/usr/include/libmesh/fe.h is in libmesh-dev 0.7.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | // $Id: fe.h 3874 2010-07-02 21:57:26Z roystgnr $
// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __fe_h__
#define __fe_h__
// C++ includes
// Local includes
#include "fe_base.h"
#include "libmesh.h"
namespace libMesh
{
// forward declarations
class DofConstraints;
class DofMap;
#ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
template <unsigned int friend_Dim, FEFamily friend_T_radial, InfMapType friend_T_map>
class InfFE;
#endif
/**
* A specific instatiation of the \p FEBase class. This
* class is templated, and specific template instantiations
* will result in different Finite Element families. Full specialization
* of the template for specific dimensions(\p Dim) and families
* (\p T) provide support for specific finite element types.
* The use of templates allows for compile-time optimization,
* however it requires that the specific finite element family
* and dimension is also known at compile time. If this is
* too restricting for your application you can use the
* \p FEBase::build() member to create abstract (but still optimized)
* finite elements.
*
* \author Benjamin S. Kirk
* \date 2002-2007
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// FE class definition
template <unsigned int Dim, FEFamily T>
class FE : public FEBase
{
public:
/**
* Constructor.
*/
FE(const FEType& fet);
/**
* @returns the value of the \f$ i^{th} \f$ shape function at
* point \p p. This method allows you to specify the imension,
* element type, and order directly. This allows the method to
* be static.
*
* On a p-refined element, \p o should be the total order of the element.
*/
static Real shape(const ElemType t,
const Order o,
const unsigned int i,
const Point& p);
/**
* @returns the value of the \f$ i^{th} \f$ shape function at
* point \p p. This method allows you to specify the imension,
* element type, and order directly. This allows the method to
* be static.
*
* On a p-refined element, \p o should be the base order of the element.
*/
static Real shape(const Elem* elem,
const Order o,
const unsigned int i,
const Point& p);
/**
* @returns the \f$ j^{th} \f$ derivative of the \f$ i^{th} \f$
* shape function at point \p p. This method allows you to
* specify the dimension, element type, and order directly.
*
* On a p-refined element, \p o should be the total order of the element.
*/
static Real shape_deriv(const ElemType t,
const Order o,
const unsigned int i,
const unsigned int j,
const Point& p);
/**
* @returns the \f$ j^{th} \f$ derivative of the \f$ i^{th} \f$
* shape function. You must specify element type, and order directly.
*
* On a p-refined element, \p o should be the base order of the element.
*/
static Real shape_deriv(const Elem* elem,
const Order o,
const unsigned int i,
const unsigned int j,
const Point& p);
/**
* @returns the second \f$ j^{th} \f$ derivative of the \f$ i^{th} \f$
* shape function at the point \p p. Note that cross-derivatives are
* also possible, i.e.
* j = 0 ==> d^2 phi / dxi^2
* j = 1 ==> d^2 phi / dxi deta
* j = 2 ==> d^2 phi / deta^2
* j = 3 ==> d^2 phi / dxi dzeta
* j = 4 ==> d^2 phi / deta dzeta
* j = 5 ==> d^2 phi / dzeta^2
*
* Note: Computing second derivatives is not currently supported
* for all element types: C1 (Clough and Hermite), Lagrange,
* Hierarchic, and Monomial are supported.
* All other element types return an error when asked for second derivatives.
*
* On a p-refined element, \p o should be the total order of the element.
*/
static Real shape_second_deriv(const ElemType t,
const Order o,
const unsigned int i,
const unsigned int j,
const Point& p);
/**
* @returns the second \f$ j^{th} \f$ derivative of the \f$ i^{th} \f$
* shape function at the point \p p. Note that cross-derivatives are
* also possible, i.e.
* j = 0 ==> d^2 phi / dxi^2
* j = 1 ==> d^2 phi / dxi deta
* j = 2 ==> d^2 phi / deta^2
* j = 3 ==> d^2 phi / dxi dzeta
* j = 4 ==> d^2 phi / deta dzeta
* j = 5 ==> d^2 phi / dzeta^2
*
* Note: Computing second derivatives is not currently supported
* for all element types: C1 (Clough and Hermite), Lagrange,
* Hierarchic, and Monomial are supported.
