This file is indexed.

/usr/include/libmesh/nonlinear.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// $Id: nonlinear.h 3874 2010-07-02 21:57:26Z roystgnr $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __nonlinear_h__
#define __nonlinear_h__

// C++ includes

// Local includes
#include "libmesh_common.h"
#include "numeric_vector.h"
#include "linear.h"

namespace libMesh
{

/**
 * This is a generic class that defines a nonlinear to be used in a
 * simulation.  A user can define a nonlinear by deriving from this
 * class and implementing certain functions.
 *
 * @author Benjamin S. Kirk, 2003-2004.
 */

// ------------------------------------------------------------
// Nonlinear class definition

template <class T = Linear<> >
class Nonlinear : public T
{
public:
  
  /**
   * Constructor. Requires a reference to a system to be solved.
   */
  Nonlinear (EquationSystems& es);

  /**
   * Constructor.  Requires a referece to the \p EquationSystems object.
   */
  Nonlinear (EquationSystems& es,
	     const std::string& name,
	     const unsigned int number);

  /**
   * Destructor.
   */
  ~Nonlinear ();

  /**
   * Re-implement the solve member to do a fixed number of
   * linear solves
   */
  virtual void solve ();

  /**
   * @returns the maximum number of nonlinear steps to take.
   */
  unsigned int max_nonlinear_steps () const { return _max_nl_steps; }

  /**
   * Sets the maximum number of nonlinear steps to take.
   */
  unsigned int & max_nonlinear_steps () { return _max_nl_steps; }

  /**
   * @returns the nonlinear solver tolerance.
   */
  Real nonlinear_tolerance () const { return _nl_tol; }

  /**
   * Sets the nonlinear solver tolerance.
   */
  Real & nonlinear_tolerance () { return _nl_tol; }

  
private:

  /**
   * The maximum number of nonlinear steps to take.
   */
  unsigned int _max_nl_steps;

  /**
   * The nonlinear solver tolerance.
   */
  Real _nl_tol;
};



// ------------------------------------------------------------
// Nonlinear inline members
template <class T>
inline
Nonlinear<T>::Nonlinear (EquationSystems& es) :
  T             (es),  // Call the base class constructor
  _max_nl_steps (5),   // Default solver attributes
  _nl_tol       (1.e-6)
{
libmesh_deprecated();
}



template <class T>
inline
Nonlinear<T>::Nonlinear (EquationSystems& es,
			 const std::string& name,
			 const unsigned int number) :
  Nonlinear (es),
  T         (es, name, number)  // Call the base class constructor
{
libmesh_deprecated();
}



template <class T>
inline
Nonlinear<T>::~Nonlinear ()
{
libmesh_deprecated();
}



template <class T>
inline
void Nonlinear<T>::solve ()
{
  for (unsigned int l=0; l<this->max_nonlinear_steps(); l++)
    {
      // Get a copy of the solution at the current nonlinear
      // iteration
      AutoPtr<NumericVector<Number> >
	last_nonlinear_soln (this->system().solution->clone());
      
      // Call the base class solver
      T::solve ();

      // Compute the difference between this solution
      // and the last iterate
      last_nonlinear_soln->add (-1., *(this->system().solution));

      // We must close the vector before we ask it for its norm
      last_nonlinear_soln->close();
      
      // Compute the l2 norm of the difference
      const Real norm_delta = last_nonlinear_soln->l2_norm();

      // Print out convergence information
      libMesh::out << "Nonlinear convergence: ||u - u_old|| = "
		   << norm_delta
		   << std::endl;

      // Terminate the solution iteration if the difference between
      // this iteration and the last is sufficiently small.
      if (norm_delta < this->nonlinear_tolerance())
	{
	  libMesh::out << " Nonlinear solver converged at step "
		       << l
		       << std::endl;
	  break;
	}
    }
}

} // namespace libMesh


#endif // #define __nonlinear_h__