This file is indexed.

/usr/include/libmesh/dof_map.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
// $Id: dof_map.h 4360 2011-04-19 07:23:18Z roystgnr $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __dof_map_h__
#define __dof_map_h__

// C++ Includes   -----------------------------------
#include <vector>
#include <map>
#include <string>
#include <algorithm>
#include <iterator>

// Local Includes -----------------------------------
#include "libmesh_common.h"
#include "enum_order.h"
#include "reference_counted_object.h"
#include "libmesh.h" // libMesh::invalid_uint
#include "variable.h"
#include "threads.h"
#include "threads_allocators.h"
#include "elem_range.h"

namespace libMesh
{

// Forward Declarations
class CouplingMatrix;
class DofMap;
class DofObject;
class Elem;
class FEType;
class MeshBase;
class Mesh;
class PeriodicBoundary;
class PeriodicBoundaries;
namespace SparsityPattern { class Build; }
class System;
template <typename T> class DenseVectorBase;
template <typename T> class DenseVector;
template <typename T> class DenseMatrix;
template <typename T> class SparseMatrix;
template <typename T> class NumericVector;



// ------------------------------------------------------------
// AMR constraint matrix types

#if defined(LIBMESH_ENABLE_AMR) || defined(LIBMESH_ENABLE_PERIODIC)
/**
 * A row of the Dof constraint matrix.
 */
typedef std::map<unsigned int, Real, 
                 std::less<unsigned int>, 
                 Threads::scalable_allocator<std::pair<const unsigned int, Real> > > DofConstraintRow;

/** 
 * The constraint matrix storage format. 
 * We're using a class instead of a typedef to allow forward
 * declarations and future flexibility.  Don't delete this from
 * a pointer-to-std::map; the destructor isn't virtual!
 */
class DofConstraints : public std::map<unsigned int, 
                                       DofConstraintRow, 
                                       std::less<unsigned int>, 
                                       Threads::scalable_allocator<std::pair<const unsigned int, DofConstraintRow> > >
{
};
#endif // LIBMESH_ENABLE_AMR || LIBMESH_ENABLE_PERIODIC

  
  
// ------------------------------------------------------------
// DofMap class definition

/**
 * This class handles the numbering of degrees of freedom on a mesh.
 * For systems of equations the class supports a fixed number of variables.
 * The degrees of freedom are numbered such that sequential, contiguous blocks
 * correspond to distinct subdomains.  This is so that the resulting data
 * structures will work well with parallel linear algebra packages.
 *
 * @author Benjamin S. Kirk, 2002-2007
 */
class DofMap : public ReferenceCountedObject<DofMap>
{
public:

  /**
   * Constructor.  Requires the number of the system for which we
   * will be numbering degrees of freedom.
   */
  DofMap(const unsigned int sys_number);

  /**
   * Destructor.
   */
  ~DofMap();

  /**
   * Additional matrices may be handled with this \p DofMap.
   * They are initialized to the same sparsity structure as
   * the major matrix.
   */
  void attach_matrix (SparseMatrix<Number>& matrix);

  /**
   * Distrubute dofs on the current mesh.  Also builds the send list for
   * processor \p proc_id, which defaults to 0 for ease of use in serial
   * applications. 
   */
  void distribute_dofs (MeshBase&);

  /**
   * Computes the sparsity pattern for the matrix corresponding
   * to \p proc_id.  Produces data that can be fed to Petsc for
   * preallocation of sparse matrices.
   */
  void compute_sparsity (const MeshBase&);

  /**
   * Attach a function pointer to use as a callback to populate the
   * send_list with extra entries.
   */
  void attach_extra_send_list_function(void (*func)(std::vector<unsigned int> &, void *), void * context = NULL)
    { _extra_send_list_function = func; _extra_send_list_context = context; }

  /**
   * Takes the \p _send_list vector (which may have duplicate entries)
   * and sorts it.  The duplicate entries are then removed, resulting in
   * a sorted \p _send_list with unique entries.
   */
  void prepare_send_list ();
  
