This file is indexed.

/usr/include/libmesh/dense_matrix.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
// $Id: dense_matrix.h 4233 2011-03-07 23:50:33Z jwpeterson $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __dense_matrix_h__
#define __dense_matrix_h__

// C++ includes
#include <vector>
#include <algorithm>

// Local Includes
#include "libmesh_common.h"
#include "dense_matrix_base.h"

namespace libMesh
{

// Forward Declarations
template <typename T> class DenseVector;



/**
 * Defines a dense matrix for use in Finite Element-type computations.
 * Useful for storing element stiffness matrices before summation
 * into a global matrix.
 *
 * @author Benjamin S. Kirk, 2002
 */ 

// ------------------------------------------------------------
// Dense Matrix class definition
template<typename T>
class DenseMatrix : public DenseMatrixBase<T>
{
public:
  
  /**
   * Constructor.  Creates a dense matrix of dimension \p m by \p n.
   */
  DenseMatrix(const unsigned int m=0,
	      const unsigned int n=0);
  
  /**
   * Copy-constructor.
   */
  //DenseMatrix (const DenseMatrix<T>& other_matrix);
  
  /**
   * Destructor.  Empty.
   */     
  virtual ~DenseMatrix() {}
  

  /**
   * Set every element in the matrix to 0.
   */
  virtual void zero();

  /**
   * @returns the \p (i,j) element of the matrix.
   */
  T operator() (const unsigned int i,
		const unsigned int j) const;

  /**
   * @returns the \p (i,j) element of the matrix as a writeable reference.
   */
  T & operator() (const unsigned int i,
		  const unsigned int j);

  /**
   * @returns the \p (i,j) element of the matrix as a writeable reference.
   */
  virtual T el(const unsigned int i,
	       const unsigned int j) const { return (*this)(i,j); }

  /**
   * @returns the \p (i,j) element of the matrix as a writeable reference.
   */
  virtual T & el(const unsigned int i,
		 const unsigned int j)     { return (*this)(i,j); } 

  /**
   * Left multipliess by the matrix \p M2.
   */
  virtual void left_multiply (const DenseMatrixBase<T>& M2);
  
  /**
   * Right multiplies by the matrix \p M3.
   */
  virtual void right_multiply (const DenseMatrixBase<T>& M3);

  /**
   * Performs the matrix-vector multiplication,
   * \p dest := (*this) * \p arg.
   */
  void vector_mult(DenseVector<T>& dest, const DenseVector<T>& arg) const;

  /**
   * Performs the matrix-vector multiplication,
   * \p dest := (*this)^T * \p arg.
   */
  void vector_mult_transpose(DenseVector<T>& dest, const DenseVector<T>& arg) const;
  
  /**
   * Performs the scaled matrix-vector multiplication,
   * \p dest += \p factor * (*this) * \p arg. 
   */
  void vector_mult_add (DenseVector<T>& dest, 
                        const T factor,
                        const DenseVector<T>& arg) const;

  /**
   * Put the \p sub_m x \p sub_n principal submatrix into \p dest.
   */
  void get_principal_submatrix (unsigned int sub_m, unsigned int sub_n, DenseMatrix<T>& dest) const;

  /**
   * Put the \p sub_m x \p sub_m principal submatrix into \p dest.
   */
  void get_principal_submatrix (unsigned int sub_m, DenseMatrix<T>& dest) const;

  /**
   * Assignment operator.
   */
  DenseMatrix<T>& operator = (const DenseMatrix<T>& other_matrix);
  
  /**
   * STL-like swap method
   */
  void swap(DenseMatrix<T>& other_matrix);
  
  /**
   * Resize the matrix.  Will never free memory, but may
   * allocate more.  Sets all elements to 0.
   */
  void resize(const unsigned int m,
	      const unsigned int n);
  
  /**
   * Multiplies every element in the matrix by \p factor.
   */
  void scale (const T factor);

  /**
   * Multiplies every element in the matrix by \p factor.
   */
  DenseMatrix<T>& operator *= (const T factor);

  /**
   * Adds \p factor times \p mat to this matrix.
   */
  void add (const T factor,
            const DenseMatrix<T>& mat);

  /**
   * Tests if \p mat is exactly equal to this matrix.
   */
  bool operator== (const DenseMatrix<T> &mat) const;

  /**
   * Tests if \p mat is not exactly equal to this matrix.
   */
  bool operator!= (const DenseMatrix<T> &mat) const;

  /**
   * Adds \p mat to this matrix.
   */
  DenseMatrix<T>& operator+= (const DenseMatrix<T> &mat);

