This file is indexed.

/usr/include/libmesh/numeric_vector.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
// $Id: numeric_vector.h 4286 2011-03-24 03:55:50Z knezed01 $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __numeric_vector_h__
#define __numeric_vector_h__


// C++ includes
#include <vector>
#include <set>

// Local includes
#include "libmesh_common.h"
#include "auto_ptr.h"
#include "enum_parallel_type.h"
#include "enum_solver_package.h"
#include "reference_counted_object.h"
#include "libmesh.h"

namespace libMesh
{


// forward declarations
template <typename T> class NumericVector;
template <typename T> class DenseVector;
template <typename T> class DenseSubVector;
template <typename T> class SparseMatrix;
template <typename T> class ShellMatrix;


/**
 * Numeric vector. Provides a uniform interface
 * to vector storage schemes for different linear
 * algebra libraries.
 *
 * @author Benjamin S. Kirk, 2003
 */
template <typename T>
class NumericVector : public ReferenceCountedObject<NumericVector<T> >
{
public:

  /**
   *  Dummy-Constructor. Dimension=0
   */
  explicit
  NumericVector (const ParallelType type = AUTOMATIC);
    
  /**
   * Constructor. Set dimension to \p n and initialize all elements with zero.
   */
  explicit
  NumericVector (const unsigned int n,
                 const ParallelType type = AUTOMATIC);
    
  /**
   * Constructor. Set local dimension to \p n_local, the global dimension
   * to \p n, and initialize all elements with zero.
   */
  NumericVector (const unsigned n,
		 const unsigned int n_local,
                 const ParallelType type = AUTOMATIC);

  /**
   * Constructor. Set local dimension to \p n_local, the global
   * dimension to \p n, but additionally reserve memory for the
   * indices specified by the \p ghost argument.
   */
  NumericVector (const unsigned int N,
		 const unsigned int n_local,
		 const std::vector<unsigned int>& ghost,
                 const ParallelType type = AUTOMATIC);
    
public:

  /**
   * Destructor, deallocates memory. Made virtual to allow
   * for derived classes to behave properly.
   */
  virtual ~NumericVector ();

  /**
   * Builds a \p NumericVector using the linear solver package specified by
   * \p solver_package
   */
  static AutoPtr<NumericVector<T> >
  build(const SolverPackage solver_package = libMesh::default_solver_package());
  
  /**
   * @returns true if the vector has been initialized,
   * false otherwise.
   */
  virtual bool initialized() const { return _is_initialized; }

  /**
   * @returns the type (SERIAL, PARALLEL, GHOSTED) of the vector.
   */
  ParallelType type() const { return _type; }

  /**
   * @returns the type (SERIAL, PARALLEL, GHOSTED) of the vector.
   */
  ParallelType & type() { return _type; }

  /**
   * @returns true if the vector is closed and ready for
   * computation, false otherwise.
   */
  virtual bool closed() const { return _is_closed; }
  
  /**
   * Call the assemble functions
   */
  virtual void close () = 0; 

  /**
   * @returns the \p NumericVector<T> to a pristine state.
   */
  virtual void clear ();

  /**
   * Set all entries to zero. Equivalent to \p v = 0, but more obvious and
   * faster. 
   */
  virtual void zero () = 0;    

  /**
   * Creates a vector which has the same type, size and partitioning
   * as this vector, but whose data is all zero.  Returns it in an \p
   * AutoPtr.
   * This must be overloaded in the derived classes.
   */
  virtual AutoPtr<NumericVector<T> > zero_clone () const = 0;
  
  /**
   * Creates a copy of this vector and returns it in an \p AutoPtr.
   * This must be overloaded in the derived classes.
   */
  virtual AutoPtr<NumericVector<T> > clone () const = 0;
  
  /**
   * Change the dimension of the vector to \p N. The reserved memory for
   * this vector remains unchanged if possible, to make things faster, but
   * this may waste some memory, so take this in the back of your head.
   * However, if \p N==0 all memory is freed, i.e. if you want to resize
   * the vector and release the memory not needed, you have to first call
   * \p init(0) and then \p init(N). This cited behaviour is analogous
   * to that of the STL containers.
   *
   * On \p fast==false, the vector is filled by
   * zeros.
   */
    
  virtual void init (const unsigned int,
		     const unsigned int,
		     const bool = false,
                     const ParallelType = AUTOMATIC) = 0;
  
  /**
   * call init with n_local = N,
   */
  virtual void init (const unsigned int,
		     const bool = false,
                     const ParallelType = AUTOMATIC) = 0;
    