  /**
   * Returns a constant reference to the \p _send_list for this processor.  The
   * \p _send_list contains the global indices of all the variables in the
   * global solution vector that influence the current processor.  This
   * information can be used for gathers at each solution step to retrieve
   * solution values needed for computation.
   */
  const std::vector<unsigned int>& get_send_list() const { return _send_list; }
  
  /**
   * Returns a constant reference to the \p _n_nz list for this processor.
   * The vector contains the bandwidth of the on-processor coupling for each
   * row of the global matrix that the current processor owns.  This
   * information can be used to preallocate space for a parallel sparse matrix.
   */
  const std::vector<unsigned int>& get_n_nz() const { return _n_nz; }
  
  /**
   * Returns a constant reference to the \p _n_oz list for this processor.
   * The vector contains the bandwidth of the off-processor coupling for each
   * row of the global matrix that the current processor owns.  This
   * information can be used to preallocate space for a parallel sparse matrix.
   */
  const std::vector<unsigned int>& get_n_oz() const { return _n_oz; }

  /**
   * Add an unknown of order \p order and finite element type
   * \p type to the system of equations.
   */
  void add_variable (const Variable &var);
  
  /**
   * @returns the variable description object for variable \p c.
   */
  const Variable& variable (const unsigned int c) const;

  /**
   * @returns the approximation order for variable \p c.
   */
  Order variable_order (const unsigned int c) const;
  
  /**
   * @returns the finite element type for variable \p c.
   */
  const FEType& variable_type (const unsigned int c) const;
  
  /**
   * Returns the number of variables in the global solution vector. Defaults
   * to 1, should be 1 for a scalar equation, 3 for 2D incompressible Navier
   * Stokes (u,v,p), etc...
   */  
  unsigned int n_variables() const
  { return _variables.size(); }
  
  /**
   * @returns the total number of degrees of freedom in the problem.
   */

  unsigned int n_dofs() const { return _n_dfs; }
  /**
   * @returns the number of SCALAR dofs.
   */
  unsigned int n_SCALAR_dofs() const { return _n_SCALAR_dofs; }

  /**
   * @returns the number of degrees of freedom on this processor.
   */
  unsigned int n_local_dofs () const
  { return this->n_dofs_on_processor (libMesh::processor_id()); }

  /**
   * Returns the number of degrees of freedom on subdomain \p proc.
   */
  unsigned int n_dofs_on_processor(const unsigned int proc) const
  { libmesh_assert(proc < _first_df.size()); return (_end_df[proc] - _first_df[proc]); }

  /**
   * Returns the first dof index that is local to subdomain \p proc.
   */
  unsigned int first_dof(const unsigned int proc = libMesh::processor_id()) const
  { libmesh_assert(proc < _first_df.size()); return _first_df[proc]; }

#ifdef LIBMESH_ENABLE_AMR
  /**
   * Returns the first old dof index that is local to subdomain \p proc.
   */
  unsigned int first_old_dof(const unsigned int proc = libMesh::processor_id()) const
  { libmesh_assert(proc < _first_old_df.size()); return _first_old_df[proc]; }
#endif //LIBMESH_ENABLE_AMR
  
  /**
   * Returns the last dof index that is local to subdomain \p proc.
   * This function is now deprecated, because it returns nonsense in the rare
   * case where \p proc has no local dof indices.  Use end_dof() instead.
   */
  unsigned int last_dof(const unsigned int proc = libMesh::processor_id()) const
  { libmesh_deprecated(); libmesh_assert(proc < _end_df.size()); return (_end_df[proc] - 1); }  

  /**
   * Returns the first dof index that is after all indices local to subdomain \p proc.
   * Analogous to the end() member function of STL containers.
   */
  unsigned int end_dof(const unsigned int proc = libMesh::processor_id()) const
  { libmesh_assert(proc < _end_df.size()); return _end_df[proc]; }

