This file is indexed.

/usr/share/perl5/Math/Algebra/Symbols.pm is in libmath-algebra-symbols-perl 1.21-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
=head1 Symbols

Symbolic Algebra in Pure Perl.

See user manual L</NAME>.

PhilipRBrenan@yahoo.com, 2004, Perl License.

=head2 Synopsis

This package delivers the public components of package B<sum>.

=cut


package Math::Algebra::Symbols;
$VERSION=1.21;
use Math::Algebra::Symbols::Sum;
use Carp;


=head2 import

Export components as requested by caller.

 use Math::Algebra::Symbols symbols=>'s' trig=>1 hyper=>1 complex=>0;

Valid options are:


=over




=item symbols=>'s'



Create a function with name B<s()> in the callers namespace to create
new symbols. The default is B<symbols()>.

item trig=>0

The default, no trigonometric functions  are exported.        

item trig=>1

Export trigonometric functions: tan, sec, csc, cot. sin, cos are created
by default by overloading the existing Perl sin and cos operators.


=item hyper=>0



The default, no hyperbolic functions         


=item hyper=>1



Export hyperbolic functions: sinh, cosh, tanh, sech, csch, coth.


=item complex=>0



The default, no complex functions         


=item complex=>1



Export complex functions:  conjugate, cross, dot, im, modulus, re,  unit.


=back



Trigonometric can be used instead of trig.

Hyperbolic can be used instead of hyper.


=cut


sub import
 {my %P = (program=>@_);
  my %p; $p{lc()} = $P{$_} for(keys(%P));

#_ Symbols _____________________________________________________________
# New symbols term constructor - export to calling package.
#_______________________________________________________________________

  my $s = "package XXXX;\n". <<'END';
no warnings 'redefine';
sub NNNN
 {return SSSSsum(@_);
 }
END

#_ Symbols _____________________________________________________________
# Complex functions: re, im, dot, cross, conjugate, modulus              
#_______________________________________________________________________
  
  if (exists($p{complex}))
   {$s .= <<'END';
sub conjugate($)  {$_[0]->conjugate()}
sub cross    ($$) {$_[0]->cross    ($_[1])}
sub dot      ($$) {$_[0]->dot      ($_[1])}
sub im       ($)  {$_[0]->im       ()}
sub modulus  ($)  {$_[0]->modulus  ()}
sub re       ($)  {$_[0]->re       ()}
sub unit     ($)  {$_[0]->unit     ()}
END
   }

#_ Symbols _____________________________________________________________
# Trigonometric functions: tan, sec, csc, cot              
#_______________________________________________________________________

  if (exists($p{trig}) or exists($p{trigonometric}))
   {$s .= <<'END';
sub tan($) {$_[0]->tan()}
sub sec($) {$_[0]->sec()}
sub csc($) {$_[0]->csc()}
sub cot($) {$_[0]->cot()}
END
   }
  if (exists($p{trig}) and exists($p{trigonometric}))
   {croak 'Please use specify just one of trig or trigonometric';
   }

#_ Symbols _____________________________________________________________
# Hyperbolic functions: sinh, cosh, tanh, sech, csch, coth              
#_______________________________________________________________________

 if (exists($p{hyper}) or exists($p{hyperbolic}))
  {$s .= <<'END';
sub sinh($) {$_[0]->sinh()}
sub cosh($) {$_[0]->cosh()}
sub tanh($) {$_[0]->tanh()}
sub sech($) {$_[0]->sech()}
sub csch($) {$_[0]->csch()}
sub coth($) {$_[0]->coth()}
END
  }
 if (exists($p{hyper}) and exists($p{hyperbolic}))
  {croak 'Please specify just one of hyper or hyperbolic';
  }

#_ Symbols _____________________________________________________________
# Export to calling package.
#_______________________________________________________________________

    $s .= <<'END';
use warnings 'redefine';
END
 
  my $name   = 'symbols';
     $name   = $p{symbols} if exists($p{symbols});
  my ($main) = caller();
  my $pack   = __PACKAGE__. '::';   

  $s=~ s/XXXX/$main/g;
  $s=~ s/NNNN/$name/g;
  $s=~ s/SSSS/$pack/g;
  eval($s);

