This file is indexed.

/usr/include/libmesh/eigen_solver.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// $Id: eigen_solver.h 4278 2011-03-21 15:23:30Z roystgnr $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributd in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __eigen_solver_h__
#define __eigen_solver_h__


#include "libmesh_config.h"
#ifdef LIBMESH_HAVE_SLEPC

// C++ includes

// Local includes
#include "libmesh_common.h"
#include "enum_solver_package.h"
#include "enum_eigen_solver_type.h"
#include "reference_counted_object.h"
#include "libmesh.h"

namespace libMesh
{

// forward declarations
template <typename T> class AutoPtr;
template <typename T> class SparseMatrix;
template <typename T> class ShellMatrix;
template <typename T> class NumericVector;


/**
 * This class provides an interface to solvers for eigenvalue
 * problems.
 */

template <typename T>
class EigenSolver : public ReferenceCountedObject<EigenSolver<T> >
{
public:
  
  /**
   *  Constructor. Initializes Solver data structures
   */
  EigenSolver ();
    
  /**
   * Destructor.
   */
  virtual ~EigenSolver ();
  
  /**
   * Builds an \p EigenSolver using the linear solver package specified by
   * \p solver_package
   */
  static AutoPtr<EigenSolver<T> > build(const SolverPackage solver_package =
					SLEPC_SOLVERS);
  
  /**
   * @returns true if the data structures are
   * initialized, false otherwise.
   */
  bool initialized () const { return _is_initialized; }
  
  
  /**
   * Release all memory and clear data structures.
   */
  virtual void clear () {}

  /**
   * Initialize data structures if not done so already.
   */
  virtual void init () = 0;

  /**
   * Returns the type of eigensolver to use.
   */
  EigenSolverType eigen_solver_type () const { return _eigen_solver_type; }

  /**
   * Returns the type of the eigen problem.
   */
  EigenProblemType eigen_problem_type () const { return _eigen_problem_type;}

  /**
   * Returns the position of the spectrum to compute.
   */
  PositionOfSpectrum position_of_spectrum () const
    { return _position_of_spectrum;}

  /**
   * Sets the type of eigensolver to use.
   */
  void set_eigensolver_type (const EigenSolverType est)
    { _eigen_solver_type = est; }

  /**
   * Sets the type of the eigenproblem.
   */
  void set_eigenproblem_type ( EigenProblemType ept) 
    {_eigen_problem_type = ept;}

  /**
   * Sets the position of the spectrum.
   */
  void set_position_of_spectrum (PositionOfSpectrum pos)
    {_position_of_spectrum= pos;}

  /**
   * Solves the standard eigen problem when matrix_A is a
   * \p SparseMatrix, and returns the number of converged 
   * eigenpairs and the number of iterations.
   */
  virtual std::pair<unsigned int, unsigned int> solve_standard (SparseMatrix<T> &matrix_A,  
								int nev,
								int ncv,
								const double tol,
								const unsigned int m_its) = 0;

  /**
   * Solves the standard eigen problem when matrix_A is a
   * \p ShellMatrix, and returns the number of converged 
   * eigenpairs and the number of iterations.
   */
  virtual std::pair<unsigned int, unsigned int> solve_standard (ShellMatrix<T> &matrix_A,  
								int nev,
								int ncv,
								const double tol,
								const unsigned int m_its) = 0;

  
  /**
   * Solves the generalized eigen problem when both matrix_A
   * and matrix_B are of type \p SparseMatrix and returns the
   * number of converged eigenpairs and the number
   * of iterations.
   */
  virtual std::pair<unsigned int, unsigned int> solve_generalized (SparseMatrix<T> &matrix_A, 
								   SparseMatrix<T> &matrix_B,  
								   int nev,
								   int ncv,
								   const double tol,
								   const unsigned int m_its) = 0;

  /**
   * Solves the generalized eigen problem when matrix_A is
   * a ShellMatrix and matrix_B is a SparseMatrix.
   */
   virtual std::pair<unsigned int, unsigned int> solve_generalized (ShellMatrix<T> &matrix_A, 
 								   SparseMatrix<T> &matrix_B,  
 								   int nev,
 								   int ncv,
 								   const double tol,
 								   const unsigned int m_its) = 0;

  /**
   * Solves the generalized eigen problem when matrix_A is
   * a SparseMatrix and matrix_B is a ShellMatrix.
   */
   virtual std::pair<unsigned int, unsigned int> solve_generalized (SparseMatrix<T> &matrix_A, 
 								   ShellMatrix<T> &matrix_B,  
 								   int nev,
 								   int ncv,
 								   const double tol,
 								   const unsigned int m_its) = 0;

  /**
   * Solves the generalized eigen problem when both matrix_A
   * and matrix_B are of type ShellMatrix.
   */
   virtual std::pair<unsigned int, unsigned int> solve_generalized (ShellMatrix<T> &matrix_A, 
 								   ShellMatrix<T> &matrix_B,  
 								   int nev,
 								   int ncv,
 								   const double tol,
 								   const unsigned int m_its) = 0;


  /**
   * Returns the \p ith eigenvalue (real and imaginary part),
   * and copies the \ ith eigen vector to the solution vector.
   */
  virtual std::pair<Real, Real> get_eigenpair (unsigned int i,
					       NumericVector<T> &solution) = 0;

  /**
   * Attach a deflation space defined by a single vector.
   */
  virtual void attach_deflation_space(NumericVector<T> &deflation_vector) = 0;

protected:

  /**
   * Enum stating which type of eigensolver to use.
   */
  EigenSolverType _eigen_solver_type;

  /**
   * Enum stating which type of eigen problem we deal with.
   */
  EigenProblemType _eigen_problem_type;

  /**
   * Enum stating where to evaluate the spectrum.
   */
  PositionOfSpectrum _position_of_spectrum;	

  /**
   * Flag indicating if the data structures have been initialized.
   */
  bool _is_initialized;

};




/*----------------------- inline functions ----------------------------------*/
template <typename T>
inline
EigenSolver<T>::EigenSolver () :
  
  _eigen_solver_type    (ARNOLDI),
  _eigen_problem_type   (NHEP),
  _position_of_spectrum (LARGEST_MAGNITUDE),
  _is_initialized       (false)
{
}



template <typename T>
inline
EigenSolver<T>::~EigenSolver ()
{
  this->clear ();
}

} // namespace libMesh

#endif // LIBMESH_HAVE_SLEPC

#endif // #ifdef __eigen_solver_h__