#ifdef LIBMESH_ENABLE_AMR
  /**
   * Returns the first old dof index that is after all indices local to subdomain \p proc.
   * Analogous to the end() member function of STL containers.
   */
  unsigned int end_old_dof(const unsigned int proc = libMesh::processor_id()) const
  { libmesh_assert(proc < _end_old_df.size()); return _end_old_df[proc]; }
#endif //LIBMESH_ENABLE_AMR
  
  /**
   * Returns the first local degree of freedom index for variable \p var.
   */
  unsigned int variable_first_local_dof (const unsigned int var) const
  { 
    libmesh_assert ((var+1) < _var_first_local_df.size());
    libmesh_assert (_var_first_local_df[var] != DofObject::invalid_id);
    return _var_first_local_df[var];
  }

  /**
   * Returns (one past) the last local degree of freedom index for variable \p var.
   * Analogous to the end() member function of STL containers.
   */
  unsigned int variable_last_local_dof (const unsigned int var) const
  { 
    libmesh_assert ((var+1) < _var_first_local_df.size());
    libmesh_assert (_var_first_local_df[var+1] != DofObject::invalid_id);
    return _var_first_local_df[var+1];
  }

  /**
   * Fills the vector \p di with the global degree of freedom indices
   * for the element. If no variable number is specified then all
   * variables are returned.
   */
  void dof_indices (const Elem* const elem,
		    std::vector<unsigned int>& di,
		    const unsigned int vn = libMesh::invalid_uint) const;

  /**
   * Fills the vector \p di with the global degree of freedom indices
   * corresponding to the SCALAR variable vn. If old_dofs=true,
   * the old SCALAR dof indices are returned. Note that we do not
   * need to pass in an element since SCALARs are global variables.
   */
  void SCALAR_dof_indices (std::vector<unsigned int>& di,
		           const unsigned int vn,
		           const bool old_dofs=false) const;

  /**
   * Returns \p true iff all degree of freedom indices in
   * \p dof_indices are either local indices or in the \p send_list.
   * Note that this is an O(logN) operation, not O(1); we don't cache
   * enough information for O(1) right now.
   */
  bool all_semilocal_indices (const std::vector<unsigned int>& dof_indices) const;

  /**
   * Tells other library functions whether or not this problem
   * includes coupling between dofs in neighboring cells, as can
   * currently be specified on the command line or inferred from
   * the use of all discontinuous variables.
   */
  bool use_coupled_neighbor_dofs(const MeshBase& mesh) const;

  /**
   * Builds the local element vector \p Ue from the global vector \p Ug,
   * accounting for any constrained degrees of freedom.  For an element
   * without constrained degrees of freedom this is the trivial mapping
   * \f$ Ue[i] = Ug[dof_indices[i]] \f$
   *
   * Note that the user must ensure that the element vector \p Ue is
   * properly sized when calling this method.  This is because there
   * is no \p resize() method in the \p DenseVectorBase<> class. 
   */
  void extract_local_vector (const NumericVector<Number>& Ug,
			     const std::vector<unsigned int>& dof_indices,
			     DenseVectorBase<Number>& Ue) const;


#if defined(LIBMESH_ENABLE_AMR) || defined(LIBMESH_ENABLE_PERIODIC)

  //--------------------------------------------------------------------
  // Constraint-specific methods
  /**
   * @returns the total number of constrained degrees of freedom
   * in the problem.
   */
  unsigned int n_constrained_dofs() const { return _dof_constraints.size(); }

  /**
   * Rebuilds the raw degree of freedom constraints.
   */ 
  void create_dof_constraints (const MeshBase& mesh);

  /**
   * Gathers any relevant constraint equations from other processors
   */
  void allgather_recursive_constraints ();

  /**
   * Postprocesses any constrained degrees of freedom in elem_dofs
   * to be constrained only in terms of unconstrained dofs, then adds
   * unconstrained dofs to the send_list and prepares that for use.
   * This should be run after both system (create_dof_constraints) and
   * user constraints have all been added.
   */
  void process_constraints ();