#_ Symbols _____________________________________________________________
# Check options supplied by user
#_______________________________________________________________________

  delete @p{qw(
symbols program trig trigonometric hyper hyperbolic complex
)};

  croak "Unknown option(s): ". join(' ', keys(%p))."\n\n". <<'END' if keys(%p);

Valid options are:

  symbols=>'symbols' Create a routine with this name in the callers
                  namespace to create new symbols. The default is
                  'symbols'.


  trig   =>0      The default, no trigonometric functions         
  trig   =>1      Export trigonometric functions: tan, sec, csc, cot.
                  sin, cos are created by default by overloading 
                  the existing Perl sin and cos operators.

  trigonometric can be used instead of trig.


  hyper  =>0      The default, no hyperbolic functions         
  hyper  =>1      Export hyperbolic functions:
                    sinh, cosh, tanh, sech, csch, coth.

  hyperbolic can be used instead of hyper.


  complex=>0      The default, no complex functions         
  complex=>1      Export complex functions:
                    conjugate, cross, dot, im, modulus, re,  unit

END
 }

#_ Symbols _____________________________________________________________
# Package installed successfully
#_______________________________________________________________________

1;

__DATA__


#______________________________________________________________________
# User guide.
#______________________________________________________________________

=head1 NAME

Math::Algebra::Symbols - Symbolic Algebra in Pure Perl.

User guide.

=head1 SYNOPSIS

Example symbols.pl

 #!perl -w -I..
 #______________________________________________________________________
 # Symbolic algebra.
 # Perl License.
 # PhilipRBrenan@yahoo.com, 2004.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols hyper=>1;
 use Test::Simple tests=>5;
 
 ($n, $x, $y) = symbols(qw(n x y));
 
 $a     += ($x**8 - 1)/($x-1);
 $b     +=  sin($x)**2 + cos($x)**2; 
 $c     += (sin($n*$x) + cos($n*$x))->d->d->d->d / (sin($n*$x)+cos($n*$x));
 $d      =  tanh($x+$y) == (tanh($x)+tanh($y))/(1+tanh($x)*tanh($y));
 ($e,$f) =  @{($x**2 eq 5*$x-6) > $x};
 
 print "$a\n$b\n$c\n$d\n$e,$f\n";
 
 ok("$a"    eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1');
 ok("$b"    eq '1'); 
 ok("$c"    eq '$n**4'); 
 ok("$d"    eq '1'); 
 ok("$e,$f" eq '2,3');
 


=head1 DESCRIPTION

This package supplies a set of functions and operators to manipulate
operator expressions algebraically using the familiar Perl syntax.

These expressions are constructed
from L</Symbols>, L</Operators>, and L</Functions>, and processed via
L</Methods>.  For examples, see: L</Examples>.

=head2 Symbols

Symbols are created with the exported B<symbols()> constructor routine:

Example t/constants.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: constants.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>1;
 
 my ($x, $y, $i, $o, $pi) = symbols(qw(x y i 1 pi));
 
 ok( "$x $y $i $o $pi"   eq   '$x $y i 1 $pi'  );
 


The B<symbols()> routine constructs references to symbolic variables and
symbolic constants from a list of names and integer constants.

The special symbol B<i> is recognized as the square root of B<-1>.

The special symbol B<pi> is recognized as the smallest positive real
that satisfies:

Example t/ipi.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: constants.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
 
 my ($i, $pi) = symbols(qw(i pi));
 
 ok(  exp($i*$pi)  ==   -1  );
 ok(  exp($i*$pi) <=>  '-1' );
 


=head3 Constructor Routine Name

If you wish to use a different name for the constructor routine, say
B<S>:

Example t/ipi2.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: constants.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols symbols=>'S';
 use Test::Simple tests=>2;
 
 my ($i, $pi) = S(qw(i pi));
 
 ok(  exp($i*$pi)  ==   -1  );
 ok(  exp($i*$pi) <=>  '-1' );


=head3 Big Integers

Symbols automatically uses big integers if needed.