  /**
   * Create a vector that holds tha local indices plus those specified
   * in the \p ghost argument.
   */
  virtual void init (const unsigned int /*N*/,
		     const unsigned int /*n_local*/,
		     const std::vector<unsigned int>& /*ghost*/,
		     const bool /*fast*/ = false,
                     const ParallelType = AUTOMATIC) = 0;

  /**
   * Creates a vector that has the same dimension and storage type as
   * \p other, including ghost dofs.
   */
  virtual void init (const NumericVector<T>& other,
                     const bool fast = false) = 0;
    
  /**
   * \f$U(0-N) = s\f$: fill all components.
   */
  virtual NumericVector<T> & operator= (const T s) = 0;
  
  /**
   *  \f$U = V\f$: copy all components.
   */
  virtual NumericVector<T> & operator= (const NumericVector<T> &V) = 0;

  /**
   *  \f$U = V\f$: copy all components.
   */
  virtual NumericVector<T> & operator= (const std::vector<T> &v) = 0;

  /**
   * @returns the minimum element in the vector.
   * In case of complex numbers, this returns the minimum
   * Real part.
   */
  virtual Real min () const = 0;
  
  /**
   * @returns the maximum element in the vector.
   * In case of complex numbers, this returns the maximum
   * Real part.
   */
  virtual Real max () const = 0;
 
  /**
   * returns the sum of the elements in a vector
   */
  virtual T sum() const = 0;

  /**
   * @returns the \f$l_1\f$-norm of the vector, i.e.
   * the sum of the absolute values.
   */
  virtual Real l1_norm () const = 0;

  /**
   * @returns the \f$l_2\f$-norm of the vector, i.e.
   * the square root of the sum of the
   * squares of the elements.
   */
  virtual Real l2_norm () const = 0;

  /**
   * @returns the maximum absolute value of the
   * elements of this vector, which is the
   * \f$l_\infty\f$-norm of a vector.
   */
  virtual Real linfty_norm () const = 0;

  /**
   * @returns the \f$l_1\f$-norm of the vector, i.e.
   * the sum of the absolute values for the specified
   * entries in the vector.
   *
   * Note that the indices must necessary live on this
   * processor.
   */
  virtual Real subset_l1_norm (const std::set<unsigned int> & indices) const;

  /**
   * @returns the \f$l_2\f$-norm of the vector, i.e.
   * the square root of the sum of the
   * squares of the elements for the specified entries
   * in the vector.
   *
   * Note that the indices must necessary live on this
   * processor.
   */
  virtual Real subset_l2_norm (const std::set<unsigned int> & indices) const;

  /**
   * @returns the maximum absolute value of the
   * specified entries of this vector, which is the
   * \f$l_\infty\f$-norm of a vector.
   *
   * Note that the indices must necessary live on this
   * processor.
   */
  virtual Real subset_linfty_norm (const std::set<unsigned int> & indices) const;

  /**
   * @returns dimension of the vector. This
   * function was formerly called \p n(), but
   * was renamed to get the \p NumericVector<T> class
   * closer to the C++ standard library's
   * \p std::vector container.
   */
  virtual unsigned int size () const = 0;

  /**
   * @returns the local size of the vector
   * (index_stop-index_start).
   * In ghost cell mode, this does *not* include the ghost cells.
   */
  virtual unsigned int local_size() const = 0;

  /**
   * @returns the index of the first vector element
   * actually stored on this processor.  Hint: the
   * minimum for this index is \p 0.
   */
  virtual unsigned int first_local_index() const = 0;

  /**
   * @returns the index+1 of the last vector element
   * actually stored on this processor.  Hint: the
   * maximum for this index is \p size().
   */
  virtual unsigned int last_local_index() const = 0;
    
  /**
   * Access components, returns \p U(i).
   */
  virtual T operator() (const unsigned int i) const = 0;
    
  /**
   * @returns the element \p U(i)
   */
  virtual T el(const unsigned int i) const { return (*this)(i); }

  /**
   * Access multiple components at once.  \p values will be resized,
   * if necessary, and filled.  The default implementation calls \p
   * operator() for each index, but some implementations may supply
   * faster methods here.
   */
  virtual void get(const std::vector<unsigned int>& index, std::vector<T>& values) const;

  /**
   * Addition operator.
   * Fast equivalent to \p U.add(1, V).
   */
  virtual NumericVector<T> & operator += (const NumericVector<T> &V) = 0;

  /**
   * Subtraction operator.
   * Fast equivalent to \p U.add(-1, V).
   */
  virtual NumericVector<T> & operator -= (const NumericVector<T> &V) = 0;
    