  /**
   * Subtracts \p mat from this matrix.
   */
  DenseMatrix<T>& operator-= (const DenseMatrix<T> &mat);

  /**
   * @returns the minimum element in the matrix.
   * In case of complex numbers, this returns the minimum
   * Real part.
   */
  Real min () const;

  /**
   * @returns the maximum element in the matrix.
   * In case of complex numbers, this returns the maximum
   * Real part.
   */
  Real max () const;

  /**
   * Return the l1-norm of the matrix, that is
   * \f$|M|_1=max_{all columns j}\sum_{all
   * rows i} |M_ij|\f$,
   * (max. sum of columns).
   * This is the
   * natural matrix norm that is compatible
   * to the l1-norm for vectors, i.e.
   * \f$|Mv|_1\leq |M|_1 |v|_1\f$.
   */
  Real l1_norm () const;

  /**
   * Return the linfty-norm of the
   * matrix, that is
   * \f$|M|_\infty=max_{all rows i}\sum_{all
   * columns j} |M_ij|\f$,
   * (max. sum of rows).
   * This is the
   * natural matrix norm that is compatible
   * to the linfty-norm of vectors, i.e.
   * \f$|Mv|_\infty \leq |M|_\infty |v|_\infty\f$.
   */
  Real linfty_norm () const;

  /**
   * Left multiplies by the transpose of the matrix \p A.
   */
  void left_multiply_transpose (const DenseMatrix<T>& A);
  

  /**
   * Right multiplies by the transpose of the matrix \p A
   */
  void right_multiply_transpose (const DenseMatrix<T>& A);
  
  /**
   * @returns the \p (i,j) element of the transposed matrix.
   */
  T transpose (const unsigned int i,
	       const unsigned int j) const;

  /**
   * Put the tranposed matrix into \p dest.
   */
  void get_transpose(DenseMatrix<T>& dest) const;
 
  /**
   * Access to the values array.  This should be used with
   * caution but can  be used to speed up code compilation
   * significantly.
   */
  std::vector<T>& get_values() { return _val; }

  /**
   * Return a constant reference to the matrix values.
   */
  const std::vector<T>& get_values() const { return _val; }

  /**
   * Condense-out the \p (i,j) entry of the matrix, forcing
   * it to take on the value \p val.  This is useful in numerical
   * simulations for applying boundary conditions.  Preserves the
   * symmetry of the matrix.
   */
  void condense(const unsigned int i,
		const unsigned int j,
		const T val,
		DenseVector<T>& rhs)
  { DenseMatrixBase<T>::condense (i, j, val, rhs); }

  /**
   * Solve the system Ax=b given the input vector b.  Partial pivoting
   * is performed by default in order to keep the algorithm stable to
   * the effects of round-off error.
   */
  void lu_solve (const DenseVector<T>& b,
		 DenseVector<T>& x);



  /**
   * For symmetric positive definite (SPD) matrices. A Cholesky factorization
   * of A such that A = L L^T is about twice as fast as a standard LU
   * factorization.  Therefore you can use this method if you know a-priori
   * that the matrix is SPD.  If the matrix is not SPD, an error is generated.
   * One nice property of cholesky decompositions is that they do not require
   * pivoting for stability. Note that this method may also be used when
   * A is real-valued and x and b are complex-valued.
   */
  template <typename T2>
  void cholesky_solve(DenseVector<T2>& b,
		      DenseVector<T2>& x);


  /**
   * Compute the Singular Value Decomposition of the matrix.
   * On exit, sigma holds all of the singular values (in
   * descending order).
   *
   * The implementation uses PETSc's interface to blas/lapack.
   * If this is not available, this function throws an error.
   */
  void svd(DenseVector<T>& sigma);


  /**
   * Compute the "reduced" Singular Value Decomposition of the matrix.
   * On exit, sigma holds all of the singular values (in
   * descending order), U holds the left singular vectors,
   * and VT holds the transpose of the right singular vectors.
   * In the reduced SVD, U has min(m,n) columns and VT has
   * min(m,n) rows. (In the "full" SVD, U and VT would be square.)
   *
   * The implementation uses PETSc's interface to blas/lapack.
   * If this is not available, this function throws an error.
   */
  void svd(DenseVector<T>& sigma, DenseMatrix<T>& U, DenseMatrix<T>& VT);

  
  /**
   * @returns the determinant of the matrix.  Note that this means
   * doing an LU decomposition and then computing the product of the
   * diagonal terms.  Therefore this is a non-const method.
   */
  T det();

