This file is indexed.

/usr/include/libmesh/distributed_vector.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
// $Id: distributed_vector.h 4286 2011-03-24 03:55:50Z knezed01 $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#include "libmesh_common.h"



#ifndef __distributed_vector_h__
#define __distributed_vector_h__




// C++ includes
#include <vector>
#include <algorithm>
#include <limits>

// Local includes
#include "numeric_vector.h"
#include "parallel.h"

namespace libMesh
{



/**
 * Distributed vector. Provides an interface for simple
 * parallel, distributed vectors. Offers some collective
 * communication capabilities.  Note that the class will
 * sill function without MPI, but only on one processor.
 * This lets us keep the parallel details behind the scenes.
 *
 * @author Benjamin S. Kirk, 2003
 */

template <typename T>
class DistributedVector : public NumericVector<T>
{
public:

  /**
   *  Dummy-Constructor. Dimension=0
   */
  explicit
  DistributedVector (const ParallelType = AUTOMATIC);
  
  /**
   * Constructor. Set dimension to \p n and initialize all elements with zero.
   */
  explicit
  DistributedVector (const unsigned int n,
                     const ParallelType type = AUTOMATIC);
    
  /**
   * Constructor. Set local dimension to \p n_local, the global dimension
   * to \p n, and initialize all elements with zero.
   */
  DistributedVector (const unsigned int n,
		     const unsigned int n_local,
                     const ParallelType type = AUTOMATIC);
    
  /**
   * Constructor. Set local dimension to \p n_local, the global
   * dimension to \p n, but additionally reserve memory for the
   * indices specified by the \p ghost argument.
   */
  DistributedVector (const unsigned int N,
		     const unsigned int n_local,
		     const std::vector<unsigned int>& ghost,
                     const ParallelType type = AUTOMATIC);
    
  /**
   * Destructor, deallocates memory. Made virtual to allow
   * for derived classes to behave properly.
   */
  ~DistributedVector ();

  /**
   * Call the assemble functions
   */
  void close (); 

  /**
   * @returns the \p DistributedVector to a pristine state.
   */
  void clear ();
  
  /**
   * Set all entries to zero. Equivalent to \p v = 0, but more obvious and
   * faster. 
   */
  void zero ();    

  /**
   * Creates a vector which has the same type, size and partitioning
   * as this vector, but whose data is all zero.  Returns it in an \p
   * AutoPtr.
   */
  virtual AutoPtr<NumericVector<T> > zero_clone () const;

  /**
   * Creates a copy of this vector and returns it in an \p AutoPtr.
   */
  AutoPtr<NumericVector<T> > clone () const;

  /**
   * Change the dimension of the vector to \p N. The reserved memory for
   * this vector remains unchanged if possible, to make things faster, but
   * this may waste some memory, so take this in the back of your head.
   * However, if \p N==0 all memory is freed, i.e. if you want to resize
   * the vector and release the memory not needed, you have to first call
   * \p init(0) and then \p init(N). This cited behaviour is analogous
   * to that of the STL containers.
   *
   * On \p fast==false, the vector is filled by
   * zeros.
   */    
  void init (const unsigned int N,
	     const unsigned int n_local,
	     const bool         fast=false,
	     const ParallelType type=AUTOMATIC);
    
  /**
   * call init with n_local = N,
   */
  void init (const unsigned int N,
	     const bool         fast=false,
	     const ParallelType type=AUTOMATIC);
    
  /**
   * Create a vector that holds tha local indices plus those specified
   * in the \p ghost argument.
   */
  virtual void init (const unsigned int /*N*/,
		     const unsigned int /*n_local*/,
		     const std::vector<unsigned int>& /*ghost*/,
		     const bool /*fast*/ = false,
		     const ParallelType = AUTOMATIC);
    
  /**
   * Creates a vector that has the same dimension and storage type as
   * \p other, including ghost dofs.
   */
  virtual void init (const NumericVector<T>& other,
                     const bool fast = false);