Example t/bigInt.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: bigInt.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>1;
 
 my $z = symbols('1234567890987654321/1234567890987654321');
 
 ok( eval $z eq '1');
 


=head2 Operators

L</Symbols> can be combined with L</Operators> to create symbolic expressions:

=head3 Arithmetic operators


=head4 Arithmetic Operators: B<+> B<-> B<*> B</> B<**> 
            
Example t/x2y2.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: simplification.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($x, $y) = symbols(qw(x y));
 
 ok(  ($x**2-$y**2)/($x-$y)  ==  $x+$y  );
 ok(  ($x**2-$y**2)/($x-$y)  !=  $x-$y  );
 ok(  ($x**2-$y**2)/($x-$y) <=> '$x+$y' );
 
 


The operators: B<+=> B<-=> B<*=> B</=> are overloaded to work
symbolically rather than numerically. If you need numeric results, you
can always B<eval()> the resulting symbolic expression.

=head4 Square root Operator: B<sqrt>       

Example t/ix.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: sqrt(-1).
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
 
 my ($x, $i) = symbols(qw(x i));
 
 ok(  sqrt(-$x**2)  ==  $i*$x  );
 ok(  sqrt(-$x**2)  <=> 'i*$x' );
 
 


The square root is represented by the symbol B<i>, which allows complex
expressions to be processed by Math::Complex.

=head4 Exponential Operator: B<exp>       

Example t/expd.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: exp.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
 
 my ($x, $i) = symbols(qw(x i));
 
 ok(   exp($x)->d($x)  ==   exp($x)  );
 ok(   exp($x)->d($x) <=>  'exp($x)' );
 
 


The exponential operator.

=head4 Logarithm Operator: B<log>       

Example t/logExp.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: log: need better example.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>1;
 
 my ($x) = symbols(qw(x));
 
 ok(   log($x) <=>  'log($x)' );
 
 


Logarithm to base B<e>.

Note: the above result is only true for x > 0.  B<Symbols> does not include domain and range
specifications of the functions it uses.

=head4 Sine and Cosine Operators: B<sin> and B<cos>       

Example t/sinCos.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: simplification.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($x) = symbols(qw(x));
 
 ok(  sin($x)**2 + cos($x)**2  ==  1  );
 ok(  sin($x)**2 + cos($x)**2  !=  0  );
 ok(  sin($x)**2 + cos($x)**2 <=> '1' );
 
 


This famous trigonometric identity is not preprogrammed into B<Symbols>
as it is in commercial products.

Instead: an expression for B<sin()> is constructed using the complex
exponential: L</exp>, said expression is algebraically multiplied out to
prove the identity. The proof steps involve large intermediate
expressions in each step, as yet I have not provided a means to neatly
lay out these intermediate steps and thus provide a more compelling
demonstration of the ability of B<Symbols> to verify such statements
from first principles.
 

=head3 Relational operators                                   

=head4 Relational operators: B<==>, B<!=> 

Example t/x2y2.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: simplification.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($x, $y) = symbols(qw(x y));
 
 ok(  ($x**2-$y**2)/($x-$y)  ==  $x+$y  );
 ok(  ($x**2-$y**2)/($x-$y)  !=  $x-$y  );
 ok(  ($x**2-$y**2)/($x-$y) <=> '$x+$y' );
 
 


The relational equality operator B<==> compares two symbolic expressions
and returns TRUE(1) or FALSE(0) accordingly. B<!=> produces the opposite
result.

=head4 Relational operator: B<eq> 

Example t/eq.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: solving.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($x, $v, $t) = symbols(qw(x v t));
 
 ok(  ($v eq $x / $t)->solve(qw(x in terms of v t))  ==  $v*$t  );
 ok(  ($v eq $x / $t)->solve(qw(x in terms of v t))  !=  $v+$t  );
 ok(  ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$v*$t' );
 
 


The relational operator B<eq> is a synonym for the minus B<-> operator,
with the expectation that later on the L<solve()|/Solving equations>
function will be used to simplify and rearrange the equation. You may
prefer to use B<eq> instead of B<-> to enhance readability, there is no
functional difference.

=head3 Complex operators

=head4 Complex operators: the B<dot> operator: B<^>       

Example t/dot.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: dot operator.  Note the low priority
 # of the ^ operator.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($a, $b, $i) = symbols(qw(a b i));
 
 ok(  (($a+$i*$b)^($a-$i*$b))  ==  $a**2-$b**2  );
 ok(  (($a+$i*$b)^($a-$i*$b))  !=  $a**2+$b**2  );
 ok(  (($a+$i*$b)^($a-$i*$b)) <=> '$a**2-$b**2' );
 


Note the use of brackets:  The B<^> operator has low priority.

