/usr/include/libmesh/inf_fe.h is in libmesh-dev 0.7.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 | // $Id: inf_fe.h 3874 2010-07-02 21:57:26Z roystgnr $
// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __inf_fe_h__
#define __inf_fe_h__
// C++ includes
// Local includes
#include "libmesh_config.h"
#ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
#include "fe_base.h"
namespace libMesh
{
// forward declarations
class Elem;
class FEComputeData;
/**
* A specific instatiation of the \p FEBase class. This
* class is templated, and specific template instantiations
* will result in different Infinite Element families, similar
* to the \p FE class. \p InfFE builds a \p FE<Dim-1,T_base>,
* and most of the requests related to the base are handed over
* to this object. All methods related to the radial part
* are collected in the nested class \p Radial. Similarly,
* most of the static methods concerning base approximation
* are contained in \p Base.
*
* Having different shape approximation families in radial direction
* introduces the requirement for an additional \p Order in this
* class. Therefore, the \p FEType internals change when infinite
* elements are enabled.
* When the specific infinite element type is not known at compile
* time, use the \p FEBase::build() member to create abstract
* (but still optimized) infinite elements at run time.
*
* The @e node numbering scheme is the one from the current
* infinite element. Each node in the base holds exactly
* the same number of dofs as an adjacent conventional \p FE
* would contain. The nodes further out hold the additional
* dof necessary for radial approximation. The order of the outer nodes'
* components is such that the radial shapes have highest
* priority, followed by the base shapes.
*
* \author Daniel Dreyer
* \date 2003
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// InfFE class definition
template <unsigned int Dim, FEFamily T_radial, InfMapType T_map>
class InfFE : public FEBase
{
/*
* Protect the nested class
*/
protected:
/**
* Infinite elements are in some sense directional, compared
* to conventional finite elements. All methods related
* to the radial part, which extends perpendicular from the base,
* are collected in this nested class. This class offers
* static methods, which are only available to \p InfFE members.
*
* \author Daniel Dreyer
* \date 2003
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// InfFE::Radial class definition
class Radial
{
private:
/**
* Never use an object of this type.
*/
Radial() {}
public:
/**
* @returns the decay in radial direction of
* the \p Dim dimensional infinite element.
*/
static Real decay (const Real v);
/**
* @returns the first (local) derivative of the
* decay in radial direction of the infinite element.
*/
static Real decay_deriv (const Real) { return -.5; }
/**
* @returns the radial weight D, used as an additional weight
* for the test function, evaluated at local radial coordinate \p v.
*/
static Real D (const Real v) { return (1.-v)*(1.-v)/4.; }
/**
* @returns the first (local) radial derivative of the radial weight D.
*/
static Real D_deriv (const Real v) { return (v-1.)/2.; }
/**
* @returns the Order of the mapping functions
* in radial direction. Currently, this is @e always \p FIRST.
*/
static Order mapping_order() { return FIRST; }
/**
* @returns the number of shape functions in radial direction
* associated with this infinite element.
* Either way, if the modes are stored as nodal dofs (\p n_dofs_at_node)
* or as element dofs (\p n_dofs_per_elem), in each case we have the
* same number of modes in radial direction. Note that for the case of 1D
* infinite elements, in the base the dof-per-node scheme is used.
*
* From the formulation of the infinite elements, we have
* 1 mode, when \p o_radial=CONST.
* Therefore, we have a total of \p o_radial+1 modes in radial direction.
*/
static unsigned int n_dofs (const Order o_radial)
{ return static_cast<unsigned int>(o_radial)+1; }
/**
* @returns the number of dofs in radial direction on "onion slice"
* \p n (either 0 or 1) for an infinite element of type \p inf_elem_type and
* radial order \p o_radial.
*
* Currently, the first radial mode is associated with the nodes in
* the base. All higher radial modes are associated with
* the physically existing nodes further out.
*/
static unsigned int n_dofs_at_node (const Order o_radial,
const unsigned int n_onion);
/**
* @returns the number of modes in radial direction interior to the element,
* not associated with any interior nodes.
* Note that these modes are a discontinuous approximation, therefore
* we have no special formulation for coupling in the base, like in the
* case of associating (possibly) multiple dofs per (outer) node.
*/
static unsigned int n_dofs_per_elem (const Order o_radial)
{ return static_cast<unsigned int>(o_radial)+1; }
};
/**
* This nested class contains most of the static methods related
* to the base part of an infinite element. Only static members
* are provided, and these should only be accessible from within \p InfFE.
