This file is indexed.

/usr/include/libmesh/sphere.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// $Id: sphere.h 3874 2010-07-02 21:57:26Z roystgnr $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __sphere_h__
#define __sphere_h__

// C++ includes
#include <cmath>


// Local includes
#include "surface.h"
#include "libmesh.h"

namespace libMesh
{


/**
 * This class defines a sphere.  It also computes coordinate
 * transformations between cartesian  \f$ (x, y, z) \f$
 * and spherical  \f$ (r, \theta, \phi) \f$ coordinates.
 * The spherical coordinates are valid in the ranges:  
 *
 * - \f$ 0 \le r      < \infty \f$
 * - \f$ 0 \le \theta < \pi \f$
 * - \f$ 0 \le \phi   < 2\pi \f$
 *
 * The coordinates are related as follows:
 * \f$ \phi \f$ is the angle in the xy plane
 * starting with 0. from the positive x axis,
 * \f$ \theta \f$ is measured against the positive
 * z axis.
   \verbatim

          \      | Z
           \theta|  
            \    |    .
             \   |   .
              \  |  .
               \ | .
                \|.
  ---------------+---------.---------
                /|\       .          Y
               /phi\     .  
              /  |  \   .  
             /   |   \ .  
            /.........\  
           /     |
        X /      
   \endverbatim
 *
 * \author Benjamin S. Kirk, Daniel Dreyer
 * \date 2002-2007
 */

// ------------------------------------------------------------
// Sphere class definition
class Sphere : public Surface
{
public:
  
  /**
   * Dummy Constructor.
   */
  Sphere ();

  /**
   * Constructs a sphere of radius r centered at c.
   */
  Sphere (const Point& c, const Real r);

  /**
   * Constructs a sphere connecting four points
   */
  Sphere (const Point&, const Point&, const Point&, const Point&);

  /**
   * Copy-constructor.
   */
  Sphere (const Sphere& other_sphere);

  /**
   * Destructor.  Does nothing at the moment.
   */
  ~Sphere ();

  /**
   * Defines a sphere of radius r centered at c.
   */
  void create_from_center_radius (const Point& c, const Real r);

  /**
   * @returns true if other_sphere intersects this sphere,
   * false otherwise.
   */
  bool intersects (const Sphere& other_sphere) const;

  /**
   * @returns true if the point p is above the surface,
   * false otherwise.
   */
  bool above_surface (const Point& p) const;

  /**
   * @returns true if the point p is below the surface,
   * false otherwise.
   */
  bool below_surface (const Point& p) const;

  /**
   * @returns true if the point p is on the surface,
   * false otherwise.  Note that the definition of on 
   * the surface really means "very close" to account 
   * for roundoff error.
   */
  bool on_surface (const Point& p) const;

  /**
   * @returns the closest point on the surface to point p.
   */
  Point closest_point (const Point& p) const;

  /**
   * @returns a unit vector normal to the surface at
   * point p.  
   */
  Point unit_normal (const Point& p) const;

  /**
   * Returns the radius of the sphere.
   */
  Real radius() const { return _rad; }

  /**
   * Returns the radius of the sphere as a writeable reference.
   */
  Real& radius() { return _rad; }

  /**
   * @returns the center of the sphere.
   */ 
  const Point& center() const { return _cent; }

  /**
   * @returns the center of the sphere.
   */ 
  Point& center() { return _cent; }

  /**
   * @returns the spherical coordinates for the
   * cartesian coordinates \p cart.
   */ 
  Point surface_coords (const Point& cart) const;

  /**
   * @returns the cartesian coordinates for the
   * spherical coordinates \p sph.
   */ 
  Point world_coords (const Point& sph) const;

  
private:

  
  /**
   * The center of the sphere.
   */
  Point _cent;

  /**
   * The radius of the sphere.
   */
  Real  _rad;
};



// ------------------------------------------------------------
// Sphere inline functions
inline
Point Sphere::surface_coords (const Point& cart) const
{
  // constant translation in the origin
  const Point c (cart-this->center());

  // phi: special care, so that it gives 0..2pi results
  const Real phi = std::atan2(c(1), c(0));

  return Point(/* radius */ c.size(),
	       /* theta  */ std::atan2( std::sqrt( c(0)*c(0) + c(1)*c(1) ), c(2) ),
	       /* phi    */ ( (phi < 0)  ?  2.*libMesh::pi+phi  :  phi ) );
}



inline
Point Sphere::world_coords (const Point& sph) const
{
  const Real r     = sph(0);
  const Real theta = sph(1);
  const Real phi   = sph(2);

  // constant translation out of the origin
  return Point (/* x */ r*std::sin(theta)*std::cos(phi) + this->center()(0),
		/* y */ r*std::sin(theta)*std::sin(phi) + this->center()(1),
		/* z */ r*std::cos(theta)               + this->center()(2));
}



} // namespace libMesh


#endif