  /**
   * Computes the inverse of the dense matrix (assuming it is invertible)
   * by first computing the LU decomposition and then performing multiple
   * back substitution steps.  Follows the algorithm from Numerical Recipes
   * in C available on the web.  This is not the most memory efficient routine since
   * the inverse is not computed "in place" but is instead placed into a the
   * matrix inv passed in by the user.
   */
  // void inverse();

  /**
   * Run-time selectable option to turn on/off blas support.
   * This was primarily used for testing purposes, and could be
   * removed...
   */
  bool use_blas_lapack;
  
private:

  /**
   * The actual data values, stored as a 1D array.
   */
  std::vector<T> _val;

  /**
   * Form the LU decomposition of the matrix.  This function
   * is private since it is only called as part of the implementation
   * of the lu_solve(...) function.
   */
  void _lu_decompose ();
  
  /**
   * Solves the system Ax=b through back substitution.  This function
   * is private since it is only called as part of the implementation
   * of the lu_solve(...) function.
   */
  void _lu_back_substitute (const DenseVector<T>& b,
			    DenseVector<T>& x) const;
  
  /**
   * Decomposes a symmetric positive definite matrix into a
   * product of two lower triangular matrices according to
   * A = LL^T.  Note that this program generates an error
   * if the matrix is not SPD.
   */
  void _cholesky_decompose();

  /**
   * Solves the equation Ax=b for the unknown value x and rhs
   * b based on the Cholesky factorization of A. Note that
   * this method may be used when A is real-valued and b and x
   * are complex-valued.
   */
  template <typename T2>
  void _cholesky_back_substitute(DenseVector<T2>& b,
				 DenseVector<T2>& x) const;

  /**
   * The decomposition schemes above change the entries of the matrix
   * A.  It is therefore an error to call A.lu_solve() and subsequently
   * call A.cholesky_solve() since the result will probably not match
   * any desired outcome.  This typedef keeps track of which decomposition
   * has been called for this matrix.  
   */
  enum DecompositionType {LU=0, CHOLESKY=1, LU_BLAS_LAPACK, NONE};

  /**
   * This flag keeps track of which type of decomposition has been
   * performed on the matrix.
   */
  DecompositionType _decomposition_type;

  /**
   * Enumeration used to determine the behavior of the _multiply_blas
   * function.
   */
  enum _BLAS_Multiply_Flag {
    LEFT_MULTIPLY = 0,
    RIGHT_MULTIPLY,
    LEFT_MULTIPLY_TRANSPOSE,
    RIGHT_MULTIPLY_TRANSPOSE
  };
  
  /**
   * The _multiply_blas function computes A <- op(A) * op(B) using
   * BLAS gemm function.  Used in the right_multiply(),
   * left_multiply(), right_multiply_transpose(), and
   * left_multiply_tranpose() routines.
   * [ Implementation in dense_matrix_blas_lapack.C ]
   */
  void _multiply_blas(const DenseMatrixBase<T>& other,
		      _BLAS_Multiply_Flag flag);

  /**
   * Computes an LU factorization of the matrix using the
   * Lapack routine "getrf".  This routine should only be
   * used by the "use_blas_lapack" branch of the lu_solve()
   * function.  After the call to this function, the matrix
   * is replaced by its factorized version, and the
   * DecompositionType is set to LU_BLAS_LAPACK.
   * [ Implementation in dense_matrix_blas_lapack.C ]
   */
  void _lu_decompose_lapack();

  /**
   * Computes an SVD of the matrix using the
   * Lapack routine "getsvd".
   * [ Implementation in dense_matrix_blas_lapack.C ]
   */
  void _svd_lapack(DenseVector<T>& sigma);
  
  /**
   * Computes a "reduced" SVD of the matrix using the
   * Lapack routine "getsvd".
   * [ Implementation in dense_matrix_blas_lapack.C ]
   */
  void _svd_lapack(DenseVector<T>& sigma,
                   DenseMatrix<T>& U,
                   DenseMatrix<T>& VT);

  /**
   * Helper function that actually performs the SVD.
   * [ Implementation in dense_matrix_blas_lapack.C ]
   */
  void _svd_helper (char JOBU,
                    char JOBVT,
                    std::vector<T>& sigma_val,
                    std::vector<T>& U_val,
                    std::vector<T>& VT_val);

  /**
   * This array is used to store pivot indices.  May be used
   * by whatever factorization is currently active, clients of
   * the class should not rely on it for any reason.
   */
  std::vector<int> _pivots;

  /**
   * Companion function to _lu_decompose_lapack().  Do not use
   * directly, called through the public lu_solve() interface.
   * This function is logically const in that it does not modify
   * the matrix, but since we are just calling LAPACK routines,
   * it's less const_cast hassle to just declare the function
   * non-const.
   * [ Implementation in dense_matrix_blas_lapack.C ]
   */
  void _lu_back_substitute_lapack (const DenseVector<T>& b,
				   DenseVector<T>& x);