*
* \author Daniel Dreyer
* \date 2003
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// InfFE::Base class definition
class Base
{
private:
/**
* Never use an object of this type.
*/
Base() {}
public:
/**
* Build the base element of an infinite element. Be careful,
* this method allocates memory! So be sure to delete the
* new element afterwards.
*/
static Elem* build_elem (const Elem* inf_elem);
/**
* @returns the base element associated to
* \p type. This is, for example, \p TRI3 for
* \p INFPRISM6.
*/
static ElemType get_elem_type (const ElemType type);
/**
* @returns the number of shape functions used in the
* mapping in the @e base element of type \p base_elem_type
* mapped with order \p base_mapping_order
*/
static unsigned int n_base_mapping_sf (const ElemType base_elem_type,
const Order base_mapping_order);
};
public:
//-------------------------------------------------------------
// InfFE continued
/**
* Constructor.
* Initializes some data structures. Builds a \p FE<Dim-1,T_base>
* object to handle approximation in the base, so that
* there is no need to template \p InfFE<Dim,T_radial,T_map> also with
* respect to the base approximation \p T_base.
*
* The same remarks concerning compile-time optimization for
* \p FE also hold for \p InfFE. Use the
* \p FEBase::build_InfFE(const unsigned int, const FEType&)
* method to build specific instantiations of \p InfFE at
* run time.
*/
InfFE(const FEType& fet);
/**
* Desctructor. Clean up.
*/
~InfFE();
//-------------------------------------------------------------
// The static public members for access from FEInterface etc
/**
* @returns the value of the \f$ i^{th} \f$ shape function at
* point \p p. This method lets you specify the relevant
* data directly, and is therefore allowed to be static.
* Note that this class member is by far not as efficient as
* its counterpart in \p FE<Dim,T>, and is @e not employed
* in the \p reinit() cycle.
* Also note that this method does @e not return physically
* correct shapes, instead use \p compute_data(). The \p shape()
* methods should only be used for mapping.
*/
static Real shape(const FEType& fet,
const ElemType t,
const unsigned int i,
const Point& p);
/**
* @returns the value of the \f$ i^{th} \f$ shape function at
* point \p p. This method lets you specify the relevant
* data directly, and is therefore allowed to be static.
* Note that this class member is not as efficient as its
* counterpart in \p FE<Dim,T>, and is @e not employed
* in the \p reinit() cycle.
* Also note that this method does @e not return physically
* correct shapes, instead use \p compute_data(). The \p shape()
* methods should only be used for mapping.
*/
static Real shape(const FEType& fet,
const Elem* elem,
const unsigned int i,
const Point& p);
/**
* Generalized version of \p shape(), takes an \p Elem*. The \p data
* contains both input and output parameters. For frequency domain
* simulations, the complex-valued shape is returned. In time domain
* both the computed shape, @e and the phase is returned. Note that
* the phase (proportional to the distance of the \p Point \p data.p
* from the envelope) is actually a measure how @e far into the @e future
* the results are. Pretty weird, hm!?
*/
static void compute_data(const FEType& fe_t,
const Elem* inf_elem,
FEComputeData& data);
/**
* @returns the number of shape functions associated with
* a finite element of type \p t and approximation order \p o.
*/
static unsigned int n_shape_functions (const FEType& fet,
const ElemType t)
{ return n_dofs(fet, t); }
/**
* @returns the number of shape functions associated with this
* infinite element. Currently, we have \p o_radial+1 modes in
* radial direction, and \p FE<Dim-1,T>::n_dofs(...) in the base.
*/
static unsigned int n_dofs(const FEType& fet,
const ElemType inf_elem_type);
/**
* @returns the number of dofs at infinite element @e node \p n
* (not dof!) for an element of type \p t and order \p o.
*/
static unsigned int n_dofs_at_node(const FEType& fet,
const ElemType inf_elem_type,
const unsigned int n);
/**
* @returns the number of dofs interior to the element,
* not associated with any interior nodes.
*/
static unsigned int n_dofs_per_elem(const FEType& fet,
const ElemType inf_elem_type);
/**
* @returns the continuity of the element.
*/
virtual FEContinuity get_continuity() const
{ return C_ZERO; } // FIXME - is this true??
/**
* @returns true if the element's higher order shape functions are
* hierarchic
*/
virtual bool is_hierarchic() const
{ return false; } // FIXME - Inf FEs don't handle p elevation yet
/**
* Usually, this method would build the nodal soln from the
* element soln. But infinite elements require additional
* simulation-specific data to compute physically correct
* results. Use \p compute_data() to compute results. For
* compatibility an empty vector is returned.