  /**
   * Adds a copy of the user-defined row to the constraint matrix.
   * By default, produces an error if the DOF was already constrained.
   */
  void add_constraint_row (const unsigned int dof_number,
			   const DofConstraintRow& constraint_row,
			   const bool forbid_constraint_overwrite = true);

  /**
   * Returns an iterator pointing to the first constraint row
   */
  DofConstraints::const_iterator constraint_rows_begin() const
    { return _dof_constraints.begin(); }
  
  /**
   * Returns an iterator pointing just past the last constraint row
   */
  DofConstraints::const_iterator constraint_rows_end() const
    { return _dof_constraints.end(); }
  
  /**
   * @returns true if the degree of freedom dof is constrained,
   * false otherwise.
   */
  bool is_constrained_dof (const unsigned int dof) const;
  
  /**
   * Prints the whole \p _dof_constraints data structure.
   */
  void print_dof_constraints(std::ostream& os=libMesh::out) const;

  /**
   * Tests the constrained degrees of freedom on the numeric vector \p v, which
   * represents a solution defined on the mesh, returning a pair whose first
   * entry is the maximum absolute error on a constrained DoF and whose second
   * entry is the maximum relative error.  Useful for debugging purposes.
   *
   * If \p v == NULL, the system solution vector is tested.
   */
  std::pair<Real, Real> max_constraint_error(const System &system,
					     NumericVector<Number> *v = NULL) const;

#endif // LIBMESH_ENABLE_AMR || LIBMESH_ENABLE_PERIODIC

  //--------------------------------------------------------------------
  // Constraint-specific methods
  // Some of these methods are enabled (but inlined away to nothing)
  // when constraints are disabled at configure-time.  This is to
  // increase API compatibility of user code with different library
  // builds.

  /**
   * Constrains the element matrix.  This method requires the
   * element matrix to be square, in which case the elem_dofs
   * correspond to the global DOF indices of both the rows and
   * columns of the element matrix.  For this case the rows
   * and columns of the matrix necessarily correspond to variables
   * of the same approximation order.
   *
   * If \p asymmetric_constraint_rows is set to true (as it is by
   * default), constraint row equations will be reinforced in a way
   * which breaks matrix symmetry but makes inexact linear solver
   * solutions more likely to satisfy hanging node constraints.
   */
  void constrain_element_matrix (DenseMatrix<Number>& matrix,
				 std::vector<unsigned int>& elem_dofs,
				 bool asymmetric_constraint_rows = true) const;
  
  /**
   * Constrains the element matrix.  This method allows the
   * element matrix to be non-square, in which case the row_dofs
   * and col_dofs may be of different size and correspond to
   * variables approximated in different spaces.
   */
  void constrain_element_matrix (DenseMatrix<Number>& matrix,
				 std::vector<unsigned int>& row_dofs,
				 std::vector<unsigned int>& col_dofs,
				 bool asymmetric_constraint_rows = true) const;
  
  /**
   * Constrains the element vector.
   */
  void constrain_element_vector (DenseVector<Number>&       rhs,
				 std::vector<unsigned int>& dofs,
				 bool asymmetric_constraint_rows = true) const;
  
  /**
   * Constrains the element matrix and vector.  This method requires
   * the element matrix to be square, in which case the elem_dofs
   * correspond to the global DOF indices of both the rows and
   * columns of the element matrix.  For this case the rows
   * and columns of the matrix necessarily correspond to variables
   * of the same approximation order.
   */
  void constrain_element_matrix_and_vector (DenseMatrix<Number>& matrix,
					    DenseVector<Number>& rhs,
					    std::vector<unsigned int>& elem_dofs,
					    bool asymmetric_constraint_rows = true) const;

  /**
   * Constrains a dyadic element matrix B = v w'.  This method
   * requires the element matrix to be square, in which case the
   * elem_dofs correspond to the global DOF indices of both the rows
   * and columns of the element matrix.  For this case the rows and
   * columns of the matrix necessarily correspond to variables of the
   * same approximation order.
   */
  void constrain_element_dyad_matrix (DenseVector<Number>& v,
				      DenseVector<Number>& w,
				      std::vector<unsigned int>& row_dofs,
				      bool asymmetric_constraint_rows = true) const;

