This file is indexed.

/usr/include/libmesh/fe_interface.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
// $Id: fe_interface.h 4399 2011-04-22 18:32:39Z roystgnr $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __fe_interface_h__
#define __fe_interface_h__

// C++ includes
#include <vector>
#include <map>

// Local includes
#include "libmesh_common.h"
#include "enum_elem_type.h"

namespace libMesh
{


// forward declarations
class BoundaryInfo;
class DofConstraints;
class DofMap;
class Elem;
class FEType;
class FEComputeData;
class Point;
class MeshBase;

#ifdef LIBMESH_ENABLE_PERIODIC
class PeriodicBoundaries;
class PointLocatorBase;
#endif

/**
 * This class provides an encapsulated access to all @e static
 * public member functions of finite element classes.
 * Using this class, one need not worry about the correct
 * finite element class.
 *
 * @author Daniel Dreyer, 2002-2007
 */

// ------------------------------------------------------------
// FEInterface class definition

class FEInterface
{
private:

  /**
   * Empty constructor. Do not create an object of this type.
   */
  FEInterface();

public:
  
  /**
   * Destructor.
   */
  virtual ~FEInterface() {return;}

  /**
   * @returns the number of shape functions associated with this
   * finite element of type \p fe_t. 
   * Automatically decides which finite element class to use.
   *
   * On a p-refined element, \p fe_t.order should be the total order of the element.
   */
  static unsigned int n_shape_functions(const unsigned int dim,
					const FEType& fe_t,
					const ElemType t);

  /**
   * @returns the number of shape functions associated with this
   * finite element.
   * Automatically decides which finite element class to use.
   *
   * On a p-refined element, \p fe_t.order should be the total order of the element.
   */
  static unsigned int n_dofs(const unsigned int dim,
			     const FEType& fe_t,
			     const ElemType t);

  /**
   * @returns the number of dofs at node n for a finite element
   * of type \p fe_t.
   * Automatically decides which finite element class to use.
   *
   * On a p-refined element, \p fe_t.order should be the total order of the element.
   */
  static unsigned int n_dofs_at_node(const unsigned int dim,
				     const FEType& fe_t,
				     const ElemType t,
				     const unsigned int n);

  /**
   * @returns the number of dofs interior to the element,
   * not associated with any interior nodes.
   * Automatically decides which finite element class to use.
   *
   * On a p-refined element, \p fe_t.order should be the total order of the element.
   */
  static unsigned int n_dofs_per_elem(const unsigned int dim,
				      const FEType& fe_t,
				      const ElemType t);

  /**
   * Fills the vector di with the local degree of freedom indices
   * associated with side \p s of element \p elem
   * Automatically decides which finite element class to use.
   *
   * On a p-refined element, \p fe_t.order should be the base order of the element.
   */
  static void dofs_on_side(const Elem* const elem,
                           const unsigned int dim,
                           const FEType& fe_t,
                           unsigned int s,
                           std::vector<unsigned int>& di);

  /**
   * Fills the vector di with the local degree of freedom indices
   * associated with edge \p e of element \p elem
   * Automatically decides which finite element class to use.
   *
   * On a p-refined element, \p fe_t.order should be the base order of the element.
   */
  static void dofs_on_edge(const Elem* const elem,
                           const unsigned int dim,
                           const FEType& fe_t,
                           unsigned int e,
                           std::vector<unsigned int>& di);
  
  /**
   * Build the nodal soln from the element soln.
   * This is the solution that will be plotted.
   * Automatically passes the request to the appropriate
   * finite element class member.  To indicate that
   * results from this specific implementation of
   * \p nodal_soln should not be used, the vector 
   * \p nodal_soln is returned empty.
   *
   * On a p-refined element, \p fe_t.order should be the base order of the element.
   */
  static void nodal_soln(const unsigned int dim,
			 const FEType& fe_t,
			 const Elem* elem,
			 const std::vector<Number>& elem_soln,
			 std::vector<Number>& nodal_soln);

