/usr/include/libmesh/sparse_matrix.h is in libmesh-dev 0.7.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | // $Id: sparse_matrix.h 4267 2011-03-16 09:24:03Z sheep_tk $
// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __sparse_matrix_h__
#define __sparse_matrix_h__
// C++ includes
#include <iomanip>
#include <vector>
// Local includes
#include "libmesh_common.h"
#include "auto_ptr.h"
#include "reference_counted_object.h"
#include "libmesh.h"
namespace libMesh
{
// forward declarations
template <typename T> class SparseMatrix;
template <typename T> class DenseMatrix;
template <typename T> inline std::ostream& operator << (std::ostream& os, const SparseMatrix<T>& m);
class DofMap;
namespace SparsityPattern { class Graph; }
template <typename T> class NumericVector;
/**
* Generic sparse matrix. This class contains
* pure virtual members that must be overloaded
* in derived classes. Using a derived class
* allows for uniform access to sparse matrices
* from various different solver packages in
* different formats.
*
* @author Benjamin S. Kirk, 2003
*/
template <typename T>
class SparseMatrix : public ReferenceCountedObject<SparseMatrix<T> >
{
public:
/**
* Constructor; initializes the matrix to
* be empty, without any structure, i.e.
* the matrix is not usable at all. This
* constructor is therefore only useful
* for matrices which are members of a
* class. All other matrices should be
* created at a point in the data flow
* where all necessary information is
* available.
*
* You have to initialize
* the matrix before usage with
* \p init(...).
*/
SparseMatrix ();
/**
* Destructor. Free all memory, but do not
* release the memory of the sparsity
* structure.
*/
virtual ~SparseMatrix ();
/**
* Builds a \p SparseMatrix<T> using the linear solver package specified by
* \p solver_package
*/
static AutoPtr<SparseMatrix<T> >
build(const SolverPackage solver_package = libMesh::default_solver_package());
/**
* @returns true if the matrix has been initialized,
* false otherwise.
*/
virtual bool initialized() const { return _is_initialized; }
/**
* Get a pointer to the \p DofMap to use.
*/
void attach_dof_map (const DofMap& dof_map)
{ _dof_map = &dof_map; }
/**
* \p returns true if this sparse matrix format needs to be fed the
* graph of the sparse matrix. This is true in the case of the \p LaspackMatrix,
* but not for the \p PetscMatrix. In the case where the full graph is not
* required we can efficiently approximate it to provide a good estimate of the
* required size of the sparse matrix.
*/
virtual bool need_full_sparsity_pattern() const
{ return false; }
/**
* Updates the matrix sparsity pattern. When your \p SparseMatrix<T>
* implementation does not need this data simply do
* not overload this method.
*/
virtual void update_sparsity_pattern (const SparsityPattern::Graph &) {}
/**
* Initialize a Sparse matrix that is of global
* dimension \f$ m \times n \f$ with local dimensions
* \f$ m_l \times n_l \f$. \p nnz is the number of on-processor
* nonzeros per row (defaults to 30).
* \p noz is the number of on-processor
* nonzeros per row (defaults to 10).
*/
virtual void init (const unsigned int m,
const unsigned int n,
const unsigned int m_l,
const unsigned int n_l,
const unsigned int nnz=30,
const unsigned int noz=10) = 0;
/**
* Initialize using sparsity structure computed by \p dof_map.
*/
virtual void init () = 0;
/**
* Release all memory and return
* to a state just like after
* having called the default
* constructor.
*/
virtual void clear () = 0;
/**
* Set all entries to 0.
*/
virtual void zero () = 0;
/**
* Set all row entries to 0 then puts diag_value in the diagonal entry
*/
virtual void zero_rows (std::vector<int> & rows, T diag_value = 0.0);
/**
* Call the Sparse assemble routines.
* sends necessary messages to other
* processors
*/
virtual void close () const = 0;
/**
* @returns \p m, the row-dimension of
* the matrix where the marix is \f$ M \times N \f$.