  /**
   * Uses the BLAS GEMV function (through PETSc) to compute
   *
   * dest := alpha*A*arg + beta*dest
   *
   * where alpha and beta are scalars, A is this matrix, and
   * arg and dest are input vectors of appropriate size.  If
   * trans is true, the transpose matvec is computed instead.
   * By default, trans==false.
   *
   * [ Implementation in dense_matrix_blas_lapack.C ]
   */
  void _matvec_blas(T alpha, T beta,
		    DenseVector<T>& dest,
		    const DenseVector<T>& arg,
		    bool trans=false) const;
};





// ------------------------------------------------------------
/**
 * Provide Typedefs for dense matrices
 */
namespace DenseMatrices
{

  /**
   * Convenient definition of a real-only
   * dense matrix.
   */
  typedef DenseMatrix<Real> RealDenseMatrix;

  /**
   * Note that this typedef may be either
   * a real-only matrix, or a truly complex
   * matrix, depending on how \p Number
   * was defined in \p libmesh_common.h.
   * Be also aware of the fact that \p DenseMatrix<T>
   * is likely to be more efficient for
   * real than for complex data.
   */
  typedef DenseMatrix<Complex> ComplexDenseMatrix;  

}



using namespace DenseMatrices;





// ------------------------------------------------------------
// Dense Matrix member functions
template<typename T>
inline
DenseMatrix<T>::DenseMatrix(const unsigned int m,
			    const unsigned int n)
  : DenseMatrixBase<T>(m,n),
#if defined(LIBMESH_HAVE_PETSC) && defined(LIBMESH_USE_REAL_NUMBERS)
    use_blas_lapack(true),
#else
    use_blas_lapack(false),
#endif
    _val(),
    _decomposition_type(NONE),
    _pivots()
{
  this->resize(m,n);
}



// FIXME[JWP]: This copy ctor has not been maintained along with
// the rest of the class...
// Can we just use the compiler-generated copy ctor here?
// template<typename T>
// inline
// DenseMatrix<T>::DenseMatrix (const DenseMatrix<T>& other_matrix)
//   : DenseMatrixBase<T>(other_matrix._m, other_matrix._n)
// {
//   _val = other_matrix._val;
// }



template<typename T>
inline
void DenseMatrix<T>::swap(DenseMatrix<T>& other_matrix)
{
  std::swap(this->_m, other_matrix._m);
  std::swap(this->_n, other_matrix._n);
  _val.swap(other_matrix._val);
  DecompositionType _temp = _decomposition_type;
  _decomposition_type = other_matrix._decomposition_type;
  other_matrix._decomposition_type = _temp;
}


  
template<typename T>
inline
void DenseMatrix<T>::resize(const unsigned int m,
			    const unsigned int n)
{
  _val.resize(m*n);

  this->_m = m;
  this->_n = n;

  _decomposition_type = NONE;
  this->zero();
}



template<typename T>
inline
void DenseMatrix<T>::zero()
{
  _decomposition_type = NONE;

  std::fill (_val.begin(), _val.end(), 0.);
}



template<typename T>
inline
DenseMatrix<T>& DenseMatrix<T>::operator = (const DenseMatrix<T>& other_matrix)
{
  this->_m = other_matrix._m;
  this->_n = other_matrix._n;

  _val                = other_matrix._val;
  _decomposition_type = other_matrix._decomposition_type;

  return *this;
}



template<typename T>
inline
T DenseMatrix<T>::operator () (const unsigned int i,
			       const unsigned int j) const
{
  libmesh_assert (i*j<_val.size());
  libmesh_assert (i < this->_m);
  libmesh_assert (j < this->_n);
  
  
  //  return _val[(i) + (this->_m)*(j)]; // col-major
  return _val[(i)*(this->_n) + (j)]; // row-major
}



template<typename T>
inline
T & DenseMatrix<T>::operator () (const unsigned int i,
				 const unsigned int j)
{
  libmesh_assert (i*j<_val.size());
  libmesh_assert (i < this->_m);
  libmesh_assert (j < this->_n);
  
  //return _val[(i) + (this->_m)*(j)]; // col-major
  return _val[(i)*(this->_n) + (j)]; // row-major
}


