,
// const bool reuse_submatrix) const;
private:
/**
* Actual Epetra datatype
* to hold matrix entries
*/
Epetra_FECrsMatrix * _mat;
/**
* Holds the distributed Map
*/
Epetra_Map * _map;
/**
* Holds the sparsity pattern
*/
Epetra_CrsGraph * _graph;
/**
* This boolean value should only be set to false
* for the constructor which takes a PETSc Mat object.
*/
bool _destroy_mat_on_exit;
};
//-----------------------------------------------------------------------
// EpetraMatrix inline members
template <typename T>
inline
EpetraMatrix<T>::EpetraMatrix()
: _destroy_mat_on_exit(true)
{}
// template <typename T>
// inline
// EpetraMatrix<T>::EpetraMatrix(Mat m)
// : _destroy_mat_on_exit(false)
// {
// this->_mat = m;
// this->_is_initialized = true;
// }
template <typename T>
inline
EpetraMatrix<T>::~EpetraMatrix()
{
this->clear();
}
template <typename T>
inline
void EpetraMatrix<T>::close () const
{
libmesh_assert (_mat != NULL);
_mat->GlobalAssemble();
}
template <typename T>
inline
unsigned int EpetraMatrix<T>::m () const
{
libmesh_assert (this->initialized());
return static_cast<unsigned int>(_mat->NumGlobalRows());
}
template <typename T>
inline
unsigned int EpetraMatrix<T>::n () const
{
libmesh_assert (this->initialized());
return static_cast<unsigned int>(_mat->NumGlobalCols());
}
template <typename T>
inline
unsigned int EpetraMatrix<T>::row_start () const
{
libmesh_assert (this->initialized());
libmesh_assert (_map != NULL);
return static_cast<unsigned int>(_map->MinMyGID());
}
template <typename T>
inline
unsigned int EpetraMatrix<T>::row_stop () const
{
libmesh_assert (this->initialized());
libmesh_assert (_map != NULL);
return static_cast<unsigned int>(_map->MaxMyGID())+1;
}
template <typename T>
inline
void EpetraMatrix<T>::set (const unsigned int i,
const unsigned int j,
const T value)
{
libmesh_assert (this->initialized());
int
epetra_i = static_cast<int>(i),
epetra_j = static_cast<int>(j);
T epetra_value = value;
if (_mat->Filled())
_mat->ReplaceGlobalValues (epetra_i, 1, &epetra_value, &epetra_j);
else
_mat->InsertGlobalValues (epetra_i, 1, &epetra_value, &epetra_j);
}
template <typename T>
inline
void EpetraMatrix<T>::add (const unsigned int i,
const unsigned int j,
const T value)
{
libmesh_assert (this->initialized());
int
epetra_i = static_cast<int>(i),
epetra_j = static_cast<int>(j);
T epetra_value = value;
_mat->SumIntoGlobalValues (epetra_i, 1, &epetra_value, &epetra_j);
}
template <typename T>
inline
void EpetraMatrix<T>::add_matrix(const DenseMatrix<T>& dm,
const std::vector<unsigned int>& dof_indices)
{
this->add_matrix (dm, dof_indices, dof_indices);
}
template <typename T>
inline
void EpetraMatrix<T>::add (const T, SparseMatrix<T> &X_in)
{
libmesh_assert (this->initialized());
// sanity check. but this cannot avoid
// crash due to incompatible sparsity structure...
libmesh_assert (this->m() == X_in.m());
libmesh_assert (this->n() == X_in.n());
libmesh_not_implemented();
// PetscScalar a = static_cast<PetscScalar> (a_in);
// EpetraMatrix<T>* X = libmesh_cast_ptr<EpetraMatrix<T>*> (&X_in);
// libmesh_assert (X != NULL);
// int ierr=0;
// // the matrix from which we copy the values has to be assembled/closed
// X->close ();
// // 2.2.x & earlier style
// #if PETSC_VERSION_LESS_THAN(2,3,0)
// ierr = MatAXPY(&a, X->_mat, _mat, SAME_NONZERO_PATTERN);
// CHKERRABORT(libMesh::COMM_WORLD,ierr);
// // 2.3.x & newer
// #else
// ierr = MatAXPY(_mat, a, X->_mat, DIFFERENT_NONZERO_PATTERN);
// CHKERRABORT(libMesh::COMM_WORLD,ierr);
// #endif
}
template <typename T>
inline
T EpetraMatrix<T>::operator () (const unsigned int i,
const unsigned int j) const
{
libmesh_assert (this->initialized());
libmesh_assert (this->_mat != NULL);
libmesh_assert (this->_mat->MyGlobalRow(i));
libmesh_assert (i >= this->row_start());
libmesh_assert (i < this->row_stop());
int row_length, *row_indices;
double *values;
_mat->ExtractMyRowView (i-this->row_start(),
row_length,
values,
row_indices);
//libMesh::out << "row_length=" << row_length << std::endl;
int *index = std::lower_bound (row_indices, row_indices+row_length, j);
libmesh_assert (*index < row_length);
libmesh_assert (static_cast<unsigned int>(row_indices[*index]) == j);
//libMesh::out << "val=" << values[*index] << std::endl;
return values[*index];
}
template <typename T>
inline
bool EpetraMatrix<T>::closed() const
{
libmesh_assert (this->initialized());
libmesh_assert (this->_mat != NULL);
return this->_mat->Filled();
}
template <typename T>
inline
//void EpetraMatrix<T>::swap(EpetraMatrix<T> &m)
void EpetraMatrix<T>::swap(EpetraMatrix<T> &)
{
libmesh_not_implemented();
// std::swap(_mat, m._mat);
// std::swap(_destroy_mat_on_exit, m._destroy_mat_on_exit);
}
template <typename T>
inline
void EpetraMatrix<T>::print_personal(std::ostream& os) const
{
libmesh_assert (this->initialized());
libmesh_assert (_mat != NULL);
os << *_mat;
}
} // namespace libMesh
#endif // #ifdef LIBMESH_HAVE_TRILINOS
#endif // #ifdef __trilinos_epetra_matrix_h__
|