  /**
   * Does not actually constrain anything, but modifies \p dofs in the
   * same way as any of the constrain functions would do, i.e. adds
   * those dofs in terms of which any of the existing dofs is
   * constrained.
   */
  void constrain_nothing (std::vector<unsigned int>& dofs) const;
  
  /**
   * Constrains the numeric vector \p v, which represents a solution defined on
   * the mesh.  This may need to be used after a linear solve, if your linear
   * solver's solutions do not satisfy your DoF constraints to a tight enough
   * tolerance.
   *
   * If \p v == NULL, the system solution vector is constrained
   */
  void enforce_constraints_exactly (const System &system,
				    NumericVector<Number> *v = NULL) const;
  

#ifdef LIBMESH_ENABLE_PERIODIC

  //--------------------------------------------------------------------
  // PeriodicBoundary-specific methods

  /**
   * Adds a copy of the specified periodic boundary to the system.
   */
  void add_periodic_boundary (const PeriodicBoundary& periodic_boundary);

  /**
   * Add a periodic boundary pair
   *
   * @param boundary - primary boundary
   * @param inverse_boundary - inverse boundary
   */
  void add_periodic_boundary (PeriodicBoundary * boundary, PeriodicBoundary * inverse_boundary);

  /**
   * @returns true if the boundary given by \p boundaryid is periodic,
   * false otherwise
   */
  bool is_periodic_boundary (const unsigned int boundaryid) const;

  PeriodicBoundaries * get_periodic_boundaries()
    {
      return _periodic_boundaries;
    }

#endif // LIBMESH_ENABLE_PERIODIC


#ifdef LIBMESH_ENABLE_AMR

  //--------------------------------------------------------------------
  // AMR-specific methods

  /**
   * After a mesh is refined and repartitioned it is possible that the
   * \p _send_list will need to be augmented.  This is the case when an
   * element is refined and its children end up on different processors
   * than the parent.  These children will need values from the parent
   * when projecting the solution onto the refined mesh, hence the parent's
   * DOF indices need to be included in the \p _send_list.
   */
  // void augment_send_list_for_projection(const MeshBase &);

  /**
   * Fills the vector di with the global degree of freedom indices
   * for the element using the \p DofMap::old_dof_object.
   * If no variable number is specified then all
   * variables are returned.
   */
  void old_dof_indices (const Elem* const elem,
			std::vector<unsigned int>& di,
			const unsigned int vn = libMesh::invalid_uint) const;
  /**
   * @returns the total number of degrees of freedom on old_dof_objects
   * 
   */
  unsigned int n_old_dofs() const { return _n_old_dfs; }

  /**
   * Constrains degrees of freedom on side \p s of element \p elem which
   * correspond to variable number \p var and to p refinement levels 
   * above \p p.
   */
  void constrain_p_dofs (unsigned int var,
			 const Elem *elem,
			 unsigned int s,
			 unsigned int p);
  
#endif // LIBMESH_ENABLE_AMR

  /**
   * Reinitialize the underlying data strucures conformal to the current mesh.
   */
  void reinit (MeshBase& mesh);
  
  /**
   * Free all memory associated with the object, but keep the mesh pointer.
   */
  void clear ();
  
  /**
   * Prints summary info about the sparsity bandwidth and constraints.
   */
  void print_info(std::ostream& os=libMesh::out) const;

  /**
   * Gets summary info about the sparsity bandwidth and constraints.
   */
  std::string get_info() const;

  /**
   * Degree of freedom coupling.  If left empty each DOF
   * couples to all others.  Can be used to reduce memory
   * requirements for sparse matrices.  DOF 0 might only
   * couple to itself, in which case \p dof_coupling(0,0)
   * should be 1 and \p dof_coupling(0,j) = 0 for j not equal
   * to 0.
   *
   * This variable is named as though it were class private,
   * but it is in the public interface.  Also there are no
   * public methods for accessing it...  This typically means
   * you should only use it if you know what you are doing.
   */
  CouplingMatrix* _dof_coupling;

  
private:
  