  /**
   * Multiplication operator.
   * Equivalent to \p U.scale(a)
   */
  NumericVector<T> & operator *= (const T a) { this->scale(a); return *this; }

  /**
   * Division operator.
   * Equivalent to \p U.scale(1./a)
   */
  NumericVector<T> & operator /= (const T a) { this->scale(1./a); return *this; }

  /**
   * v(i) = value
   */
  virtual void set (const unsigned int i, const T value) = 0;
    
  /**
   * v(i) += value
   */
  virtual void add (const unsigned int i, const T value) = 0;
    
  /**
   * \f$U(0-LIBMESH_DIM)+=s\f$.
   * Addition of \p s to all components. Note
   * that \p s is a scalar and not a vector.
   */
  virtual void add (const T s) = 0;
    
  /**
   * \f$U+=V\f$:
   * Simple vector addition, equal to the
   * \p operator +=.
   */
  virtual void add (const NumericVector<T>& V) = 0;

  /**
   * \f$U+=a*V\f$.
   * Simple vector addition, equal to the
   * \p operator +=.
   */
  virtual void add (const T a, const NumericVector<T>& v) = 0;

  /**
   * \f$ U+=v \f$ where v is a DenseVector<T> 
   * and you
   * want to specify WHERE to add it
   */
  virtual void add_vector (const std::vector<T>& v,
			   const std::vector<unsigned int>& dof_indices) = 0;

  /**
   * \f$U+=V\f$, where U and V are type 
   * NumericVector<T> and you
   * want to specify WHERE to add
   * the NumericVector<T> V 
   */
  virtual void add_vector (const NumericVector<T>& V,
			   const std::vector<unsigned int>& dof_indices) = 0;

  /**
   * \f$U+=A*V\f$, add the product of a \p SparseMatrix \p A
   * and a \p NumericVector \p V to \p this, where \p this=U.
   */
  virtual void add_vector (const NumericVector<T>&,
			   const SparseMatrix<T>&) = 0;
      
  /**
   * \f$U+=A*V\f$, add the product of a \p ShellMatrix \p A
   * and a \p NumericVector \p V to \p this, where \p this=U.
   */
  void add_vector (const NumericVector<T>& v,
		   const ShellMatrix<T>& a);
      
  /**
   * \f$ U+=V \f$ where U and V are type 
   * DenseVector<T> and you
   * want to specify WHERE to add
   * the DenseVector<T> V 
   */
  virtual void add_vector (const DenseVector<T>& V,
			   const std::vector<unsigned int>& dof_indices) = 0;

  /**
   * \f$U+=A^T*V\f$, add the product of the transpose of a \p SparseMatrix \p A_trans
   * and a \p NumericVector \p V to \p this, where \p this=U.
   */
  virtual void add_vector_transpose (const NumericVector<T>&,
			             const SparseMatrix<T>&) = 0;

  /**
   * \f$ U=v \f$ where v is a std::vector<T> 
   * and you want to specify WHERE to insert it
   */
  virtual void insert (const std::vector<T>& v,
		       const std::vector<unsigned int>& dof_indices) = 0;

  /**
   * \f$U=V\f$, where U and V are type 
   * NumericVector<T> and you
   * want to specify WHERE to insert
   * the NumericVector<T> V 
   */
  virtual void insert (const NumericVector<T>& V,
		       const std::vector<unsigned int>& dof_indices) = 0;
      
  /**
   * \f$ U=V \f$ where U and V are type 
   * DenseVector<T> and you
   * want to specify WHERE to insert
   * the DenseVector<T> V 
   */
  virtual void insert (const DenseVector<T>& V,
		       const std::vector<unsigned int>& dof_indices) = 0;

  /**
   * \f$ U=V \f$ where V is a
   * DenseSubVector<T> and you
   * want to specify WHERE to insert it
   */
  virtual void insert (const DenseSubVector<T>& V,
		       const std::vector<unsigned int>& dof_indices) = 0;
    
  /**
   * Scale each element of the
   * vector by the given factor.
   */
  virtual void scale (const T factor) = 0;

  /**
   * v = abs(v)... that is, each entry in v is replaced
   * by its absolute value.
   */
  virtual void abs() = 0;

  /**
   * Computes the dot product, p = U.V
   */
  virtual T dot(const NumericVector<T>&) const = 0;
  
  /**
   * Creates a copy of the global vector in the
   * local vector \p v_local.
   */
  virtual void localize (std::vector<T>& v_local) const = 0;

  /**
   * Same, but fills a \p NumericVector<T> instead of
   * a \p std::vector.
   */
  virtual void localize (NumericVector<T>& v_local) const = 0;