The B<^> operator treats its left hand and right hand arguments as
complex numbers, which in turn are regarded as two dimensional vectors
to which the vector dot product is applied.

=head4 Complex operators: the B<cross> operator: B<x>       

Example t/cross.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: cross operator.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($x, $i) = symbols(qw(x i));
 
 ok(  $i*$x x $x  ==  $x**2  );
 ok(  $i*$x x $x  !=  $x**3  );
 ok(  $i*$x x $x <=> '$x**2' );
 


The B<x> operator treats its left hand and right hand arguments as
complex numbers, which in turn are regarded as two dimensional vectors
defining the sides of a parallelogram. The B<x> operator returns the
area of this parallelogram.

Note the space before the B<x>, otherwise Perl is unable to disambiguate
the expression correctly.

=head4 Complex operators: the B<conjugate> operator: B<~>       

Example t/conjugate.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: dot operator.  Note the low priority
 # of the ^ operator.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($x, $y, $i) = symbols(qw(x y i));
 
 ok(  ~($x+$i*$y)  ==  $x-$i*$y  );
 ok(  ~($x-$i*$y)  ==  $x+$i*$y  );
 ok(  (($x+$i*$y)^($x-$i*$y)) <=> '$x**2-$y**2' );
 


The B<~> operator returns the complex conjugate of its right hand side.

=head4 Complex operators: the B<modulus> operator: B<abs>       

Example t/abs.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: dot operator.  Note the low priority
 # of the ^ operator.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my ($x, $i) = symbols(qw(x i));
 
 ok(  abs($x+$i*$x)  ==  sqrt(2*$x**2)  );
 ok(  abs($x+$i*$x)  !=  sqrt(2*$x**3)  );
 ok(  abs($x+$i*$x) <=> 'sqrt(2*$x**2)' );
 


The B<abs> operator returns the modulus (length) of its right hand side.

=head4 Complex operators: the B<unit> operator: B<!>       

Example t/unit.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: unit operator.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>4;
 
 my ($i) = symbols(qw(i));
 
 ok(  !$i      == $i                         );
 ok(  !$i     <=> 'i'                        );
 ok(  !($i+1) <=>  '1/(sqrt(2))+i/(sqrt(2))' );
 ok(  !($i-1) <=> '-1/(sqrt(2))+i/(sqrt(2))' );
 


The B<!> operator returns a complex number of unit length pointing in
the same direction as its right hand side.

=head3 Equation Manipulation Operators

=head4 Equation Manipulation Operators: B<Simplify> operator: B<+=>

Example t/simplify.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: simplify.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
  
 my ($x) = symbols(qw(x));
 
 ok(  ($x**8 - 1)/($x-1)  ==  $x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1  );      
 ok(  ($x**8 - 1)/($x-1) <=> '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );      
 


The simplify operator B<+=> is a synonym for the
L<simplify()|/"simplifying_equations:_simplify()"> method, if and only
if, the target on the left hand side initially has a value of undef.

Admittedly this is very strange behavior: it arises due to the shortage
of over-rideable operators in Perl: in particular it arises due to the
shortage of over-rideable unary operators in Perl. Never-the-less: this
operator is useful as can be seen in the L<Synopsis|/"synopsis">, and
the desired pre-condition can always achieved by using B<my>.

=head4 Equation Manipulation Operators: B<Solve> operator: B<E<gt>> 

Example t/solve2.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: simplify.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
  
 my ($t) = symbols(qw(t));
 
 my $rabbit  = 10 + 5 * $t;
 my $fox     = 7 * $t * $t;
 my ($a, $b) = @{($rabbit eq $fox) > $t};
 
 ok( "$a" eq  '1/14*sqrt(305)+5/14'  );      
 ok( "$b" eq '-1/14*sqrt(305)+5/14'  );      
 


The solve operator B<E<gt>> is a synonym for the
L<solve()|/"Solving_equations:_solve()"> method.

The priority of B<E<gt>> is higher than that of B<eq>, so the brackets
around the equation to be solved are necessary until Perl provides a
mechanism for adjusting operator priority (cf. Algol 68).

If the equation is in a single variable, the single variable
may be named after the B<E<gt>> operator without the use of [...]:

 use Math::Algebra::Symbols;

 my $rabbit  = 10 + 5 * $t;
 my $fox     = 7 * $t * $t;
 my ($a, $b) = @{($rabbit eq $fox) > $t};

 print "$a\n";

 # 1/14*sqrt(305)+5/14

If there are multiple solutions, (as in the case of polynomials), B<E<gt>>
returns an array of symbolic expressions containing the solutions.