  /**
   * @returns the number of the system we are responsible for.
   */
  unsigned int sys_number() const;

  /**
   * Invalidates all active DofObject dofs for this system
   */
  void invalidate_dofs(MeshBase& mesh) const;

  /**
   * An adapter function that returns Node pointers by index
   */
  DofObject* node_ptr(MeshBase& mesh, unsigned int i) const;

  /**
   * An adapter function that returns Elem pointers by index
   */
  DofObject* elem_ptr(MeshBase& mesh, unsigned int i) const;

  /**
   * A member function type like node_ptr or elem_ptr
   */
  typedef DofObject* (DofMap::*dofobject_accessor)
    (MeshBase& mesh, unsigned int i) const;
  
  /**
   * Helper function for distributing dofs in parallel
   */
  template<typename iterator_type>
  void set_nonlocal_dof_objects(iterator_type objects_begin,
			        iterator_type objects_end,
			        MeshBase &mesh,
			        dofobject_accessor objects);

  /**
   * Distributes the global degrees of freedom, for dofs on
   * this processor.  In this format the local
   * degrees of freedom are in a contiguous block for each
   * variable in the system.
   * Starts at index next_free_dof, and increments it to
   * the post-final index.
   */  
  void distribute_local_dofs_var_major (unsigned int& next_free_dof,
				        MeshBase& mesh);
  
  /**
   * Distributes the global degrees of freedom, for dofs on
   * this processor.  In this format all the 
   * degrees of freedom at a node/element are in contiguous 
   * blocks.  Note in particular that the degrees of freedom
   * for a given variable are not in contiguous blocks, as 
   * in the case of \p distribute_local_dofs_var_major.
   * Starts at index next_free_dof, and increments it to
   * the post-final index.
   * If build_send_list is true, builds the send list.  If
   * false, clears and reserves the send list
   */  
  void distribute_local_dofs_node_major (unsigned int& next_free_dof,
				         MeshBase& mesh);
    
  /**
   * Adds entries to the \p _send_list vector corresponding to DoFs
   * on elements neighboring the current processor.
   */
  void add_neighbors_to_send_list(MeshBase& mesh);

#if defined(LIBMESH_ENABLE_AMR) || defined(LIBMESH_ENABLE_PERIODIC)

  /**
   * Build the constraint matrix C associated with the element
   * degree of freedom indices elem_dofs. The optional parameter
   * \p called_recursively should be left at the default value
   * \p false.  This is used to handle the special case of
   * an element's degrees of freedom being constrained in terms
   * of other, local degrees of freedom.  The usual case is
   * for an elements DOFs to be constrained by some other,
   * external DOFs.   
   */
  void build_constraint_matrix (DenseMatrix<Number>& C,
				std::vector<unsigned int>& elem_dofs,
				const bool called_recursively=false) const;

  /**
   * Finds all the DOFS associated with the element DOFs elem_dofs.
   * This will account for off-element couplings via hanging nodes.
   */
  void find_connected_dofs (std::vector<unsigned int> &elem_dofs) const;
  
  /**
   * Adds entries to the \p _send_list vector corresponding to DoFs
   * which are dependencies for constraint equations on the current
   * processor.
   */
  void add_constraints_to_send_list();

#endif


  /**
   * The finite element type for each variable.
   */
  std::vector<Variable> _variables;

  /**
   * The number of the system we manage DOFs for.
   */
  const unsigned int _sys_number;
  
  /**
   * Additional matrices handled by this object.  These pointers do @e 
   * not handle the memory, instead, \p System, who
   * told \p DofMap about them, owns them.
   */
  std::vector<SparseMatrix<Number>* > _matrices;
  
  /**
   * First DOF index on processor \p p.
   */
  std::vector<unsigned int> _first_df;

  /**
   * Last DOF index (plus 1) on processor \p p.
   */
  std::vector<unsigned int> _end_df;