*/
static void nodal_soln(const FEType& fet,
const Elem* elem,
const std::vector<Number>& elem_soln,
std::vector<Number>& nodal_soln);
/**
* @returns the location (on the reference element) of the
* point \p p located in physical space. First, the location
* in the base face is computed. This requires inverting the
* (possibly nonlinear) transformation map in the base, so it is
* not trivial. The optional parameter \p tolerance defines
* how close is "good enough." The map inversion iteration
* computes the sequence \f$ \{ p_n \} \f$, and the iteration is
* terminated when \f$ \|p - p_n\| < \mbox{\texttt{tolerance}} \f$.
* Once the base face point is determined, the radial local
* coordinate is directly evaluated.
* If \p interpolated is true, the interpolated distance from the
* base element to the infinite element origin is used for the map
* in radial direction.
*/
static Point inverse_map (const Elem* elem,
const Point& p,
const Real tolerance = TOLERANCE,
const bool secure = true,
const bool interpolated = true);
/**
* Takes a number points in physical space (in the \p physical_points
* vector) and finds their location on the reference element for the
* input element \p elem. The values on the reference element are
* returned in the vector \p reference_points
*/
static void inverse_map (const Elem* elem,
const std::vector<Point>& physical_points,
std::vector<Point>& reference_points,
const Real tolerance = TOLERANCE,
const bool secure = true);
//-------------------------------------------------------------
// The work-horses of InfFE. These are often used during matrix assembly
/**
* This is at the core of this class. Use this for each
* new element in the mesh. Reinitializes all the physical
* element-dependent data based on the current element
* \p elem.
*/
virtual void reinit (const Elem* elem,
const std::vector<Point>* const pts);
/**
* Not implemented yet. Reinitializes all the physical
* element-dependent data based on the \p side of an infinite
* element.
*/
virtual void reinit (const Elem* elem,
const unsigned int side,
const Real tolerance = TOLERANCE);
/**
* Not implemented yet. Reinitializes all the physical
* element-dependent data based on the \p edge of an infinite
* element.
*/
virtual void edge_reinit (const Elem* elem,
const unsigned int edge,
const Real tolerance = TOLERANCE);
/**
* The use of quadrature rules with the \p InfFE class is somewhat
* different from the approach of the \p FE class. While the
* \p FE class requires an appropriately initialized quadrature
* rule object, and simply uses it, the \p InfFE class requires only
* the quadrature rule object of the current \p FE class.
* From this \p QBase*, it determines the necessary data,
* and @e builds two appropriate quadrature classes, one for radial,
* and another for base integration, using the convenient
* \p QBase::build() method.
*/
virtual void attach_quadrature_rule (QBase* q);
/**
* @returns the number of shape functions associated with
* this infinite element.
*/
virtual unsigned int n_shape_functions () const
{ return _n_total_approx_sf; }
/**
* @returns the total number of quadrature points. Call this
* to get an upper bound for the \p for loop in your simulation
* for matrix assembly of the current element.
*/
virtual unsigned int n_quadrature_points () const
{ libmesh_assert (radial_qrule != NULL); return _n_total_qp; }
protected:
//-------------------------------------------------------------
// static members used by the "work-horses"
/**
* @returns the value of the \f$ i^{th} \f$ polynomial evaluated
* at \p v. This method provides the approximation
* in radial direction for the overall shape functions,
* which is defined in \p InfFE::shape().
* This method is allowed to be static, since it is independent
* of dimension and base_family. It is templated, though,
* w.r.t. to radial \p FEFamily.
*
* Specialized for \p T_radial=INFINITE_MAP, this function returns
* the value of the \f$ i^{th} \f$ @e mapping shape function
* in radial direction evaluated at \p v. Currently, only one specific
* mapping shape is used. Namely the one by Marques JMMC, Owen DRJ:
* Infinite elements in quasi-static materially nonlinear problems,
* @e Computers @e and @e Structures, 1984.
*/
static Real eval(const Real v,
const Order o_radial,
const unsigned int i);
/**
* @returns the value of the first derivative of the
* \f$ i^{th} \f$ polynomial at coordinate \p v.
* See \p eval for details.
*/
static Real eval_deriv(const Real v,
const Order o_radial,
const unsigned int i);
//-------------------------------------------------------------
// Non-static members used by the "work-horses"
/**
* Updates the protected member \p base_elem to the appropriate base element
* for the given \p inf_elem.
*/
void update_base_elem (const Elem* inf_elem);
/**
* Do not use this derived member in \p InfFE<Dim,T_radial,T_map>.
