This file is indexed.

/usr/include/libmesh/linear_solver.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// $Id: linear_solver.h 4278 2011-03-21 15:23:30Z roystgnr $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __linear_solver_h__
#define __linear_solver_h__


// C++ includes
#include <vector>

// Local includes
#include "libmesh_common.h"
#include "enum_solver_package.h"
#include "enum_solver_type.h"
#include "enum_preconditioner_type.h"
#include "enum_subset_solve_mode.h"
#include "reference_counted_object.h"
#include "libmesh.h"

namespace libMesh
{

// forward declarations
template <typename T> class AutoPtr;
template <typename T> class SparseMatrix;
template <typename T> class NumericVector;
template <typename T> class ShellMatrix;
template <typename T> class Preconditioner;


/**
 * This class provides a uniform interface for linear solvers.  This base
 * class is overloaded to provide linear solvers from different packages
 * like PETSC or LASPACK.
 *
 * @author Benjamin Kirk, 2003
 */

template <typename T>
class LinearSolver : public ReferenceCountedObject<LinearSolver<T> >
{
public:
  
  /**
   *  Constructor. Initializes Solver data structures
   */
  LinearSolver ();
    
  /**
   * Destructor.
   */
  virtual ~LinearSolver ();
  
  /**
   * Builds a \p LinearSolver using the linear solver package specified by
   * \p solver_package
   */
  static AutoPtr<LinearSolver<T> > build(const SolverPackage solver_package =
						  libMesh::default_solver_package());
  
  /**
   * @returns true if the data structures are
   * initialized, false otherwise.
   */
  bool initialized () const { return _is_initialized; }
  
  /**
   * Release all memory and clear data structures.
   */
  virtual void clear () {}

  /**
   * Initialize data structures if not done so already.
   */
  virtual void init () = 0;

  /**
   * Returns the type of solver to use.
   */
  SolverType solver_type () const { return _solver_type; }

  /**
   * Sets the type of solver to use.
   */
  void set_solver_type (const SolverType st)
  { _solver_type = st; }

  /**
   * Returns the type of preconditioner to use.
   */
  PreconditionerType preconditioner_type () const;

  /**
   * Sets the type of preconditioner to use.
   */
  void set_preconditioner_type (const PreconditionerType pct);

  /**
   * Attaches a Preconditioner object to be used
   */
  void attach_preconditioner(Preconditioner<T> * preconditioner);

  /**
   * After calling this method, all successive solves will be
   * restricted to the given set of dofs, which must contain local
   * dofs on each processor only and not contain any duplicates.  This
   * mode can be disabled by calling this method with \p dofs being a
   * \p NULL pointer.
   */
  virtual void restrict_solve_to (const std::vector<unsigned int>* const dofs,
				  const SubsetSolveMode subset_solve_mode=SUBSET_ZERO);

  /**
   * This function calls the solver
   * "_solver_type" preconditioned with the
   * "_preconditioner_type" preconditioner.  Note that this method
   * will compute the preconditioner from the system matrix.
   */
  virtual std::pair<unsigned int, Real> solve (SparseMatrix<T>&,  // System Matrix
					       NumericVector<T>&, // Solution vector
					       NumericVector<T>&, // RHS vector
					       const double,      // Stopping tolerance
					       const unsigned int) = 0; // N. Iterations
  


  /**
   * This function calls the solver
   * "_solver_type" preconditioned with the
   * "_preconditioner_type" preconditioner.
   */
  virtual std::pair<unsigned int, Real> solve (SparseMatrix<T>&,  // System Matrix
					       SparseMatrix<T>&,  // Preconditioning Matrix
					       NumericVector<T>&, // Solution vector
					       NumericVector<T>&, // RHS vector
					       const double,      // Stopping tolerance
					       const unsigned int) = 0; // N. Iterations
  