     


template<typename T>
inline
void DenseMatrix<T>::scale (const T factor)
{
  for (unsigned int i=0; i<_val.size(); i++)
    _val[i] *= factor;
}



template<typename T>
inline
DenseMatrix<T>& DenseMatrix<T>::operator *= (const T factor)
{
  this->scale(factor);
  return *this;
}



template<typename T>
inline
void DenseMatrix<T>::add (const T factor, const DenseMatrix<T>& mat)
{
  for (unsigned int i=0; i<_val.size(); i++)
    _val[i] += factor * mat._val[i];
}



template<typename T>
inline
bool DenseMatrix<T>::operator == (const DenseMatrix<T> &mat) const
{
  for (unsigned int i=0; i<_val.size(); i++)
    if (_val[i] != mat._val[i])
      return false;

  return true;
}



template<typename T>
inline
bool DenseMatrix<T>::operator != (const DenseMatrix<T> &mat) const
{
  for (unsigned int i=0; i<_val.size(); i++)
    if (_val[i] != mat._val[i])
      return true;

  return false;
}



template<typename T>
inline
DenseMatrix<T>& DenseMatrix<T>::operator += (const DenseMatrix<T> &mat)
{
  for (unsigned int i=0; i<_val.size(); i++)
    _val[i] += mat._val[i];

  return *this;
}



template<typename T>
inline
DenseMatrix<T>& DenseMatrix<T>::operator -= (const DenseMatrix<T> &mat)
{
  for (unsigned int i=0; i<_val.size(); i++)
    _val[i] -= mat._val[i];

  return *this;
}



template<typename T>
inline
Real DenseMatrix<T>::min () const
{
  libmesh_assert (this->_m);
  libmesh_assert (this->_n);
  Real my_min = libmesh_real((*this)(0,0));

  for (unsigned int i=0; i!=this->_m; i++)
    {
      for (unsigned int j=0; j!=this->_n; j++)
        {
          Real current = libmesh_real((*this)(i,j));
          my_min = (my_min < current? my_min : current);
        }
    }
  return my_min;
}



template<typename T>
inline
Real DenseMatrix<T>::max () const
{
  libmesh_assert (this->_m);
  libmesh_assert (this->_n);
  Real my_max = libmesh_real((*this)(0,0));

  for (unsigned int i=0; i!=this->_m; i++)
    {
      for (unsigned int j=0; j!=this->_n; j++)
        {
          Real current = libmesh_real((*this)(i,j));
          my_max = (my_max > current? my_max : current);
        }
    }
  return my_max;
}



template<typename T>
inline
Real DenseMatrix<T>::l1_norm () const
{
  libmesh_assert (this->_m);
  libmesh_assert (this->_n);

  Real columnsum = 0.;
  for (unsigned int i=0; i!=this->_m; i++)
    {
      columnsum += std::abs((*this)(i,0));
    }
  Real my_max = columnsum;
  for (unsigned int j=1; j!=this->_n; j++)
    {
      columnsum = 0.;
      for (unsigned int i=0; i!=this->_m; i++)
        {
          columnsum += std::abs((*this)(i,j));
        }
      my_max = (my_max > columnsum? my_max : columnsum);
    }
  return my_max;
}



template<typename T>
inline
Real DenseMatrix<T>::linfty_norm () const
{
  libmesh_assert (this->_m);
  libmesh_assert (this->_n);

  Real rowsum = 0.;
  for (unsigned int j=0; j!=this->_n; j++)
    {
      rowsum += std::abs((*this)(0,j));
    }
  Real my_max = rowsum;
  for (unsigned int i=1; i!=this->_m; i++)
    {
      rowsum = 0.;
      for (unsigned int j=0; j!=this->_n; j++)
        {
          rowsum += std::abs((*this)(i,j));
        }
      my_max = (my_max > rowsum? my_max : rowsum);
    }
  return my_max;
}



template<typename T>
inline
T DenseMatrix<T>::transpose (const unsigned int i,
			     const unsigned int j) const
{
  // Implement in terms of operator()
  return (*this)(j,i);
}





// template<typename T>
// inline
// void DenseMatrix<T>::condense(const unsigned int iv,
// 			      const unsigned int jv,
// 			      const T val,
// 			      DenseVector<T>& rhs)
// {
//   libmesh_assert (this->_m == rhs.size());
//   libmesh_assert (iv == jv);


//   // move the known value into the RHS
//   // and zero the column
//   for (unsigned int i=0; i<this->m(); i++)
//     {
//       rhs(i) -= ((*this)(i,jv))*val;
//       (*this)(i,jv) = 0.;
//     }

//   // zero the row
//   for (unsigned int j=0; j<this->n(); j++)
//     (*this)(iv,j) = 0.;

//   (*this)(iv,jv) = 1.;
//   rhs(iv) = val;
  
// }




} // namespace libMesh




#endif // #ifndef __dense_matrix_h__