  /**
   * \f$U(0-N) = s\f$: fill all components.
   */
  NumericVector<T> & operator= (const T s);
    
  /**
   *  \f$U = V\f$: copy all components.
   */
  NumericVector<T> & operator= (const NumericVector<T> &V);

  /**
   *  \f$U = V\f$: copy all components.
   */
  DistributedVector<T> & operator= (const DistributedVector<T> &V);

  /**
   *  \f$U = V\f$: copy all components.
   */
  NumericVector<T> & operator= (const std::vector<T> &v);
  
  /**
   * @returns the minimum element in the vector.
   * In case of complex numbers, this returns the minimum
   * Real part.
   */
  Real min () const;
  
  /**
   * @returns the maximum element in the vector.
   * In case of complex numbers, this returns the maximum
   * Real part.
   */
  Real max () const;
  
  /**
   * @returns the sum of all values in the vector 
   */
  T sum() const;

  /**
   * @returns the \f$l_1\f$-norm of the vector, i.e.
   * the sum of the absolute values.
   */
  Real l1_norm () const;

  /**
   * @returns the \f$l_2\f$-norm of the vector, i.e.
   * the square root of the sum of the
   * squares of the elements.
   */
  Real l2_norm () const;

  /**
   * @returns the maximum absolute value of the
   * elements of this vector, which is the
   * \f$l_\infty\f$-norm of a vector.
   */
  Real linfty_norm () const;

  /**
   * @returns dimension of the vector. This
   * function was formerly called \p n(), but
   * was renamed to get the \p DistributedVector class
   * closer to the C++ standard library's
   * \p std::vector container.
   */
  unsigned int size () const;

  /**
   * @returns the local size of the vector
   * (index_stop-index_start)
   */
  unsigned int local_size() const;

  /**
   * @returns the index of the first vector element
   * actually stored on this processor
   */
  unsigned int first_local_index() const;

  /**
   * @returns the index of the last vector element
   * actually stored on this processor
   */
  unsigned int last_local_index() const;
    
  /**
   * Access components, returns \p U(i).
   */
  T operator() (const unsigned int i) const;
    
  /**
   * Addition operator.
   * Fast equivalent to \p U.add(1, V).
   */
  NumericVector<T> & operator += (const NumericVector<T> &V);

  /**
   * Subtraction operator.
   * Fast equivalent to \p U.add(-1, V).
   */
  NumericVector<T> & operator -= (const NumericVector<T> &V);
    
  /**
   * v(i) = value
   */
  void set (const unsigned int i, const T value);
    
  /**
   * v(i) += value
   */
  void add (const unsigned int i, const T value);
    
  /**
   * \f$U(0-LIBMESH_DIM)+=s\f$.
   * Addition of \p s to all components. Note
   * that \p s is a scalar and not a vector.
   */
  void add (const T s);
    
  /**
   * \f$U+=V\f$.
   * Simple vector addition, equal to the
   * \p operator +=.
   */
  void add (const NumericVector<T>& V);

  /**
   * \f$U+=a*V\f$.
   * Simple vector addition, equal to the
   * \p operator +=.
   */
  void add (const T a, const NumericVector<T>& v);
  
  /**
   * \f$U+=v\f$ where v is a \p std::vector<T> 
   * and you
   * want to specify WHERE to add it
   */
  void add_vector (const std::vector<T>& v,
		   const std::vector<unsigned int>& dof_indices);

  /**
   * \f$U+=V\f$ where U and V are type 
   * \p NumericVector<T> and you
   * want to specify WHERE to add
   * the \p NumericVector<T> V 
   */
  void add_vector (const NumericVector<T>& V,
		   const std::vector<unsigned int>& dof_indices);
  
  /**
   * \f$U+=A*V\f$.
   * Add the product of a Sparse matrix \p A
   * and a Numeric vector \p V to this Numeric vector.
   * @e Not @e implemented.
   */
  void add_vector (const NumericVector<T>&,
		   const SparseMatrix<T>&)
  { libmesh_error(); }
  