*/
virtual void init_base_shape_functions(const std::vector<Point>&,
const Elem*)
{ libmesh_error(); }
/**
* Some of the member data only depend on the radial part of the
* infinite element. The parts that only change when the radial
* order changes, are initialized here.
*/
void init_radial_shape_functions(const Elem* inf_elem);
/**
* Initialize all the data fields like \p weight, \p mode,
* \p phi, \p dphidxi, \p dphideta, \p dphidzeta, etc.
* for the current element. This method prepares the data
* related to the base part, and some of the combined fields.
*/
void init_shape_functions(const Elem* inf_elem);
/**
* Not implemented yet. Initialize all the data fields like \p weight,
* \p phi, etc for the side \p s.
*/
void init_face_shape_functions (const std::vector<Point>& qp,
const Elem* side);
/**
* Combines the shape functions, which were formed in
* \p init_shape_functions(Elem*), with geometric data.
* Has to be called every time the geometric configuration
* changes. Afterwards, the fields are ready to be used
* to compute global derivatives, the jacobian etc, see
* \p FEBase::compute_map().
*/
void combine_base_radial(const Elem* inf_elem);
/**
* After having updated the jacobian and the transformation
* from local to global coordinates in FEBase::compute_map(),
* the first derivatives of the shape functions are
* transformed to global coordinates, giving \p dphi,
* \p dphidx/y/z, \p dphasedx/y/z, \p dweight. This method
* should barely be re-defined in derived classes, but
* still should be usable for children. Therefore, keep
* it protected.
* Overloaded method from the \p FEBase version.
*/
virtual void compute_shape_functions(const Elem*);
//-------------------------------------------------------------
// Miscellaneous static members
/**
* @returns the location (in physical space) of the point
* \p p located on the reference element.
*/
static Point map (const Elem* inf_elem,
const Point& reference_point);
/**
* Computes the indices in the base \p base_node and in radial
* direction \p radial_node (either 0 or 1) associated to the
* node \p outer_node_index of an infinite element of type
* \p inf_elem_type.
*/
static void compute_node_indices (const ElemType inf_elem_type,
const unsigned int outer_node_index,
unsigned int& base_node,
unsigned int& radial_node);
/**
* Does the same as \p compute_node_indices(), but stores
* the maps for the current element type. Provided the
* infinite element type changes seldom, this is probably
* faster than using \p compute_node_indices () alone.
* This is possible since the number of @e nodes is not likely
* to change.
*/
static void compute_node_indices_fast (const ElemType inf_elem_type,
const unsigned int outer_node_index,
unsigned int& base_node,
unsigned int& radial_node);
/**
* Computes the indices of shape functions in the base \p base_shape and
* in radial direction \p radial_shape (0 in the base, \f$ \ge 1 \f$ further
* out) associated to the shape with global index \p i of an infinite element
* of type \p inf_elem_type.
*/
static void compute_shape_indices (const FEType& fet,
const ElemType inf_elem_type,
const unsigned int i,
unsigned int& base_shape,
unsigned int& radial_shape);
//--------------------------------------------------------------
// protected members, which are not to be accessed from outside
/**
* the radial distance of the base nodes from the origin
*/
std::vector<Real> dist;
/**
* the additional radial weight \f$ 1/{r^2} \f$ in local coordinates,
* over all quadrature points. The weight does not vary in base
* direction. However, for uniform access to the data fields from the
* outside, this data field is expanded to @e all quadrature points.
*/
std::vector<Real> dweightdv;
/**
* the radial decay \f$ 1/r \f$ in local coordinates.
* Needed when setting up the overall shape functions.
* Note that it is this decay which assures to satisfy
* the Sommerfeld radiation condition in advance.
*/
std::vector<Real> som;
/**
* the first local derivative of the radial decay \f$ 1/r \f$ in local
* coordinates. Needed when setting up the overall shape functions.
*/
std::vector<Real> dsomdv;
/**
* the radial approximation shapes in local coordinates
* Needed when setting up the overall shape functions.
*/
std::vector<std::vector<Real> > mode;
/**
* the first local derivative of the radial approximation shapes.
* Needed when setting up the overall shape functions.
*/
std::vector<std::vector<Real> > dmodedv;
/**
* the radial mapping shapes in local coordinates
*/
std::vector<std::vector<Real> > radial_map;
/**
* the first local derivative of the radial mapping shapes
*/
std::vector<std::vector<Real> > dradialdv_map;
/**
* the first local derivative (for 3D, the first in the base)
* of the phase term in local coordinates.