  /**
   * @returns the location (on the reference element) of the
   * point \p p located in physical space.  This function requires
   * inverting the (probably nonlinear) transformation map, so
   * it is not trivial. The optional parameter \p tolerance defines
   * how close is "good enough."  The map inversion iteration
   * computes the sequence \f$ \{ p_n \} \f$, and the iteration is
   * terminated when \f$ \|p - p_n\| < \mbox{\texttt{tolerance}} \f$
   */
  static Point inverse_map (const unsigned int dim,
			    const FEType& fe_t,
			    const Elem* elem,
			    const Point& p,
			    const Real tolerance = TOLERANCE,
			    const bool secure = true);

  /**
   * @returns the location (on the reference element) of the points \p
   * physical_points located in physical space.  This function
   * requires inverting the (probably nonlinear) transformation map,
   * so it is not trivial. The location of each point on the reference
   * element is returned in the vector \p reference_points. The
   * optional parameter \p tolerance defines how close is "good
   * enough."  The map inversion iteration computes the sequence \f$
   * \{ p_n \} \f$, and the iteration is terminated when \f$ \|p -
   * p_n\| < \mbox{\texttt{tolerance}} \f$
   */
  static void  inverse_map (const unsigned int dim,
			    const FEType& fe_t,
			    const Elem* elem,
			    const std::vector<Point>& physical_points,
			    std::vector<Point>&       reference_points,
			    const Real tolerance = TOLERANCE,
			    const bool secure = true);

  /**
   * @returns true if the point p is located on the reference element
   * for element type t, false otherwise.
   *
   * Since we are doing floating point comparisons here the parameter
   * \p eps can be specified to indicate a tolerance.  For example,
   * \f$ \xi \le 1 \f$  becomes \f$ \xi \le 1 + \epsilon \f$. 
   */
  static bool on_reference_element(const Point& p,
				   const ElemType t,
				   const Real eps=TOLERANCE);
  /**
   * @returns the value of the \f$ i^{th} \f$ shape function at
   * point \p p. This method allows you to specify the dimension,
   * element type, and order directly. Automatically passes the
   * request to the appropriate finite element class member.
   *
   * On a p-refined element, \p fe_t.order should be the total order of the element.
   */
  static Real shape(const unsigned int dim,
		    const FEType& fe_t,
		    const ElemType t,
		    const unsigned int i,
		    const Point& p);

  /**
   * @returns the value of the \f$ i^{th} \f$ shape function at
   * point \p p. This method allows you to specify the dimension,
   * element type, and order directly. Automatically passes the
   * request to the appropriate finite element class member.
   *
   * On a p-refined element, \p fe_t.order should be the base order of the element.
   */
  static Real shape(const unsigned int dim,
		    const FEType& fe_t,
		    const Elem* elem,
		    const unsigned int i,
		    const Point& p);

  /**
   * Lets the appropriate child of \p FEBase compute the requested 
   * data for the input specified in \p data, and returns the values
   * also through \p data.  See this as a generalization of \p shape().
   * Currently, with disabled infinite elements, returns a vector of
   * all shape functions of \p elem evaluated ap \p p.
   *
   * On a p-refined element, \p fe_t.order should be the base order of the element.
   */
  static void compute_data(const unsigned int dim,
			   const FEType& fe_t,
			   const Elem* elem,
			   FEComputeData& data);

#ifdef LIBMESH_ENABLE_AMR
  /**
   * Computes the constraint matrix contributions (for
   * non-conforming adapted meshes) corresponding to 
   * variable number \p var_number.
   */
  static void compute_constraints (DofConstraints &constraints,
				   DofMap &dof_map,
				   const unsigned int variable_number,
				   const Elem* elem);
#endif // #ifdef LIBMESH_ENABLE_AMR

