This file is indexed.

/usr/include/libmesh/cell_tet4.h is in libmesh-dev 0.7.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// $Id: cell_tet4.h 3874 2010-07-02 21:57:26Z roystgnr $

// The libMesh Finite Element Library.
// Copyright (C) 2002-2008 Benjamin S. Kirk, John W. Peterson, Roy H. Stogner
  
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
  
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA



#ifndef __cell_tet4_h__
#define __cell_tet4_h__

// C++ includes

// Local includes
#include "cell_tet.h"

namespace libMesh
{




/**
 * The \p Tet4 is an element in 3D composed of 4 nodes.
 * It is numbered like this:
   \verbatim
  TET4:
        3
        o
       /|\
      / | \
     /  |  \
  0 o...|...o 2
     \  |  /
      \ | /
       \|/
        o
        1
  \endverbatim
 */

// ------------------------------------------------------------
// Tet4 class definition
class Tet4 : public Tet
{
public:

  /**
   * Constructor.  By default this element has no parent.
   */
  Tet4  (Elem* p=NULL);
  
  /**
   * @returns \p TET4
   */
  ElemType type () const { return TET4; }
  
  /**
   * @returns 4
   */
  unsigned int n_nodes() const { return 4; }

  /**
   * @returns 1
   */
  unsigned int n_sub_elem() const { return 1; }
    
  /**
   * @returns true iff the specified (local) node number is a vertex.
   */
  virtual bool is_vertex(const unsigned int i) const;

  /**
   * @returns true iff the specified (local) node number is an edge.
   */
  virtual bool is_edge(const unsigned int i) const;

  /**
   * @returns true iff the specified (local) node number is a face.
   */
  virtual bool is_face(const unsigned int i) const;
  
  /*
   * @returns true iff the specified (local) node number is on the
   * specified side
   */
  virtual bool is_node_on_side(const unsigned int n,
			       const unsigned int s) const;
  
  /*
   * @returns true iff the specified (local) node number is on the
   * specified edge
   */
  virtual bool is_node_on_edge(const unsigned int n,
			       const unsigned int e) const;
  
  /*
   * @returns true iff the element map is definitely affine within
   * numerical tolerances
   */
  virtual bool has_affine_map () const { return true; }

  /**
   * @returns FIRST
   */
  Order default_order() const { return FIRST; }
  
  /**
   * Builds a \p TRI3 built coincident with face i.  
   * The \p AutoPtr<Elem> handles the memory aspect.
   */
  AutoPtr<Elem> build_side (const unsigned int i,
			    bool proxy) const;

  /**
   * Builds a \p EDGE2 built coincident with face i.  
   * The \p AutoPtr<Elem> handles the memory aspect.
   */
  AutoPtr<Elem> build_edge (const unsigned int i) const;

  virtual void connectivity(const unsigned int sc,
			    const IOPackage iop,
			    std::vector<unsigned int>& conn) const;

  /**
   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to
   * element node numbers.
   */
  static const unsigned int side_nodes_map[4][3];

  /**
   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ edge to
   * element node numbers.
   */
  static const unsigned int edge_nodes_map[6][2];
  
  /**
   * An optimized method for computing the area of a
   * 4-node tetrahedron.
   */
  virtual Real volume () const;

  /**
   * Returns the min and max *dihedral* angles for the tetrahedron.
   * Note there are 6 dihedral angles (angles between the planar
   * faces) for the Tet4.  Dihedral angles near 180 deg. are generally
   * bad for interplation.  Small dihedral angles are not necessarily
   * bad for interplation, but they can effect the stiffness matrix
   * condition number.
   */
   std::pair<Real, Real> min_and_max_angle() const;

protected:

  
#ifdef LIBMESH_ENABLE_AMR
  
  /**
   * Matrix used to create the elements children.
   */
  float embedding_matrix (const unsigned int i,
			  const unsigned int j,
			  const unsigned int k) const;
  //  { return _embedding_matrix[i][j][k]; }

  /**
   * Matrix that computes new nodal locations/solution values
   * from current nodes/solution.  
   */
  static const float _embedding_matrix[8][4][4];

 public:

  /**
   * This enumeration keeps track of which diagonal is selected during
   * refinement.  In general there are three possible diagonals to
   * choose when splitting the octahedron, and by choosing the shortest
   * one we obtain the best element shape.
   */
  enum Diagonal
    {DIAG_02_13=0,    // diagonal between edges (0,2) and (1,3)
     DIAG_03_12=1,    // diagonal between edges (0,3) and (1,2)
     DIAG_01_23=2,    // diagonal between edges (0,1) and (2,3)
     INVALID_DIAG=99  // diagonal not yet selected
    };

  /**
   * Returns the diagonal that has been selected during refinement.
   */
  Diagonal diagonal_selection (void) const { return _diagonal_selection; }

  /**
   * Allows the user to select the diagonal for the refinement.  This
   * function may only be called before the element is ever refined.
   */
  void select_diagonal (const Diagonal diag) const;

  /**
   * Allows the user to reselect the diagonal after refinement.  This
   * function may only be called directly after the element is refined
   * for the first time (and before the \p EquationSystems::reinit()
   * is called).  It will destroy and re-create the children if
   * necessary.
   */
  void reselect_diagonal (const Diagonal diag);

  /**
   * Reselects the diagonal after refinement to be the optimal one.
   * This makes sense if the user has moved some grid points, so that
   * the former optimal choice is no longer optimal.  Also, the user
   * may exclude one diagonal from this selection by giving it as
   * argument.  In this case, the more optimal one of the remaining
   * two diagonals is chosen.
   */
  void reselect_optimal_diagonal (const Diagonal exclude_this=INVALID_DIAG);

 protected:

  mutable Diagonal _diagonal_selection;
  
#endif
  
};



// ------------------------------------------------------------
// Tet4 class member functions
inline
Tet4::Tet4(Elem* p) :
  Tet(Tet4::n_nodes(), p)
#ifdef LIBMESH_ENABLE_AMR
  , _diagonal_selection(INVALID_DIAG)
#endif
{
}

} // namespace libMesh


#endif