  /**
   * \f$U+=V\f$ where U and V are type 
   * \p DenseVector<T> and you
   * want to specify WHERE to add
   * the \p DenseVector<T> V 
   */
  void add_vector (const DenseVector<T>& V,
		   const std::vector<unsigned int>& dof_indices);

  /**
   * \f$U+=A^T*V\f$.
   * Add the product of the transpose of a Sparse matrix \p A_trans
   * and a Numeric vector \p V to this Numeric vector.
   * @e Not @e implemented.
   */
  void add_vector_transpose (const NumericVector<T>&,
		             const SparseMatrix<T>&)
  { libmesh_error(); }
  
  /**
   * \f$ U=v \f$ where v is a DenseVector<T> 
   * and you want to specify WHERE to insert it
   */
  virtual void insert (const std::vector<T>& v,
		       const std::vector<unsigned int>& dof_indices);

  /**
   * \f$U=V\f$, where U and V are type 
   * NumericVector<T> and you
   * want to specify WHERE to insert
   * the NumericVector<T> V 
   */
  virtual void insert (const NumericVector<T>& V,
		       const std::vector<unsigned int>& dof_indices);
      
  /**
   * \f$ U=V \f$ where V is type 
   * DenseVector<T> and you
   * want to specify WHERE to insert it
   */
  virtual void insert (const DenseVector<T>& V,
		       const std::vector<unsigned int>& dof_indices);
    
  /**
   * \f$ U=V \f$ where V is type 
   * DenseSubVector<T> and you
   * want to specify WHERE to insert it
   */
  virtual void insert (const DenseSubVector<T>& V,
		       const std::vector<unsigned int>& dof_indices);
    
  /**
   * Scale each element of the
   * vector by the given factor.
   */
  void scale (const T factor);

  /**
   * v = abs(v)... that is, each entry in v is replaced
   * by its absolute value.
   */
  virtual void abs();
  
  /**
   * Computes the dot product, p = U.V
   */
  virtual T dot(const NumericVector<T>& V) const;
  
  /**
   * Creates a copy of the global vector in the
   * local vector \p v_local.
   */
  void localize (std::vector<T>& v_local) const;

  /**
   * Same, but fills a \p NumericVector<T> instead of
   * a \p std::vector.
   */
  void localize (NumericVector<T>& v_local) const;

  /**
   * Creates a local vector \p v_local containing
   * only information relevant to this processor, as
   * defined by the \p send_list.
   */
  void localize (NumericVector<T>& v_local,
		 const std::vector<unsigned int>& send_list) const;
  
  /**
   * Updates a local vector with selected values from neighboring
   * processors, as defined by \p send_list.
   */
  void localize (const unsigned int first_local_idx,
		 const unsigned int last_local_idx,
		 const std::vector<unsigned int>& send_list);

  /**
   * Creates a local copy of the global vector in
   * \p v_local only on processor \p proc_id.  By
   * default the data is sent to processor 0.  This method
   * is useful for outputting data from one processor.
   */
  void localize_to_one (std::vector<T>& v_local,
			const unsigned int proc_id=0) const;
    
  /**
   * Computes the pointwise (i.e. component-wise) product of \p vec1
   * and \p vec2 and stores the result in \p *this.
   */
  virtual void pointwise_mult (const NumericVector<T>& vec1,
			       const NumericVector<T>& vec2);

  /**
   * Swaps the vector data and metadata
   */
  virtual void swap (NumericVector<T> &v);

private:

  /**
   * Actual vector datatype
   * to hold vector entries
   */
  std::vector<T> _values;

  /**
   * The global vector size
   */
  unsigned int _global_size;

  /**
   * The local vector size
   */
  unsigned int _local_size;

  /**
   * The first component stored locally
   */
  unsigned int _first_local_index;