  /**
   * Creates a local vector \p v_local containing
   * only information relevant to this processor, as
   * defined by the \p send_list.
   */
  virtual void localize (NumericVector<T>& v_local,
			 const std::vector<unsigned int>& send_list) const = 0;
  
  /**
   * Updates a local vector with selected values from neighboring
   * processors, as defined by \p send_list.
   */
  virtual void localize (const unsigned int first_local_idx,
			 const unsigned int last_local_idx,
			 const std::vector<unsigned int>& send_list) = 0;

  /**
   * Creates a local copy of the global vector in
   * \p v_local only on processor \p proc_id.  By
   * default the data is sent to processor 0.  This method
   * is useful for outputting data from one processor.
   */
  virtual void localize_to_one (std::vector<T>& v_local,
				const unsigned int proc_id=0) const = 0;
    
  /**
   * @returns \p -1 when \p this is equivalent to \p other_vector,
   * up to the given \p threshold.  When differences occur,
   * the return value contains the first index \p i where
   * the difference \p (a[i]-b[i]) exceeded the threshold.  When
   * no threshold is given, the \p libMesh \p TOLERANCE
   * is used.
   */
  virtual int compare (const NumericVector<T> &other_vector,
		       const Real threshold = TOLERANCE) const;

  /**
   * @returns \p -1 when \p this is equivalent to \p other_vector,
   * up to the given local relative \p threshold.  When differences
   * occur, the return value contains the first index where
   * the difference \p (a[i]-b[i])/max(a[i],b[i]) exceeded the
   * threshold.  When no threshold is given, the \p libMesh 
   * \p TOLERANCE is used.
   */
  virtual int local_relative_compare (const NumericVector<T> &other_vector,
                                      const Real threshold = TOLERANCE) const;

  /**
   * @returns \p -1 when \p this is equivalent to \p other_vector,
   * up to the given local relative \p threshold.  When differences
   * occur, the return value contains the first index where
   * the difference \p (a[i]-b[i])/max_j(a[j],b[j]) exceeded the
   * threshold.  When no threshold is given, the \p libMesh 
   * \p TOLERANCE is used.
   */
  virtual int global_relative_compare (const NumericVector<T> &other_vector,
                                       const Real threshold = TOLERANCE) const;

  /**
   * Computes the pointwise (i.e. component-wise) product of \p vec1
   * and \p vec2 and stores the result in \p *this.
   */
  virtual void pointwise_mult (const NumericVector<T>& vec1,
			       const NumericVector<T>& vec2) = 0;

  /**
   * Prints the local contents of the vector, by default to
   * libMesh::out
   */
  virtual void print(std::ostream& os=libMesh::out) const;

  /**
   * Prints the global contents of the vector, by default to
   * libMesh::out
   */
  virtual void print_global(std::ostream& os=libMesh::out) const;

  /**
   * Same as above but allows you to use stream syntax.
   */
  friend std::ostream& operator << (std::ostream& os, const NumericVector<T>& v)
  {
    v.print_global(os);
    return os;
  }
  
  /**
   * Print the contents of the matrix in Matlab's
   * sparse matrix format. Optionally prints the
   * matrix to the file named \p name.  If \p name
   * is not specified it is dumped to the screen.
   */
  virtual void print_matlab(const std::string name="NULL") const
  {
    libMesh::err << "ERROR: Not Implemented in base class yet!" << std::endl;
    libMesh::err << "ERROR writing MATLAB file " << name << std::endl;
    libmesh_error();
  }

  /**
   * Creates the subvector "subvector" from the indices in the
   * "rows" array.  Similar to the create_submatrix routine for
   * the SparseMatrix class, it is currently only implemented for
   * PetscVectors.
   */
  virtual void create_subvector(NumericVector<T>& ,
				const std::vector<unsigned int>& ) const
  {
    libMesh::err << "ERROR: Not Implemented in base class yet!" << std::endl;
    libmesh_error();
  }
    
  /**
   * Exchanges the values/sizes of two vectors.  There should be
   * enough indirection in subclasses to make this an O(1) header-swap
   * operation.
   */
  virtual void swap (NumericVector<T> &v);

protected:
  
  /**
   * Flag to see if the Numeric
   * assemble routines have been called yet
   */
  bool _is_closed;
  
  /**
   * Flag to tell if init 
   * has been called yet
   */
  bool _is_initialized;

  /**
   * Type of vector
   */
  ParallelType _type;
};