  /**
   * This function calls the solver "_solver_type" preconditioned with
   * the "_preconditioner_type" preconditioner.  The preconditioning
   * matrix is used if it is provided, or the system matrix is used if
   * \p precond_matrix is null
   */
  std::pair<unsigned int, Real> solve (SparseMatrix<T>& matrix,
				       SparseMatrix<T>* precond_matrix,
				       NumericVector<T>&, // Solution vector
				       NumericVector<T>&, // RHS vector
				       const double,      // Stopping tolerance
				       const unsigned int); // N. Iterations
  


  /**
   * This function solves a system whose matrix is a shell matrix.
   */
  virtual std::pair<unsigned int, Real> solve (const ShellMatrix<T>& shell_matrix,
					       NumericVector<T>&, // Solution vector
					       NumericVector<T>&, // RHS vector
					       const double,      // Stopping tolerance
					       const unsigned int) = 0; // N. Iterations
  


  /**
   * This function solves a system whose matrix is a shell matrix, but
   * a sparse matrix is used as preconditioning matrix, this allowing
   * other preconditioners than JACOBI.
   */
  virtual std::pair<unsigned int, Real> solve (const ShellMatrix<T>& shell_matrix,
					       const SparseMatrix<T>& precond_matrix,
					       NumericVector<T>&, // Solution vector
					       NumericVector<T>&, // RHS vector
					       const double,      // Stopping tolerance
					       const unsigned int) = 0; // N. Iterations
  

  /**
   * This function solves a system whose matrix is a shell matrix, but
   * an optional sparse matrix may be used as preconditioning matrix.
   */
  std::pair<unsigned int, Real> solve (const ShellMatrix<T>& matrix,
				       const SparseMatrix<T>* precond_matrix,
				       NumericVector<T>&, // Solution vector
				       NumericVector<T>&, // RHS vector
				       const double,      // Stopping tolerance
				       const unsigned int); // N. Iterations


  /**
   * Prints a useful message about why the latest linear solve
   * con(di)verged.
   */
  virtual void print_converged_reason() = 0;
  
  /**
   * Boolean flag to indicate whether we want to use an identical
   * preconditioner to the previous solve. This can save
   * substantial work in the cases where the system matrix is 
   * the same for successive solves.
   */
  bool same_preconditioner;
  
protected:

  
  /**
   * Enum stating which type of iterative solver to use.
   */
  SolverType _solver_type;

  /**
   * Enum statitng with type of preconditioner to use.
   */
  PreconditionerType _preconditioner_type;
  
  /**
   * Flag indicating if the data structures have been initialized.
   */
  bool _is_initialized;

  /**
   * Holds the Preconditioner object to be used for the linear solves.
   */
  Preconditioner<T> * _preconditioner;
};




/*----------------------- inline functions ----------------------------------*/
template <typename T>
inline
LinearSolver<T>::LinearSolver () :

  same_preconditioner  (false),
  _solver_type         (GMRES),
  _preconditioner_type (ILU_PRECOND),
  _is_initialized      (false),
  _preconditioner      (NULL)
{
}



template <typename T>
inline
LinearSolver<T>::~LinearSolver ()
{
  this->clear ();
}



template <typename T>
inline
std::pair<unsigned int, Real> 
LinearSolver<T>::solve (SparseMatrix<T>&   mat,
		        SparseMatrix<T>*   pc_mat,
		        NumericVector<T>&  sol,
		        NumericVector<T>&  rhs,
		        const double       tol,
		        const unsigned int n_iter)
{
  if (pc_mat)
    return this->solve(mat, *pc_mat, sol, rhs, tol, n_iter);
  else
    return this->solve(mat, sol, rhs, tol, n_iter);
}


template <typename T>
inline
std::pair<unsigned int, Real> 
LinearSolver<T>::solve (const ShellMatrix<T>&  mat,
		        const SparseMatrix<T>* pc_mat,
		        NumericVector<T>&      sol,
		        NumericVector<T>&      rhs,
		        const double           tol,
		        const unsigned int     n_iter)
{
  if (pc_mat)
    return this->solve(mat, *pc_mat, sol, rhs, tol, n_iter);
  else
    return this->solve(mat, sol, rhs, tol, n_iter);
}

} // namespace libMesh


#endif // #ifdef __solver_h__