* All other element types return an error when asked for second derivatives.
*
* On a p-refined element, \p o should be the base order of the element.
*/
static Real shape_second_deriv(const Elem* elem,
const Order o,
const unsigned int i,
const unsigned int j,
const Point& p);
/**
* Build the nodal soln from the element soln.
* This is the solution that will be plotted.
*
* On a p-refined element, \p o should be the base order of the element.
*/
static void nodal_soln(const Elem* elem, const Order o,
const std::vector<Number>& elem_soln,
std::vector<Number>& nodal_soln);
/**
* @returns the number of shape functions associated with
* this finite element.
*/
virtual unsigned int n_shape_functions () const;
/**
* @returns the number of shape functions associated with
* a finite element of type \p t and approximation order \p o.
*
* On a p-refined element, \p o should be the total order of the element.
*/
static unsigned int n_shape_functions (const ElemType t,
const Order o)
{ return FE<Dim,T>::n_dofs (t,o); }
/**
* @returns the number of shape functions associated with this
* finite element.
*
* On a p-refined element, \p o should be the total order of the element.
*/
static unsigned int n_dofs(const ElemType t,
const Order o);
/**
* @returns the number of dofs at node \p n for a finite element
* of type \p t and order \p o.
*
* On a p-refined element, \p o should be the total order of the element.
*/
static unsigned int n_dofs_at_node(const ElemType t,
const Order o,
const unsigned int n);
/**
* @returns the number of dofs interior to the element,
* not associated with any interior nodes.
*
* On a p-refined element, \p o should be the total order of the element.
*/
static unsigned int n_dofs_per_elem(const ElemType t,
const Order o);
/**
* @returns the continuity level of the finite element.
*/
virtual FEContinuity get_continuity() const;
/**
* @returns true if the finite element's higher order shape functions are
* hierarchic
*/
virtual bool is_hierarchic() const;
/**
* Fills the vector di with the local degree of freedom indices
* associated with side \p s of element \p elem
*
* On a p-refined element, \p o should be the base order of the element.
*/
static void dofs_on_side(const Elem* const elem,
const Order o,
unsigned int s,
std::vector<unsigned int>& di);
/**
* Fills the vector di with the local degree of freedom indices
* associated with edge \p e of element \p elem
*
* On a p-refined element, \p o should be the base order of the element.
*/
static void dofs_on_edge(const Elem* const elem,
const Order o,
unsigned int e,
std::vector<unsigned int>& di);
/**
* @returns the location (on the reference element) of the
* point \p p located in physical space. This function requires
* inverting the (possibly nonlinear) transformation map, so
* it is not trivial. The optional parameter \p tolerance defines
* how close is "good enough." The map inversion iteration
* computes the sequence \f$ \{ p_n \} \f$, and the iteration is
* terminated when \f$ \|p - p_n\| < \mbox{\texttt{tolerance}} \f$
*/
static Point inverse_map (const Elem* elem,
const Point& p,
const Real tolerance = TOLERANCE,
const bool secure = true);
/**
* Takes a number points in physical space (in the \p
* physical_points vector) and finds their location on the reference
* element for the input element \p elem. The values on the
* reference element are returned in the vector \p
* reference_points. The optional parameter \p tolerance defines how
* close is "good enough." The map inversion iteration computes the
* sequence \f$ \{ p_n \} \f$, and the iteration is terminated when
* \f$ \|p - p_n\| < \mbox{\texttt{tolerance}} \f$
*/
static void inverse_map (const Elem* elem,
const std::vector<Point>& physical_points,
std::vector<Point>& reference_points,
const Real tolerance = TOLERANCE,
const bool secure = true);
/**
* This is at the core of this class. Use this for each
* new element in the mesh. Reinitializes all the physical
* element-dependent data based on the current element
* \p elem. By default the shape functions and associated
* data are computed at the quadrature points specified
* by the quadrature rule \p qrule, but may be any points
* specified on the reference element specified in the optional
* argument \p pts.