This example was provided by Mike Schilli m@perlmeister.com.

=head2 Functions

Perl operator overloading is very useful for producing compact
representations of algebraic expressions. Unfortunately there are only a
small number of operators that Perl allows to be overloaded. The
following functions are used to provide capabilities not easily expressed
via Perl operator overloading.

These functions may either be called as methods from symbols constructed
by the L</Symbols> construction routine, or they may be exported into
the user's namespace as described in L</EXPORT>.

=head3 Trigonometric and Hyperbolic functions

=head4 Trigonometric functions

Example t/sinCos2.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: methods.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>1;
 
 my ($x, $y) = symbols(qw(x y));
 
 ok( (sin($x)**2 == (1-cos(2*$x))/2) );
 


The trigonometric functions B<cos>, B<sin>, B<tan>, B<sec>, B<csc>,
B<cot> are available, either as exports to the caller's name space, or
as methods.

=head4 Hyperbolic functions

Example t/tanh.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: methods.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols hyper=>1;
 use Test::Simple tests=>1;
 
 my ($x, $y) = symbols(qw(x y));
 
 ok( tanh($x+$y)==(tanh($x)+tanh($y))/(1+tanh($x)*tanh($y)));
 


The hyperbolic functions B<cosh>, B<sinh>, B<tanh>, B<sech>, B<csch>,
B<coth> are available, either as exports to the caller's name space, or
as methods.

=head3 Complex functions

=head4 Complex functions: B<re> and B<im>       

 use Math::Algebra::Symbols complex=>1;

Example t/reIm.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: methods.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
 
 my ($x, $i) = symbols(qw(x i));
 
 ok( ($i*$x)->re   <=>  0    );
 ok( ($i*$x)->im   <=>  '$x' );
 


The B<re> and B<im> functions return an expression which represents the
real and imaginary parts of the expression, assuming that symbolic
variables represent real numbers.

=head4 Complex functions: B<dot> and B<cross>       

Example t/dotCross.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: methods.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
 
 my $i = symbols(qw(i));
 
 ok( ($i+1)->cross($i-1)   <=>  2 );
 ok( ($i+1)->dot  ($i-1)   <=>  0 );
 


The B<dot> and B<cross> operators are available as functions, either as
exports to the caller's name space, or as methods.

=head4 Complex functions: B<conjugate>, B<modulus> and B<unit>       

Example t/conjugate2.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: methods.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
 
 my $i = symbols(qw(i));
 
 ok( ($i+1)->unit      <=>  '1/(sqrt(2))+i/(sqrt(2))' );
 ok( ($i+1)->modulus   <=>  'sqrt(2)'                 );
 ok( ($i+1)->conjugate <=>  '1-i'                     );
 


The B<conjugate>, B<abs> and B<unit> operators are available as
functions: B<conjugate>, B<modulus> and B<unit>, either as exports to
the caller's name space, or as methods. The confusion over the naming of:
the B<abs> operator being the same as the B<modulus> complex function;
arises over the limited set of Perl operator names available for
overloading.


=head2 Methods

=head3 Methods for manipulating Equations             

=head4 Simplifying equations: B<simplify()>

Example t/simplify2.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: simplify.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
  
 my ($x) = symbols(qw(x));
  
 my $y  = (($x**8 - 1)/($x-1))->simplify();  # Simplify method 
 my $z +=  ($x**8 - 1)/($x-1);               # Simplify via +=
 
 ok( "$y" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
 ok( "$z" eq '$x+$x**2+$x**3+$x**4+$x**5+$x**6+$x**7+1' );
 


B<Simplify()> attempts to simplify an expression. There is no general
simplification algorithm: consequently simplifications are carried out
on ad hoc basis. You may not even agree that the proposed simplification
for a given expressions is indeed any simpler than the original. It is
for these reasons that simplification has to be explicitly requested
rather than being performed automagically.

At the moment, simplifications consist of polynomial division: when the
expression consists, in essence, of one polynomial divided by another,
an attempt is made to perform polynomial division, the result is
returned if there is no remainder.

