/usr/include/libmesh/sphere.h is in libmesh-dev 0.7.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | // $Id: sphere.h 3874 2010-07-02 21:57:26Z roystgnr $
// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __sphere_h__
#define __sphere_h__
// C++ includes
#include <cmath>
// Local includes
#include "surface.h"
#include "libmesh.h"
namespace libMesh
{
/**
* This class defines a sphere. It also computes coordinate
* transformations between cartesian \f$ (x, y, z) \f$
* and spherical \f$ (r, \theta, \phi) \f$ coordinates.
* The spherical coordinates are valid in the ranges:
*
* - \f$ 0 \le r < \infty \f$
* - \f$ 0 \le \theta < \pi \f$
* - \f$ 0 \le \phi < 2\pi \f$
*
* The coordinates are related as follows:
* \f$ \phi \f$ is the angle in the xy plane
* starting with 0. from the positive x axis,
* \f$ \theta \f$ is measured against the positive
* z axis.
\verbatim
\ | Z
\theta|
\ | .
\ | .
\ | .
\ | .
\|.
---------------+---------.---------
/|\ . Y
/phi\ .
/ | \ .
/ | \ .
/.........\
/ |
X /
\endverbatim
*
* \author Benjamin S. Kirk, Daniel Dreyer
* \date 2002-2007
*/
// ------------------------------------------------------------
// Sphere class definition
class Sphere : public Surface
{
public:
/**
* Dummy Constructor.
*/
Sphere ();
/**
* Constructs a sphere of radius r centered at c.
*/
Sphere (const Point& c, const Real r);
/**
* Constructs a sphere connecting four points
*/
Sphere (const Point&, const Point&, const Point&, const Point&);
/**
* Copy-constructor.
*/
Sphere (const Sphere& other_sphere);
/**
* Destructor. Does nothing at the moment.
*/
~Sphere ();
/**
* Defines a sphere of radius r centered at c.
*/
void create_from_center_radius (const Point& c, const Real r);
/**
* @returns true if other_sphere intersects this sphere,
* false otherwise.
*/
bool intersects (const Sphere& other_sphere) const;
/**
* @returns true if the point p is above the surface,
* false otherwise.
*/
bool above_surface (const Point& p) const;
/**
* @returns true if the point p is below the surface,
* false otherwise.
*/
bool below_surface (const Point& p) const;
/**
* @returns true if the point p is on the surface,
* false otherwise. Note that the definition of on
* the surface really means "very close" to account
* for roundoff error.
*/
bool on_surface (const Point& p) const;
/**
* @returns the closest point on the surface to point p.
*/
Point closest_point (const Point& p) const;
/**
* @returns a unit vector normal to the surface at
* point p.
*/
Point unit_normal (const Point& p) const;
/**
* Returns the radius of the sphere.
*/
Real radius() const { return _rad; }
/**
* Returns the radius of the sphere as a writeable reference.
*/
Real& radius() { return _rad; }
/**
* @returns the center of the sphere.
*/
const Point& center() const { return _cent; }
/**
* @returns the center of the sphere.
*/
Point& center() { return _cent; }
/**
* @returns the spherical coordinates for the
* cartesian coordinates \p cart.
*/
Point surface_coords (const Point& cart) const;
/**
* @returns the cartesian coordinates for the
* spherical coordinates \p sph.
*/
Point world_coords (const Point& sph) const;
private:
/**
* The center of the sphere.
*/
Point _cent;
/**
* The radius of the sphere.
*/
Real _rad;
};
// ------------------------------------------------------------
// Sphere inline functions
inline
Point Sphere::surface_coords (const Point& cart) const
{
// constant translation in the origin
const Point c (cart-this->center());
// phi: special care, so that it gives 0..2pi results
const Real phi = std::atan2(c(1), c(0));
return Point(/* radius */ c.size(),
/* theta */ std::atan2( std::sqrt( c(0)*c(0) + c(1)*c(1) ), c(2) ),
/* phi */ ( (phi < 0) ? 2.*libMesh::pi+phi : phi ) );
}
inline
Point Sphere::world_coords (const Point& sph) const
{
const Real r = sph(0);
const Real theta = sph(1);
const Real phi = sph(2);
// constant translation out of the origin
return Point (/* x */ r*std::sin(theta)*std::cos(phi) + this->center()(0),
/* y */ r*std::sin(theta)*std::sin(phi) + this->center()(1),
/* z */ r*std::cos(theta) + this->center()(2));
}
} // namespace libMesh
#endif
|