*/
virtual unsigned int m () const = 0;
/**
* @returns \p n, the column-dimension of
* the matrix where the marix is \f$ M \times N \f$.
*/
virtual unsigned int n () const = 0;
/**
* return row_start, the index of the first
* matrix row stored on this processor
*/
virtual unsigned int row_start () const = 0;
/**
* return row_stop, the index of the last
* matrix row (+1) stored on this processor
*/
virtual unsigned int row_stop () const = 0;
/**
* Set the element \p (i,j) to \p value.
* Throws an error if the entry does
* not exist. Still, it is allowed to store
* zero values in non-existent fields.
*/
virtual void set (const unsigned int i,
const unsigned int j,
const T value) = 0;
/**
* Add \p value to the element
* \p (i,j). Throws an error if
* the entry does not
* exist. Still, it is allowed to
* store zero values in
* non-existent fields.
*/
virtual void add (const unsigned int i,
const unsigned int j,
const T value) = 0;
/**
* Add the full matrix to the
* Sparse matrix. This is useful
* for adding an element matrix
* at assembly time
*/
virtual void add_matrix (const DenseMatrix<T> &dm,
const std::vector<unsigned int> &rows,
const std::vector<unsigned int> &cols) = 0;
/**
* Same, but assumes the row and column maps are the same.
* Thus the matrix \p dm must be square.
*/
virtual void add_matrix (const DenseMatrix<T> &dm,
const std::vector<unsigned int> &dof_indices) = 0;
/**
* Add a Sparse matrix \p _X, scaled with \p _a, to \p this,
* stores the result in \p this:
* \f$\texttt{this} = \_a*\_X + \texttt{this} \f$.
*/
virtual void add (const T, SparseMatrix<T> &) = 0;
/**
* Return the value of the entry
* \p (i,j). This may be an
* expensive operation and you
* should always take care where
* to call this function. In
* order to avoid abuse, this
* function throws an exception
* if the required element does
* not exist in the matrix.
*
* In case you want a function
* that returns zero instead (for
* entries that are not in the
* sparsity pattern of the
* matrix), use the \p el
* function.
*/
virtual T operator () (const unsigned int i,
const unsigned int j) const = 0;
/**
* Return the l1-norm of the matrix, that is
* \f$|M|_1=max_{all columns j}\sum_{all
* rows i} |M_ij|\f$,
* (max. sum of columns).
* This is the
* natural matrix norm that is compatible
* to the l1-norm for vectors, i.e.
* \f$|Mv|_1\leq |M|_1 |v|_1\f$.
*/
virtual Real l1_norm () const = 0;
/**
* Return the linfty-norm of the
* matrix, that is
* \f$|M|_\infty=max_{all rows i}\sum_{all
* columns j} |M_ij|\f$,
* (max. sum of rows).
* This is the
* natural matrix norm that is compatible
* to the linfty-norm of vectors, i.e.
* \f$|Mv|_\infty \leq |M|_\infty |v|_\infty\f$.
*/
virtual Real linfty_norm () const = 0;
/**
* see if Sparse matrix has been closed
* and fully assembled yet
*/
virtual bool closed() const = 0;
/**
* Print the contents of the matrix to the screen
* in a uniform style, regardless of matrix/solver
* package being used.
*/
void print(std::ostream& os=libMesh::out, const bool sparse=false) const;
/**
* Same as the print method above, but allows you
* to print to a stream in the standard syntax.
*/
template <typename U>
friend std::ostream& operator << (std::ostream& os, const SparseMatrix<U>& m);
/**
* Print the contents of the matrix to the screen
* in a package-personalized style, if available.