The B<+=> operator may be used to simplify and assign an expression to a
Perl variable. Perl operator overloading precludes the use of B<=> in this
manner. 


=head4 Substituting into equations: B<sub()>

Example t/sub.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: expression substitution for a variable.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>2;
 
 my ($x, $y) = symbols(qw(x y));
  
 my $e  = 1+$x+$x**2/2+$x**3/6+$x**4/24+$x**5/120;
 
 ok(  $e->sub(x=>$y**2, z=>2)  <=> '$y**2+1/2*$y**4+1/6*$y**6+1/24*$y**8+1/120*$y**10+1'  );
 ok(  $e->sub(x=>1)            <=>  '163/60');          
 


The B<sub()> function example on line B<#1> demonstrates replacing
variables with expressions. The replacement specified for B<z> has no
effect as B<z> is not present in this equation.

Line B<#2> demonstrates the resulting rational fraction that arises when
all the variables have been replaced by constants. This package does not
convert fractions to decimal expressions in case there is a loss of
accuracy, however:

 my $e2 = $e->sub(x=>1);
 $result = eval "$e2";

or similar will produce approximate results.

At the moment only variables can be replaced by expressions. Mike
Schilli, m@perlmeister.com, has proposed that substitutions for
expressions should also be allowed, as in:

 $x/$y => $z


=head4 Solving equations: B<solve()>

Example t/solve1.t

 #!perl -w
 #______________________________________________________________________
 # Symbolic algebra: examples: simplify.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests=>3;
  
 my ($x, $v, $t) = symbols(qw(x v t));
 
 ok(   ($v eq $x / $t)->solve(qw(x in terms of v t))  ==  $v*$t  );      
 ok(   ($v eq $x / $t)->solve(qw(x in terms of v t))  !=  $v/$t  );      
 ok(   ($v eq $x / $t)->solve(qw(x in terms of v t)) <=> '$v*$t' );      
 


B<solve()> assumes that the equation on the left hand side is equal to
zero, applies various simplifications, then attempts to rearrange the
equation to obtain an equation for the first variable in the parameter
list assuming that the other terms mentioned in the parameter list are
known constants. There may of course be other unknown free variables in
the equation to be solved: the proposed solution is automatically tested
against the original equation to check that the proposed solution
removes these variables, an error is reported via B<die()> if it does not.

Example t/solve.t

 #!perl -w -I..
 #______________________________________________________________________
 # Symbolic algebra: quadratic equation.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::Simple tests => 2;
 
 my ($x) = symbols(qw(x));
 
 my  $p = $x**2-5*$x+6;        # Quadratic polynomial
 my ($a, $b) = @{($p > $x )};  # Solve for x
 
 print "x=$a,$b\n";            # Roots
 
 ok($a == 2);
 ok($b == 3);
 


If there are multiple solutions, (as in the case of polynomials), B<solve()>
returns an array of symbolic expressions containing the solutions.

=head3 Methods for performing Calculus

=head4 Differentiation: B<d()>

Example t/differentiation.t

 #!perl -w -I..
 #______________________________________________________________________
 # Symbolic algebra.
 # PhilipRBrenan@yahoo.com, 2004, Perl License.
 #______________________________________________________________________
 
 use Math::Algebra::Symbols;
 use Test::More tests => 5;
 
 $x = symbols(qw(x));
            
 ok(  sin($x)    ==  sin($x)->d->d->d->d);
 ok(  cos($x)    ==  cos($x)->d->d->d->d);
 ok(  exp($x)    ==  exp($x)->d($x)->d('x')->d->d);
 ok( (1/$x)->d   == -1/$x**2);
 ok(  exp($x)->d->d->d->d <=> 'exp($x)' );
 


B<d()> differentiates the equation on the left hand side by the named
variable.

The variable to be differentiated by may be explicitly specified,
either as a string or as single symbol; or it may be heuristically
guessed as follows:

If the equation to be differentiated refers to only one symbol, then
that symbol is used. If several symbols are present in the equation, but
only one of B<t>, B<x>, B<y>, B<z> is present, then that variable is
used in honor of Newton, Leibnitz, Cauchy.

