/usr/include/libmesh/fe_interface.h is in libmesh-dev 0.7.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | // $Id: fe_interface.h 4399 2011-04-22 18:32:39Z roystgnr $
// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __fe_interface_h__
#define __fe_interface_h__
// C++ includes
#include <vector>
#include <map>
// Local includes
#include "libmesh_common.h"
#include "enum_elem_type.h"
namespace libMesh
{
// forward declarations
class BoundaryInfo;
class DofConstraints;
class DofMap;
class Elem;
class FEType;
class FEComputeData;
class Point;
class MeshBase;
#ifdef LIBMESH_ENABLE_PERIODIC
class PeriodicBoundaries;
class PointLocatorBase;
#endif
/**
* This class provides an encapsulated access to all @e static
* public member functions of finite element classes.
* Using this class, one need not worry about the correct
* finite element class.
*
* @author Daniel Dreyer, 2002-2007
*/
// ------------------------------------------------------------
// FEInterface class definition
class FEInterface
{
private:
/**
* Empty constructor. Do not create an object of this type.
*/
FEInterface();
public:
/**
* Destructor.
*/
virtual ~FEInterface() {return;}
/**
* @returns the number of shape functions associated with this
* finite element of type \p fe_t.
* Automatically decides which finite element class to use.
*
* On a p-refined element, \p fe_t.order should be the total order of the element.
*/
static unsigned int n_shape_functions(const unsigned int dim,
const FEType& fe_t,
const ElemType t);
/**
* @returns the number of shape functions associated with this
* finite element.
* Automatically decides which finite element class to use.
*
* On a p-refined element, \p fe_t.order should be the total order of the element.
*/
static unsigned int n_dofs(const unsigned int dim,
const FEType& fe_t,
const ElemType t);
/**
* @returns the number of dofs at node n for a finite element
* of type \p fe_t.
* Automatically decides which finite element class to use.
*
* On a p-refined element, \p fe_t.order should be the total order of the element.
*/
static unsigned int n_dofs_at_node(const unsigned int dim,
const FEType& fe_t,
const ElemType t,
const unsigned int n);
/**
* @returns the number of dofs interior to the element,
* not associated with any interior nodes.
* Automatically decides which finite element class to use.
*
* On a p-refined element, \p fe_t.order should be the total order of the element.
*/
static unsigned int n_dofs_per_elem(const unsigned int dim,
const FEType& fe_t,
const ElemType t);
/**
* Fills the vector di with the local degree of freedom indices
* associated with side \p s of element \p elem
* Automatically decides which finite element class to use.
*
* On a p-refined element, \p fe_t.order should be the base order of the element.
*/
static void dofs_on_side(const Elem* const elem,
const unsigned int dim,
const FEType& fe_t,
unsigned int s,
std::vector<unsigned int>& di);
/**
* Fills the vector di with the local degree of freedom indices
* associated with edge \p e of element \p elem
* Automatically decides which finite element class to use.
*
* On a p-refined element, \p fe_t.order should be the base order of the element.
*/
static void dofs_on_edge(const Elem* const elem,
const unsigned int dim,
const FEType& fe_t,
unsigned int e,
std::vector<unsigned int>& di);
/**
* Build the nodal soln from the element soln.
* This is the solution that will be plotted.
* Automatically passes the request to the appropriate
* finite element class member. To indicate that
* results from this specific implementation of
* \p nodal_soln should not be used, the vector
* \p nodal_soln is returned empty.
*
* On a p-refined element, \p fe_t.order should be the base order of the element.
*/
static void nodal_soln(const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const std::vector<Number>& elem_soln,
std::vector<Number>& nodal_soln);
/**
* @returns the location (on the reference element) of the
* point \p p located in physical space. This function requires
* inverting the (probably nonlinear) transformation map, so
* it is not trivial. The optional parameter \p tolerance defines
* how close is "good enough." The map inversion iteration
* computes the sequence \f$ \{ p_n \} \f$, and the iteration is
* terminated when \f$ \|p - p_n\| < \mbox{\texttt{tolerance}} \f$
*/
static Point inverse_map (const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const Point& p,
const Real tolerance = TOLERANCE,
const bool secure = true);
/**
* @returns the location (on the reference element) of the points \p
* physical_points located in physical space. This function
* requires inverting the (probably nonlinear) transformation map,
* so it is not trivial. The location of each point on the reference
* element is returned in the vector \p reference_points. The
* optional parameter \p tolerance defines how close is "good
* enough." The map inversion iteration computes the sequence \f$
* \{ p_n \} \f$, and the iteration is terminated when \f$ \|p -
* p_n\| < \mbox{\texttt{tolerance}} \f$
*/
static void inverse_map (const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const std::vector<Point>& physical_points,
std::vector<Point>& reference_points,
const Real tolerance = TOLERANCE,
const bool secure = true);
/**
* @returns true if the point p is located on the reference element
* for element type t, false otherwise.
*
* Since we are doing floating point comparisons here the parameter
* \p eps can be specified to indicate a tolerance. For example,
* \f$ \xi \le 1 \f$ becomes \f$ \xi \le 1 + \epsilon \f$.