  /**
   * The first local DOF index for each variable in the \p System.
   */
  std::vector<unsigned int> _var_first_local_df;
  
  /**
   * A list containing all the global DOF indicies that affect the
   * solution on my subdomain.
   */
  std::vector<unsigned int> _send_list;

  /**
   * A function pointer to a function to call to add extra entries to the send list
   */
  void (*_extra_send_list_function)(std::vector<unsigned int> &, void *);

  /**
   * A pointer associcated with the extra send list that can optionally be passed in
   */
  void * _extra_send_list_context;

  /**
   * The number of on-processor nonzeros in my portion of the
   * global matrix.
   */
  std::vector<unsigned int> _n_nz;
  
  /**
   * The number of off-processor nonzeros in my portion of the
   * global matrix.
   */
  std::vector<unsigned int> _n_oz;

  /**
   * Total number of degrees of freedom.
   */
  unsigned int _n_dfs;

  /**
   * The total number of SCALAR dofs associated to
   * all SCALAR variables.
   */
  unsigned int _n_SCALAR_dofs;

#ifdef LIBMESH_ENABLE_AMR

  /**
   * Total number of degrees of freedom on old dof objects
   */
  unsigned int _n_old_dfs;

  /**
   * First old DOF index on processor \p p.
   */
  std::vector<unsigned int> _first_old_df;

  /**
   * Last old DOF index (plus 1) on processor \p p.
   */
  std::vector<unsigned int> _end_old_df;

#endif

#if defined(LIBMESH_ENABLE_AMR) || defined(LIBMESH_ENABLE_PERIODIC)

  /**
   * Data structure containing DOF constraints.  The ith
   * entry is the constraint matrix row for DOF i.
   */
  DofConstraints _dof_constraints;

#endif


#ifdef LIBMESH_ENABLE_PERIODIC
  /**
   * Data structure containing periodic boundaries.  The ith
   * entry is the constraint matrix row for boundaryid i.
   */
  PeriodicBoundaries *_periodic_boundaries;
#endif

  friend class SparsityPattern::Build;
};


// ------------------------------------------------------------
// Dof Map inline member functions

#if defined(LIBMESH_ENABLE_AMR) || defined(LIBMESH_ENABLE_PERIODIC)

inline
bool DofMap::is_constrained_dof (const unsigned int dof) const
{
  if (_dof_constraints.count(dof) != 0)
    return true;

  return false;
}

#endif


inline
unsigned int DofMap::sys_number() const
{
  return _sys_number;
}


#if !defined(LIBMESH_ENABLE_AMR) && !defined(LIBMESH_ENABLE_PERIODIC)
  //--------------------------------------------------------------------
  // Constraint-specific methods get inlined into nothing if
  // constraints are disabled, so there's no reason for users not to 
  // use them.

inline void DofMap::constrain_element_matrix (DenseMatrix<Number>&,
				              std::vector<unsigned int>&,
				              bool) const {}
  
inline void DofMap::constrain_element_matrix (DenseMatrix<Number>&,
				              std::vector<unsigned int>&,
				              std::vector<unsigned int>&,
				              bool) const {}
  
inline void DofMap::constrain_element_vector (DenseVector<Number>&,
				              std::vector<unsigned int>&,
				              bool) const {}
  
inline void DofMap::constrain_element_matrix_and_vector (DenseMatrix<Number>&,
					                 DenseVector<Number>&,
					                 std::vector<unsigned int>&,
					                 bool) const {}

inline void DofMap::constrain_element_dyad_matrix (DenseVector<Number>&,
				                   DenseVector<Number>&,
				                   std::vector<unsigned int>&,
				                   bool) const {}

inline void DofMap::enforce_constraints_exactly (const System &,
				                 NumericVector<Number> *) const {}

#endif // !defined(LIBMESH_ENABLE_AMR) && !defined(LIBMESH_ENABLE_PERIODIC)

} // namespace libMesh

#endif // __dof_map_h__