=head2 Example of Equation Solving: the focii of a hyperbola:

 use Math::Algebra::Symbols;

 my ($a, $b, $x, $y, $i, $o) = symbols(qw(a b x y i 1));

 print
 "Hyperbola: Constant difference between distances from focii to locus of y=1/x",
 "\n  Assume by symmetry the focii are on ",
 "\n    the line y=x:                     ",  $f1 = $x + $i * $x,
 "\n  and equidistant from the origin:    ",  $f2 = -$f1,
 "\n  Choose a convenient point on y=1/x: ",  $a = $o+$i,
 "\n        and a general point on y=1/x: ",  $b = $y+$i/$y,
 "\n  Difference in distances from focii",
 "\n    From convenient point:            ",  $A = abs($a - $f2) - abs($a - $f1),  
 "\n    From general point:               ",  $B = abs($b - $f2) + abs($b - $f1),
 "\n\n  Solving for x we get:            x=", ($A - $B) > $x,
 "\n                         (should be: sqrt(2))",                        
 "\n  Which is indeed constant, as was to be demonstrated\n";

This example demonstrates the power of symbolic processing by finding the
focii of the curve B<y=1/x>, and incidentally, demonstrating that this curve
is a hyperbola.

=head1 EXPORTS

 use Math::Algebra::Symbols
   symbols=>'S',
   trig   => 1,
   hyper  => 1,
   complex=> 1;

=over

=item trig=>0

The default, do not export trigonometric functions. 

=item trig=>1

Export trigonometric functions: B<tan>, B<sec>, B<csc>, B<cot> to the
caller's namespace. B<sin>, B<cos> are created by default by overloading
the existing Perl B<sin> and B<cos> operators.

=item B<trigonometric>

Alias of B<trig>

=item hyperbolic=>0

The default, do not export hyperbolic functions. 

=item hyper=>1

Export hyperbolic functions: B<sinh>, B<cosh>, B<tanh>, B<sech>,
B<csch>, B<coth> to the caller's namespace.

=item B<hyperbolic>

Alias of B<hyper>

=item complex=>0

The default, do not export complex functions         

=item complex=>1

Export complex functions: B<conjugate>, B<cross>, B<dot>, B<im>,
B<modulus>, B<re>, B<unit> to the caller's namespace.

=back

=head1 PACKAGES

The B<Symbols> packages manipulate a sum of products representation of
an algebraic equation. The B<Symbols> package is the user interface to
the functionality supplied by the B<Symbols::Sum> and B<Symbols::Term>
packages.

=head2 Math::Algebra::Symbols::Term

B<Symbols::Term> represents a product term. A product term consists of the
number B<1>, optionally multiplied by:

=over

=item Variables

any number of variables raised to integer powers,

=item Coefficient

An integer coefficient optionally divided by a positive integer divisor,
both represented as BigInts if necessary. 

=item Sqrt

The sqrt of of any symbolic expression representable by the B<Symbols>
package, including minus one: represented as B<i>.

=item Reciprocal

The multiplicative inverse of any symbolic expression representable by
the B<Symbols> package: i.e. a B<SymbolsTerm> may be divided by any
symbolic expression representable by the B<Symbols> package.

=item Exp

The number B<e> raised to the power of any symbolic expression
representable by the B<Symbols> package.

=item Log

The logarithm to base B<e> of any symbolic expression representable by
the B<Symbols> package.

=back

Thus B<SymbolsTerm> can represent expressions like:

  2/3*$x**2*$y**-3*exp($i*$pi)*sqrt($z**3) / $x

but not:

  $x + $y

for which package B<Symbols::Sum> is required. 


=head2 Math::Algebra::Symbols::Sum

B<Symbols::Sum> represents a sum of product terms supplied by
B<Symbols::Term> and thus behaves as a polynomial. Operations such as
equation solving and differentiation are applied at this level.

The main benefit of programming B<Symbols::Term> and B<Symbols::Sum> as two
separate but related packages is Object Oriented Polymorphism. I.e. both
packages need to multiply items together: each package has its own B<multiply> method,
with Perl method lookup selecting the appropriate one as required. 

=head2 Math::Algebra::Symbols

Packaging the user functionality alone and separately in package
B<Symbols> allows the internal functions to be conveniently hidden from
user scripts.


=head1 AUTHOR

Philip R Brenan at B<philiprbrenan@yahoo.com>

=cut





=head2 Credits

=head3 Author

philiprbrenan@yahoo.com

=head3 Copyright

philiprbrenan@yahoo.com, 2004

=head3 License

Perl License.


=cut