  /**
   * The last component (+1) stored locally
   */
  unsigned int _last_local_index;
};


//--------------------------------------------------------------------------
// DistributedVector inline methods
template <typename T>
inline
DistributedVector<T>::DistributedVector (const ParallelType type) :
  _global_size      (0),
  _local_size       (0),
  _first_local_index(0),
  _last_local_index (0)
{
  this->_type = type;
}



template <typename T>
inline
DistributedVector<T>::DistributedVector (const unsigned int n,
                                         const ParallelType type)
{
  this->init(n, n, false, type);
}



template <typename T>
inline
DistributedVector<T>::DistributedVector (const unsigned int n,
					 const unsigned int n_local,
                                         const ParallelType type)
{
  this->init(n, n_local, false, type);
}



template <typename T>
inline
DistributedVector<T>::DistributedVector (const unsigned int n,
					 const unsigned int n_local,
		                         const std::vector<unsigned int>& ghost,
                                         const ParallelType type)
{
  this->init(n, n_local, ghost, false, type);
}



template <typename T>
inline
DistributedVector<T>::~DistributedVector ()
{
  this->clear ();
}



template <typename T>
inline
void DistributedVector<T>::init (const unsigned int n,
				 const unsigned int n_local,
				 const bool fast,
                                 const ParallelType type)
{
  // This function must be run on all processors at once
  parallel_only();

  libmesh_assert (n_local <= n);

  if (type == AUTOMATIC)
    {
      if (n == n_local)
        this->_type = SERIAL;
      else
        this->_type = PARALLEL;
    }
  else
    this->_type = type;

  libmesh_assert ((this->_type==SERIAL && n==n_local) || 
                  this->_type==PARALLEL);

  // Clear the data structures if already initialized
  if (this->initialized())
    this->clear();
    
  // Initialize data structures
  _values.resize(n_local);
  _local_size  = n_local;
  _global_size = n;

  _first_local_index = 0;
  
#ifdef LIBMESH_HAVE_MPI

  std::vector<int> local_sizes (libMesh::n_processors(), 0);
  
  local_sizes[libMesh::processor_id()] = n_local;

  Parallel::sum(local_sizes);

  // _first_local_index is the sum of _local_size
  // for all processor ids less than ours
  for (unsigned int p=0; p!=libMesh::processor_id(); p++)
    _first_local_index += local_sizes[p];


#  ifdef DEBUG
  // Make sure all the local sizes sum up to the global
  // size, otherwise there is big trouble!
  int sum=0;

  for (unsigned int p=0; p!=libMesh::n_processors(); p++)
    sum += local_sizes[p];

  libmesh_assert (sum == static_cast<int>(n));
  
#  endif
  
#else
  
  // No other options without MPI!
  if (n != n_local)
    {
      libMesh::err << "ERROR:  MPI is required for n != n_local!"
		    << std::endl;
      libmesh_error();
    }
  
#endif

  _last_local_index = _first_local_index + n_local;
  
  // Set the initialized flag
  this->_is_initialized = true;

  // Zero the components unless directed otherwise
  if (!fast)
    this->zero();
}


template <typename T>
inline
void DistributedVector<T>::init (const unsigned int n,
			         const unsigned int n_local,
		                 const std::vector<unsigned int>& /*ghost*/,
			         const bool fast,
                                 const ParallelType type)
{
  // TODO: we shouldn't ignore the ghost sparsity pattern
  this->init(n, n_local, fast, type);
}



/* Default implementation for solver packages for which ghosted
   vectors are not yet implemented.  */
template <class T>
void DistributedVector<T>::init (const NumericVector<T>& other,
                                 const bool fast)
{
  this->init(other.size(),other.local_size(),fast,other.type());
}



template <typename T>
inline
void DistributedVector<T>::init (const unsigned int n,
				 const bool fast,
                                 const ParallelType type)
{
  this->init(n,n,fast,type);
}



template <typename T>
inline
void DistributedVector<T>::close ()
{
  libmesh_assert (this->initialized());
  
  this->_is_closed = true;
}



template <typename T>
inline
void DistributedVector<T>::clear ()
{
  _values.clear();
  