*/
static bool on_reference_element(const Point& p,
const ElemType t,
const Real eps=TOLERANCE);
/**
* @returns the value of the \f$ i^{th} \f$ shape function at
* point \p p. This method allows you to specify the dimension,
* element type, and order directly. Automatically passes the
* request to the appropriate finite element class member.
*
* On a p-refined element, \p fe_t.order should be the total order of the element.
*/
static Real shape(const unsigned int dim,
const FEType& fe_t,
const ElemType t,
const unsigned int i,
const Point& p);
/**
* @returns the value of the \f$ i^{th} \f$ shape function at
* point \p p. This method allows you to specify the dimension,
* element type, and order directly. Automatically passes the
* request to the appropriate finite element class member.
*
* On a p-refined element, \p fe_t.order should be the base order of the element.
*/
static Real shape(const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const unsigned int i,
const Point& p);
/**
* Lets the appropriate child of \p FEBase compute the requested
* data for the input specified in \p data, and returns the values
* also through \p data. See this as a generalization of \p shape().
* Currently, with disabled infinite elements, returns a vector of
* all shape functions of \p elem evaluated ap \p p.
*
* On a p-refined element, \p fe_t.order should be the base order of the element.
*/
static void compute_data(const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
FEComputeData& data);
#ifdef LIBMESH_ENABLE_AMR
/**
* Computes the constraint matrix contributions (for
* non-conforming adapted meshes) corresponding to
* variable number \p var_number.
*/
static void compute_constraints (DofConstraints &constraints,
DofMap &dof_map,
const unsigned int variable_number,
const Elem* elem);
#endif // #ifdef LIBMESH_ENABLE_AMR
#ifdef LIBMESH_ENABLE_PERIODIC
/**
* Computes the constraint matrix contributions (for
* periodic boundary conditions) corresponding to
* variable number \p var_number.
*/
static void compute_periodic_constraints (DofConstraints &constraints,
DofMap &dof_map,
const PeriodicBoundaries &boundaries,
const MeshBase &mesh,
const PointLocatorBase* point_locator,
const unsigned int variable_number,
const Elem* elem);
#endif // #ifdef LIBMESH_ENABLE_PERIODIC
/**
* Returns the maximum polynomial degree that the given finite
* element family can support on the given geometric element.
*/
static unsigned int max_order (const FEType& fe_t,
const ElemType& el_t);
/**
* Returns true if separate degrees of freedom must be allocated for
* vertex DoFs and edge/face DoFs at a hanging node.
*/
static bool extra_hanging_dofs (const FEType& fe_t);
private:
/**
* @returns true if \p et is an element to be processed by
* class \p InfFE. Otherwise, it returns false.
* For compatibility with disabled infinite elements
* it always returns false.
*/
static bool is_InfFE_elem(const ElemType et);
#ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
// ------------------------------------------------------------
/*
* All these private members do the same as their public
* counterparts, but for infinite elements. This dis-entangles
* the calls to \p FE and \p InfFE.
*/
static unsigned int ifem_n_shape_functions(const unsigned int dim,
const FEType& fe_t,
const ElemType t);
static unsigned int ifem_n_dofs(const unsigned int dim,
const FEType& fe_t,
const ElemType t);
static unsigned int ifem_n_dofs_at_node(const unsigned int dim,
const FEType& fe_t,
const ElemType t,
const unsigned int n);
static unsigned int ifem_n_dofs_per_elem(const unsigned int dim,
const FEType& fe_t,
const ElemType t);
static void ifem_nodal_soln(const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const std::vector<Number>& elem_soln,
std::vector<Number>& nodal_soln);
static Point ifem_inverse_map (const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const Point& p,
const Real tolerance = TOLERANCE,
const bool secure = true);
static void ifem_inverse_map (const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const std::vector<Point>& physical_points,
std::vector<Point>& reference_points,
const Real tolerance = TOLERANCE,
const bool secure = true);
static bool ifem_on_reference_element(const Point& p,
const ElemType t,
const Real eps);
static Real ifem_shape(const unsigned int dim,
const FEType& fe_t,
const ElemType t,
const unsigned int i,
const Point& p);
static Real ifem_shape(const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
const unsigned int i,
const Point& p);
static void ifem_compute_data(const unsigned int dim,
const FEType& fe_t,
const Elem* elem,
FEComputeData& data);
#endif
};
// ------------------------------------------------------------
// FEInterface class inline members
#ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
inline bool FEInterface::is_InfFE_elem(const ElemType)
{
return false;
}
#else
inline bool FEInterface::is_InfFE_elem(const ElemType et)
{
switch (et)
{
case INFEDGE2:
case INFQUAD4:
case INFQUAD6:
case INFHEX8:
case INFHEX16:
case INFHEX18:
case INFPRISM6:
case INFPRISM12:
{
return true;
}
default:
{
return false;
}
}
}
#endif //ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS
} // namespace libMesh
#endif // ifndef __fe_interface_h__
|