*/
virtual void reinit (const Elem* elem,
const std::vector<Point>* const pts = NULL);
/**
* Reinitializes all the physical element-dependent data based on
* the \p side of \p face. The \p tolerance paremeter is passed to
* the involved call to \p inverse_map().
*/
virtual void reinit (const Elem* elem,
const unsigned int side,
const Real tolerance = TOLERANCE);
/**
* Reinitializes all the physical element-dependent data based on
* the \p edge. The \p tolerance paremeter is passed to the
* involved call to \p inverse_map().
*/
virtual void edge_reinit (const Elem* elem,
const unsigned int edge,
const Real tolerance = TOLERANCE);
/**
* Provides the class with the quadrature rule, which provides the
* locations (on a reference element) where the shape functions are
* to be calculated.
*/
virtual void attach_quadrature_rule (QBase* q);
/**
* @returns the total number of quadrature points. Call this
* to get an upper bound for the \p for loop in your simulation
* for matrix assembly of the current element.
*/
virtual unsigned int n_quadrature_points () const;
#ifdef LIBMESH_ENABLE_AMR
/**
* Computes the constraint matrix contributions (for
* non-conforming adapted meshes) corresponding to
* variable number \p var_number, using element-specific
* optimizations if possible.
*/
static void compute_constraints (DofConstraints &constraints,
DofMap &dof_map,
const unsigned int variable_number,
const Elem* elem);
#endif // #ifdef LIBMESH_ENABLE_AMR
#ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
/**
* Initialize the data fields for the base of an
* an infinite element.
*/
void init_base_shape_functions(const std::vector<Point>& qp,
const Elem* e);
#endif
/**
* @returns \p true when the shape functions (for
* this \p FEFamily) depend on the particular
* element, and therefore needs to be re-initialized
* for each new element. \p false otherwise.
*/
virtual bool shapes_need_reinit() const;
/**
* Update the various member data fields \p phi,
* \p dphidxi, \p dphideta, \p dphidzeta, etc.
* for the current element. These data will be computed
* at the points \p qp, which are generally (but need not be)
* the quadrature points.
*/
virtual void init_shape_functions(const std::vector<Point>& qp,
const Elem* e);
/**
* Same as before, but for a side. This is used for boundary
* integration.
*/
void init_face_shape_functions(const std::vector<Point>& qp,
const Elem* side);
/**
* Same as before, but for an edge. This is used for some projection
* operators.
*/
void init_edge_shape_functions(const std::vector<Point>& qp,
const Elem* edge);
/**
* @returns the location (in physical space) of the point
* \p p located on the reference element.
*/
static Point map (const Elem* elem,
const Point& reference_point);
/**
* @returns d(xyz)/dxi (in physical space) of the point
* \p p located on the reference element.
*/
static Point map_xi (const Elem* elem,
const Point& reference_point);
/**
* @returns d(xyz)/deta (in physical space) of the point
* \p p located on the reference element.
*/
static Point map_eta (const Elem* elem,
const Point& reference_point);
/**
* @returns d(xyz)/dzeta (in physical space) of the point
* \p p located on the reference element.
*/
static Point map_zeta (const Elem* elem,
const Point& reference_point);
#ifdef LIBMESH_ENABLE_INFINITE_ELEMENTS
/**
* make InfFE classes friends, so that these may access
* the private \p map, map_xyz methods
*/
template <unsigned int friend_Dim, FEFamily friend_T_radial, InfMapType friend_T_map>
friend class InfFE;
#endif
protected:
/**
* An array of the node locations on the last
* element we computed on
*/
std::vector<Point> cached_nodes;
/**
* The last side and last edge we did a reinit on
*/
unsigned int last_side, last_edge;
};
/**
* Clough-Tocher finite elements. Still templated on the dimension,
* \p Dim.