* Needed in the overall weak form of infinite element formulations.
*/
std::vector<Real> dphasedxi;
/**
* the second local derivative (for 3D, the second in the base)
* of the phase term in local coordinates.
* Needed in the overall weak form of infinite element formulations.
*/
std::vector<Real> dphasedeta;
/**
* the third local derivative (for 3D, the derivative in radial
* direction) of the phase term in local coordinates.
* Needed in the overall weak form of infinite element formulations.
*/
std::vector<Real> dphasedzeta;
//--------------------------------------------------------------
// numbering scheme maps
/**
* The internal structure of the \p InfFE
* -- tensor product of base element times radial
* nodes -- has to be determined from the node numbering
* of the current infinite element. This vector
* maps the @e infinte \p Elem node number to the
* @e radial node (either 0 or 1).
*/
std::vector<unsigned int> _radial_node_index;
/**
* The internal structure of the \p InfFE
* -- tensor product of base element times radial
* nodes -- has to be determined from the node numbering
* of the current element. This vector
* maps the @e infinte \p Elem node number to the
* associated node in the @e base element.
*/
std::vector<unsigned int> _base_node_index;
/**
* The internal structure of the \p InfFE
* -- tensor product of base element shapes times radial
* shapes -- has to be determined from the dof numbering
* scheme of the current infinite element. This vector
* maps the infinite \p Elem dof index to the @e radial
* \p InfFE shape index (\p 0..radial_order+1 ).
*/
std::vector<unsigned int> _radial_shape_index;
/**
* The internal structure of the \p InfFE
* -- tensor product of base element shapes times radial
* shapes -- has to be determined from the dof numbering
* scheme of the current infinite element. This vector
* maps the infinite \p Elem dof index to the associated
* dof in the @e base \p FE.
*/
std::vector<unsigned int> _base_shape_index;
//--------------------------------------------------------------
// some more protected members
/**
* The number of total approximation shape functions for
* the current configuration
*/
unsigned int _n_total_approx_sf;
/**
* The total number of quadrature points
* for the current configuration
*/
unsigned int _n_total_qp;
/**
* this vector contains the combined integration weights, so
* that \p FEBase::compute_map() can still be used
*/
std::vector<Real> _total_qrule_weights;
/**
* The quadrature rule for the base element associated
* with the current infinite element
*/
QBase* base_qrule;
/**
* The quadrature rule for the base element associated
* with the current infinite element
*/
QBase* radial_qrule;
/**
* The base element associated with the
* current infinite element
*/
Elem* base_elem;
/**
* Have a \p FE<Dim-1,T_base> handy for base approximation.
* Since this one is created using the \p FEBase::build() method,
* the \p InfFE class is not required to be templated w.r.t.
* to the base approximation shape.
*/
FEBase* base_fe;
/**
* This \p FEType stores the characteristics for which
* the data structures \p phi, \p phi_map etc are currently
* initialized. This avoids re-initializing the radial
* part. But note that currently @e only \p order may change,
* neither the FE families nor \p base_order!
*/
FEType current_fe_type;
private:
/**
* @returns \p false, currently not required.
*/
virtual bool shapes_need_reinit() const;
/**
* When \p compute_node_indices_fast() is used, this static
* variable remembers the element type for which the
* static variables in \p compute_node_indices_fast()
* are currently set. Using a class member for the
* element type helps initializing it to a default value.
*/
static ElemType _compute_node_indices_fast_current_elem_type;
#ifdef DEBUG
/**
* static members that are used to issue warning messages only once.
*/
static bool _warned_for_nodal_soln;
static bool _warned_for_shape;
#endif
/**
* Make all \p InfFE<Dim,T_radial,T_map> classes
* friends of each other, so that the protected
* \p eval() may be accessed.
*/
template <unsigned int friend_Dim, FEFamily friend_T_radial, InfMapType friend_T_map>
friend class InfFE;
};
// ------------------------------------------------------------
// InfFE class inline members
// ------------------------------------------------------------
// InfFE::Radial class inline members
template <unsigned int Dim, FEFamily T_radial, InfMapType T_map>
inline
Real InfFE<Dim,T_radial,T_map>::Radial::decay(const Real v)
{
switch (Dim)
//TODO:[DD] What decay do i have in 2D and 1D?
{
case 3:
return (1.-v)/2.;
case 2:
return 0.;
case 1:
return 0.;
default:
libmesh_error();
return 0.;
}
}
// ------------------------------------------------------------
// InfFE::Base class inline members
} // namespace libMesh
#endif //ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
#endif
|