  _global_size =
    _local_size =
    _first_local_index =
    _last_local_index = 0;
  
  
  this->_is_closed = this->_is_initialized = false;
}



template <typename T>
inline
void DistributedVector<T>::zero ()
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);
  
  std::fill (_values.begin(),
	     _values.end(),
	     0.);
}



template <typename T>
inline
AutoPtr<NumericVector<T> > DistributedVector<T>::zero_clone () const
{
  AutoPtr<NumericVector<T> > cloned_vector (new DistributedVector<T>);

  cloned_vector->init(*this);

  return cloned_vector;
}



template <typename T>
inline
AutoPtr<NumericVector<T> > DistributedVector<T>::clone () const
{
  AutoPtr<NumericVector<T> > cloned_vector (new DistributedVector<T>);

  cloned_vector->init(*this, true);

  *cloned_vector = *this;

  return cloned_vector;
}



template <typename T>
inline
unsigned int DistributedVector<T>::size () const
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);

  return _global_size;
}



template <typename T>
inline
unsigned int DistributedVector<T>::local_size () const
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);

  return _local_size;
}



template <typename T>
inline
unsigned int DistributedVector<T>::first_local_index () const
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);

  return _first_local_index;
}



template <typename T>
inline
unsigned int DistributedVector<T>::last_local_index () const
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);

  return _last_local_index;
}



template <typename T>
inline
T DistributedVector<T>::operator() (const unsigned int i) const
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);
  libmesh_assert ( ((i >= first_local_index()) &&
	    (i <  last_local_index())) );

  return _values[i - _first_local_index];
}



template <typename T>
inline
void DistributedVector<T>::set (const unsigned int i, const T value)
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);
  libmesh_assert (i<size());
  libmesh_assert (i-first_local_index() < local_size());
  
  _values[i - _first_local_index] = value;
}



template <typename T>
inline
void DistributedVector<T>::add (const unsigned int i, const T value)
{
  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);
  libmesh_assert (i<size());
  libmesh_assert (i-first_local_index() < local_size());
  
  _values[i - _first_local_index] += value;
}



template <typename T>
inline
Real DistributedVector<T>::min () const
{
  // This function must be run on all processors at once
  parallel_only();

  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);

  Real local_min = _values.size() ? 
    libmesh_real(_values[0]) : std::numeric_limits<Real>::max();
  for (unsigned int i = 1; i < _values.size(); ++i)
    local_min = std::min(libmesh_real(_values[i]), local_min);
  
  Parallel::min(local_min);

  return local_min;
}



template <typename T>
inline
Real DistributedVector<T>::max() const
{
  // This function must be run on all processors at once
  parallel_only();

  libmesh_assert (this->initialized());
  libmesh_assert (_values.size() == _local_size);
  libmesh_assert ((_last_local_index - _first_local_index) == _local_size);

  Real local_max = _values.size() ? 
    libmesh_real(_values[0]) : -std::numeric_limits<Real>::max();
  for (unsigned int i = 1; i < _values.size(); ++i)
    local_max = std::max(libmesh_real(_values[i]), local_max);
  
  Parallel::max(local_max);

  return local_max;
}


template <typename T>
inline
void DistributedVector<T>::swap (NumericVector<T> &other)
{
  DistributedVector<T>& v = libmesh_cast_ref<DistributedVector<T>&>(other);

  std::swap(_global_size, v._global_size);
  std::swap(_local_size, v._local_size);
  std::swap(_first_local_index, v._first_local_index);
  std::swap(_last_local_index, v._last_local_index);

  // This should be O(1) with any reasonable STL implementation
  std::swap(_values, v._values);
}

} // namespace libMesh


#endif  // #ifdef __distributed_vector_h__