*
* \author Roy Stogner
* \date 2004
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// FEHierarchic class definition
template <unsigned int Dim>
class FEClough : public FE<Dim,CLOUGH>
{
public:
/**
* Constructor. Creates a hierarchic finite element
* to be used in dimension \p Dim.
*/
FEClough(const FEType& fet);
};
/**
* Hermite finite elements. Still templated on the dimension,
* \p Dim.
*
* \author Roy Stogner
* \date 2005
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// FEHierarchic class definition
template <unsigned int Dim>
class FEHermite : public FE<Dim,HERMITE>
{
public:
/**
* Constructor. Creates a hierarchic finite element
* to be used in dimension \p Dim.
*/
FEHermite(const FEType& fet);
/**
* 1D hermite functions on unit interval
*/
static Real hermite_raw_shape_second_deriv(const unsigned int basis_num,
const Real xi);
static Real hermite_raw_shape_deriv(const unsigned int basis_num,
const Real xi);
static Real hermite_raw_shape(const unsigned int basis_num,
const Real xi);
};
/**
* Hierarchic finite elements. Still templated on the dimension,
* \p Dim.
*
* \author Benjamin S. Kirk
* \date 2002-2007
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// FEHierarchic class definition
template <unsigned int Dim>
class FEHierarchic : public FE<Dim,HIERARCHIC>
{
public:
/**
* Constructor. Creates a hierarchic finite element
* to be used in dimension \p Dim.
*/
FEHierarchic(const FEType& fet);
};
/**
* Lagrange finite elements. Still templated on the dimension,
* \p Dim.
*
* \author Benjamin S. Kirk
* \date 2002-2007
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// FELagrange class definition
template <unsigned int Dim>
class FELagrange : public FE<Dim,LAGRANGE>
{
public:
/**
* Constructor. Creates a Lagrange finite element
* to be used in dimension \p Dim.
*/
FELagrange(const FEType& fet);
};
/**
* Monomial finite elements. Still templated on the dimension,
* \p Dim.
*
* \author Benjamin S. Kirk
* \date 2002-2007
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// FEMonomial class definition
template <unsigned int Dim>
class FEMonomial : public FE<Dim,MONOMIAL>
{
public:
/**
* Constructor. Creates a monomial finite element
* to be used in dimension \p Dim.
*/
FEMonomial(const FEType& fet);
};
//-------------------------------------------------------------
// FEScalar class definition
template <unsigned int Dim>
class FEScalar : public FE<Dim,SCALAR>
{
public:
/**
* Constructor. Creates a SCALAR finite element
* which simply represents one or more
* extra DOFs coupled to all other DOFs in
* the system.
*/
FEScalar(const FEType& fet);
};
/**
* XYZ finite elements. These require specialization
* because the shape functions are defined in terms of
* physical XYZ coordinates rather than local coordinates.
*
* \author Benjamin S. Kirk
* \date 2002-2007
* \version $Revision: 3874 $
*/
//-------------------------------------------------------------
// FEXYZ class definition
template <unsigned int Dim>
class FEXYZ : public FE<Dim,XYZ>
{
public:
/**
* Constructor. Creates a monomial finite element
* to be used in dimension \p Dim.
*/
FEXYZ(const FEType& fet);
/**
* Explicitly call base class method. This prevents some
* compilers being confused by partially overriding this virtual function.
*/
virtual void reinit (const Elem* elem,
const std::vector<Point>* const pts = NULL)
{ FE<Dim,XYZ>::reinit (elem, pts); }
/**
* Reinitializes all the physical element-dependent data based on
* the \p side of \p face.
*/
virtual void reinit (const Elem* elem,
const unsigned int side,
const Real tolerance = TOLERANCE);
protected:
/**
* Update the various member data fields \p phi,
* \p dphidxi, \p dphideta, \p dphidzeta, etc.
* for the current element. These data will be computed
* at the points \p qp, which are generally (but need not be)
* the quadrature points.