#ifdef LIBMESH_ENABLE_PERIODIC
  /**
   * Computes the constraint matrix contributions (for
   * periodic boundary conditions) corresponding to 
   * variable number \p var_number.
   */
  static void compute_periodic_constraints (DofConstraints &constraints,
				            DofMap &dof_map,
				            const PeriodicBoundaries &boundaries,
					    const MeshBase &mesh,
                                            const PointLocatorBase* point_locator,
				            const unsigned int variable_number,
				            const Elem* elem);
#endif // #ifdef LIBMESH_ENABLE_PERIODIC

  /**
   * Returns the maximum polynomial degree that the given finite
   * element family can support on the given geometric element.
   */
  static unsigned int max_order (const FEType& fe_t,
			         const ElemType& el_t);

  /**
   * Returns true if separate degrees of freedom must be allocated for
   * vertex DoFs and edge/face DoFs at a hanging node.
   */
  static bool extra_hanging_dofs (const FEType& fe_t);

private:


  /**
   * @returns true if \p et is an element to be processed by
   * class \p InfFE.  Otherwise, it returns false.
   * For compatibility with disabled infinite elements
   * it always returns false.
   */
  static bool is_InfFE_elem(const ElemType et);


#ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS

  // ------------------------------------------------------------
  /*
   * All these private members do the same as their public
   * counterparts, but for infinite elements. This dis-entangles
   * the calls to \p FE and \p InfFE.
   */

  static unsigned int ifem_n_shape_functions(const unsigned int dim,
					     const FEType& fe_t,
					     const ElemType t);

  static unsigned int ifem_n_dofs(const unsigned int dim,
				  const FEType& fe_t,
				  const ElemType t);

  static unsigned int ifem_n_dofs_at_node(const unsigned int dim,
					  const FEType& fe_t,
					  const ElemType t,
					  const unsigned int n);

  static unsigned int ifem_n_dofs_per_elem(const unsigned int dim,
					   const FEType& fe_t,
					   const ElemType t);
  
  static void ifem_nodal_soln(const unsigned int dim,
			      const FEType& fe_t,
			      const Elem* elem,
			      const std::vector<Number>& elem_soln,
			      std::vector<Number>& nodal_soln);

  static Point ifem_inverse_map (const unsigned int dim,
				 const FEType& fe_t,
				 const Elem* elem,
				 const Point& p,
				 const Real tolerance = TOLERANCE,
				 const bool secure = true);
  
  static void ifem_inverse_map (const unsigned int dim,
				const FEType& fe_t,
				const Elem* elem,
				const std::vector<Point>& physical_points,
				std::vector<Point>&       reference_points,
				const Real tolerance = TOLERANCE,
				const bool secure = true);
    

  static bool ifem_on_reference_element(const Point& p,
					const ElemType t,
					const Real eps);

  static Real ifem_shape(const unsigned int dim,
			 const FEType& fe_t,
			 const ElemType t,
			 const unsigned int i,
			 const Point& p);

  static Real ifem_shape(const unsigned int dim,
			 const FEType& fe_t,
			 const Elem* elem,
			 const unsigned int i,
			 const Point& p);

  static void ifem_compute_data(const unsigned int dim,
				const FEType& fe_t,
				const Elem* elem,
				FEComputeData& data);

#endif


};





// ------------------------------------------------------------
// FEInterface class inline members
#ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS 

inline bool FEInterface::is_InfFE_elem(const ElemType)
{
  return false; 
}

#else

inline bool FEInterface::is_InfFE_elem(const ElemType et)
{

  switch (et)
    {
    case INFEDGE2:
    case INFQUAD4:
    case INFQUAD6:
    case INFHEX8:
    case INFHEX16:
    case INFHEX18:
    case INFPRISM6:
    case INFPRISM12:
      {
        return true;
      }
      
    default:
      { 
	return false;
      }
    }
}

#endif //ifndef LIBMESH_ENABLE_INFINITE_ELEMENTS 



} // namespace libMesh




#endif // ifndef __fe_interface_h__