/*----------------------- Inline functions ----------------------------------*/



template <typename T>
inline
NumericVector<T>::NumericVector (const ParallelType type) :
  _is_closed(false),
  _is_initialized(false),
  _type(type)
{
}



template <typename T>
inline
NumericVector<T>::NumericVector (const unsigned int /*n*/,
                                 const ParallelType type) :
  _is_closed(false),
  _is_initialized(false),
  _type(type)
{
  libmesh_error(); // Abstract base class!
  // init(n, n, false, type);
}



template <typename T>
inline
NumericVector<T>::NumericVector (const unsigned int /*n*/,
				 const unsigned int /*n_local*/,
                                 const ParallelType type) :
  _is_closed(false),
  _is_initialized(false),
  _type(type)
{
  libmesh_error(); // Abstract base class!
  // init(n, n_local, false, type);
}



template <typename T>
inline
NumericVector<T>::NumericVector (const unsigned int /*n*/,
				 const unsigned int /*n_local*/,
				 const std::vector<unsigned int>& /*ghost*/,
                                 const ParallelType type) :
  _is_closed(false),
  _is_initialized(false),
  _type(type)
{
  libmesh_error(); // Abstract base class!
  // init(n, n_local, ghost, false, type);
}



template <typename T>
inline
NumericVector<T>::~NumericVector ()
{
  clear ();
}



// These should be pure virtual, not bugs waiting to happen - RHS
/*
template <typename T>
inline
NumericVector<T> & NumericVector<T>::operator= (const T) 
{
  //  libmesh_error();

  return *this;
}



template <typename T>
inline
NumericVector<T> & NumericVector<T>::operator= (const NumericVector<T>&) 
{
  //  libmesh_error();

  return *this;
}



template <typename T>
inline
NumericVector<T> & NumericVector<T>::operator= (const std::vector<T>&) 
{
  //  libmesh_error();

  return *this;
}
*/



template <typename T>
inline
void NumericVector<T>::clear ()
{
  _is_closed      = false;
  _is_initialized = false;
}
  
  
  
template <typename T>
inline
void NumericVector<T>::get(const std::vector<unsigned int>& index, std::vector<T>& values) const
{
  const unsigned int num = index.size();
  values.resize(num);
  for(unsigned int i=0; i<num; i++)
    {
      values[i] = (*this)(index[i]);
    }
}



// Full specialization of the print() member for complex
// variables.  This must precede the non-specialized
// version, at least according to icc v7.1
template <>
inline
void NumericVector<Complex>::print(std::ostream& os) const
{
  libmesh_assert (this->initialized());
  os << "Size\tglobal =  " << this->size()
     << "\t\tlocal =  " << this->local_size() << std::endl;
  
  // std::complex<>::operator<<() is defined, but use this form
  os << "#\tReal part\t\tImaginary part" << std::endl;
  for (unsigned int i=this->first_local_index(); i<this->last_local_index(); i++)
    os << i << "\t" 
       << (*this)(i).real() << "\t\t" 
       << (*this)(i).imag() << std::endl;
}



template <typename T>
inline
void NumericVector<T>::print(std::ostream& os) const
{
  libmesh_assert (this->initialized());
  os << "Size\tglobal =  " << this->size()
     << "\t\tlocal =  " << this->local_size() << std::endl;

  os << "#\tValue" << std::endl;
  for (unsigned int i=this->first_local_index(); i<this->last_local_index(); i++)
    os << i << "\t" << (*this)(i) << std::endl;
}



template <>
inline
void NumericVector<Complex>::print_global(std::ostream& os) const
{
  libmesh_assert (this->initialized());

  std::vector<Complex> v(this->size());
  this->localize(v);

  // Right now we only want one copy of the output
  if (libMesh::processor_id())
    return;
  
  os << "Size\tglobal =  " << this->size() << std::endl;
  os << "#\tReal part\t\tImaginary part" << std::endl;
  for (unsigned int i=0; i!=v.size(); i++)
    os << i << "\t" 
       << v[i].real() << "\t\t" 
       << v[i].imag() << std::endl;
}


template <typename T>
inline
void NumericVector<T>::print_global(std::ostream& os) const
{
  libmesh_assert (this->initialized());

  std::vector<T> v(this->size());
  this->localize(v);

  // Right now we only want one copy of the output
  if (libMesh::processor_id())
    return;

  os << "Size\tglobal =  " << this->size() << std::endl;
  os << "#\tValue" << std::endl;
  for (unsigned int i=0; i!=v.size(); i++)
    os << i << "\t" << v[i] << std::endl;
}



template <typename T>
inline
void  NumericVector<T>::swap (NumericVector<T> &v)
{
  std::swap(_is_closed, v._is_closed);
  std::swap(_is_initialized, v._is_initialized);
  std::swap(_type, v._type);
}


} // namespace libMesh


#endif  // #ifdef __numeric_vector_h__