*/
virtual void init_shape_functions(const std::vector<Point>& qp,
const Elem* e);
/**
* After having updated the jacobian and the transformation
* from local to global coordinates in \p FEBase::compute_map(),
* the first derivatives of the shape functions are
* transformed to global coordinates, giving \p dphi,
* \p dphidx, \p dphidy, and \p dphidz. This method
* should rarely be re-defined in derived classes, but
* still should be usable for children. Therefore, keep
* it protected.
*/
virtual void compute_shape_functions(const Elem*);
/**
* Compute the map & shape functions for this face.
*/
void compute_face_values (const Elem* elem,
const Elem* side);
};
/**
* Provide Typedefs for various element types.
*/
namespace FiniteElements
{
/**
* Convenient definition for a 2D
* Clough-Tocher finite element.
*/
typedef FEClough<2> FEClough2D;
/**
* Convenient definition for a 1D
* Hierarchic finite element.
*/
typedef FE<1,HIERARCHIC> FEHierarchic1D;
/**
* Convenient definition for a 2D
* Hierarchic finite element.
*/
typedef FE<2,HIERARCHIC> FEHierarchic2D;
/**
* Convenient definition for a 3D
* Hierarchic finite element.
*/
typedef FE<3,HIERARCHIC> FEHierarchic3D;
/**
* Convenient definition for a 1D
* Lagrange finite element.
*/
typedef FE<1,LAGRANGE> FELagrange1D;
/**
* Convenient definition for a 2D
* Lagrange finite element.
*/
typedef FE<2,LAGRANGE> FELagrange2D;
/**
* Convenient definition for a 3D
* Lagrange finite element.
*/
typedef FE<3,LAGRANGE> FELagrange3D;
/**
* Convenient definition for a 1D
* Monomial finite element.
*/
typedef FE<1,MONOMIAL> FEMonomial1D;
/**
* Convenient definition for a 2D
* Monomial finite element.
*/
typedef FE<2,MONOMIAL> FEMonomial2D;
/**
* Convenient definition for a 3D
* Monomial finite element.
*/
typedef FE<3,MONOMIAL> FEMonomial3D;
}
// ------------------------------------------------------------
// FE class inline members
template <unsigned int Dim, FEFamily T>
inline
FE<Dim,T>::FE (const FEType& fet) :
FEBase (Dim,fet),
last_side(libMesh::invalid_uint),
last_edge(libMesh::invalid_uint)
{
// Sanity check. Make sure the
// Family specified in the template instantiation
// matches the one in the FEType object
libmesh_assert (T == fe_type.family);
}
// ------------------------------------------------------------
// FEClough class inline members
template <unsigned int Dim>
inline
FEClough<Dim>::FEClough (const FEType& fet) :
FE<Dim,CLOUGH> (fet)
{
}
// ------------------------------------------------------------
// FEHermite class inline members
template <unsigned int Dim>
inline
FEHermite<Dim>::FEHermite (const FEType& fet) :
FE<Dim,HERMITE> (fet)
{
}
// ------------------------------------------------------------
// FEHierarchic class inline members
template <unsigned int Dim>
inline
FEHierarchic<Dim>::FEHierarchic (const FEType& fet) :
FE<Dim,HIERARCHIC> (fet)
{
}
// ------------------------------------------------------------
// FELagrange class inline members
template <unsigned int Dim>
inline
FELagrange<Dim>::FELagrange (const FEType& fet) :
FE<Dim,LAGRANGE> (fet)
{
}
// ------------------------------------------------------------
// FEMonomial class inline members
template <unsigned int Dim>
inline
FEMonomial<Dim>::FEMonomial (const FEType& fet) :
FE<Dim,MONOMIAL> (fet)
{
}
// ------------------------------------------------------------
// FEXYZ class inline members
template <unsigned int Dim>
inline
FEXYZ<Dim>::FEXYZ (const FEType& fet) :
FE<Dim,XYZ> (fet)
{
}
// ------------------------------------------------------------
// FEScalar class inline members
template <unsigned int Dim>
inline
FEScalar<Dim>::FEScalar (const FEType& fet) :
FE<Dim,SCALAR> (fet)
{
}
} // namespace libMesh
#endif
|