/usr/include/libmesh/face_quad9.h is in libmesh-dev 0.7.1-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | // $Id: face_quad9.h 3874 2010-07-02 21:57:26Z roystgnr $
// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef __quad9_h__
#define __quad9_h__
// C++ includes
// Local includes
#include "libmesh_common.h"
#include "face_quad.h"
namespace libMesh
{
// Forward declarations
/**
* The \p QUAD9 is an element in 2D composed of 9 nodes.
* It is numbered like this:
* \verbatim
* 3 6 2
* QUAD9: o-----o-----o
* | |
* | 8 |
* 7 o o o 5
* | |
* | |
* o-----o-----o
* 0 4 1
* \endverbatim
*/
// ------------------------------------------------------------
// Quad9 class definition
class Quad9 : public Quad
{
public:
/**
* Constructor. By default this element has no parent.
*/
Quad9 (Elem* p=NULL) :
Quad(Quad9::n_nodes(), p) {}
/**
* Constructor. Explicitly specifies the number of
* nodes and neighbors for which storage will be allocated.
*/
Quad9 (const unsigned int nn,
const unsigned int ns,
Elem* p) :
Quad(nn, ns, p) {}
/**
* @returns \p QUAD9
*/
ElemType type () const { return QUAD9; }
/**
* @returns 9
*/
unsigned int n_nodes() const { return 9; }
/**
* @returns 4
*/
unsigned int n_sub_elem() const { return 4; }
/**
* @returns true iff the specified (local) node number is a vertex.
*/
virtual bool is_vertex(const unsigned int i) const;
/**
* @returns true iff the specified (local) node number is an edge.
*/
virtual bool is_edge(const unsigned int i) const;
/**
* @returns true iff the specified (local) node number is a face.
*/
virtual bool is_face(const unsigned int i) const;
/*
* @returns true iff the specified (local) node number is on the
* specified side
*/
virtual bool is_node_on_side(const unsigned int n,
const unsigned int s) const;
/*
* @returns true iff the specified (local) node number is on the
* specified edge (== is_node_on_side in 2D)
*/
virtual bool is_node_on_edge(const unsigned int n,
const unsigned int e) const
{ return this->is_node_on_side(n,e); }
/*
* @returns true iff the element map is definitely affine within
* numerical tolerances
*/
virtual bool has_affine_map () const;
/**
* @returns SECOND
*/
Order default_order() const { return SECOND; }
/**
* @returns an id associated with the \p s side of this element.
* The id is not necessariy unique, but should be close. This is
* particularly useful in the \p MeshBase::find_neighbors() routine.
*
* We reimplemenet this method here for the \p Quad9 since we can
* use the center node of each edge to provide a perfect (unique)
* key.
*/
unsigned int key (const unsigned int s) const;
AutoPtr<Elem> build_side (const unsigned int i,
bool proxy) const;
virtual void connectivity(const unsigned int sf,
const IOPackage iop,
std::vector<unsigned int>& conn) const;
/**
* @returns 2 for edge nodes and 4 for the face node.
*/
unsigned int n_second_order_adjacent_vertices (const unsigned int n) const;
/**
* @returns the element-local number of the \f$ v^{th} \f$ vertex
* that defines the \f$ n^{th} \f$ second-order node.
* Note that \p n is counted as depicted above, \f$ 4 \le n < 8 \f$.
*/
unsigned short int second_order_adjacent_vertex (const unsigned int n,
const unsigned int v) const;
/**
* @returns the child number \p c and element-local index \p v of the
* \f$ n^{th} \f$ second-order node on the parent element. Note that
* the return values are always less \p this->n_children() and
* \p this->child(c)->n_vertices(), while \p n has to be greater or equal
* to \p * this->n_vertices(). For linear elements this returns 0,0.
* On refined second order elements, the return value will satisfy
* \p this->get_node(n)==this->child(c)->get_node(v)
*/
virtual std::pair<unsigned short int, unsigned short int>
second_order_child_vertex (const unsigned int n) const;
/**
* This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to
* element node numbers.
*/
static const unsigned int side_nodes_map[4][3];
protected:
#ifdef LIBMESH_ENABLE_AMR
/**
* Matrix used to create the elements children.
*/
float embedding_matrix (const unsigned int i,
const unsigned int j,
const unsigned int k) const
{ return _embedding_matrix[i][j][k]; }
/**
* Matrix that computes new nodal locations/solution values
* from current nodes/solution.
*/
static const float _embedding_matrix[4][9][9];
#endif
};
} // namespace libMesh
#endif
|