*/
virtual void print_personal(std::ostream& os=libMesh::out) const = 0;
/**
* Print the contents of the matrix in Matlab's
* sparse matrix format. Optionally prints the
* matrix to the file named \p name. If \p name
* is not specified it is dumped to the screen.
x */
virtual void print_matlab(const std::string name="NULL") const
{
libMesh::err << "ERROR: Not Implemented in base class yet!" << std::endl;
libMesh::err << "ERROR writing MATLAB file " << name << std::endl;
libmesh_error();
}
/**
* This function creates a matrix called "submatrix" which is defined
* by the row and column indices given in the "rows" and "cols" entries.
* Currently this operation is only defined for the PetscMatrix type.
*/
virtual void create_submatrix(SparseMatrix<T>& submatrix,
const std::vector<unsigned int>& rows,
const std::vector<unsigned int>& cols) const
{
this->_get_submatrix(submatrix,
rows,
cols,
false); // false means DO NOT REUSE submatrix
}
/**
* This function is similar to the one above, but it allows you to reuse
* the existing sparsity pattern of "submatrix" instead of reallocating
* it again. This should hopefully be more efficient if you are frequently
* extracting submatrices of the same size.
*/
virtual void reinit_submatrix(SparseMatrix<T>& submatrix,
const std::vector<unsigned int>& rows,
const std::vector<unsigned int>& cols) const
{
this->_get_submatrix(submatrix,
rows,
cols,
true); // true means REUSE submatrix
}
/**
* Multiplies the matrix with \p arg and stores the result in \p
* dest.
*/
void vector_mult (NumericVector<T>& dest,
const NumericVector<T>& arg) const;
/**
* Multiplies the matrix with \p arg and adds the result to \p dest.
*/
void vector_mult_add (NumericVector<T>& dest,
const NumericVector<T>& arg) const;
/**
* Copies the diagonal part of the matrix into \p dest.
*/
virtual void get_diagonal (NumericVector<T>& dest) const = 0;
/**
* Copies the transpose of the matrix into \p dest, which may be
* *this.
*/
virtual void get_transpose (SparseMatrix<T>& dest) const = 0;
protected:
/**
* Protected implementation of the create_submatrix and reinit_submatrix
* routines. Note that this function must be redefined in derived classes
* for it to work properly!
*/
virtual void _get_submatrix(SparseMatrix<T>& ,
const std::vector<unsigned int>& ,
const std::vector<unsigned int>& ,
const bool) const
{
libMesh::err << "Error! This function is not yet implemented in the base class!"
<< std::endl;
libmesh_error();
}
/**
* The \p DofMap object associated with this object.
*/
DofMap const *_dof_map;
/**
* Flag indicating whether or not the matrix
* has been initialized.
*/
bool _is_initialized;
};
//-----------------------------------------------------------------------
// SparseMatrix inline members
template <typename T>
inline
SparseMatrix<T>::SparseMatrix () :
_dof_map(NULL),
_is_initialized(false)
{}
template <typename T>
inline
SparseMatrix<T>::~SparseMatrix ()
{}
// Full specialization for Complex datatypes
template <>
inline
void SparseMatrix<Complex>::print(std::ostream& os, const bool sparse) const
{
// std::complex<>::operator<<() is defined, but use this form
if(sparse)
{
libmesh_not_implemented();
}
os << "Real part:" << std::endl;
for (unsigned int i=0; i<this->m(); i++)
{
for (unsigned int j=0; j<this->n(); j++)
os << std::setw(8) << (*this)(i,j).real() << " ";
os << std::endl;
}
os << std::endl << "Imaginary part:" << std::endl;
for (unsigned int i=0; i<this->m(); i++)
{
for (unsigned int j=0; j<this->n(); j++)
os << std::setw(8) << (*this)(i,j).imag() << " ";
os << std::endl;
}
}
// For SGI MIPSpro this implementation must occur after
// the partial specialization of the print() member.
template <typename T>
inline
std::ostream& operator << (std::ostream& os, const SparseMatrix<T>& m)
{
m.print(os);
return os;
}
} // namespace libMesh
#endif // #ifndef __sparse_matrix_h__
|