/usr/bin/map2slim is in libgo-perl 0.13-1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 | #!/usr/bin/perl -w
eval 'exec /usr/bin/perl -w -S $0 ${1+"$@"}'
if 0; # not running under some shell
# POD docs at end of file
use strict;
use FileHandle;
use GO::Parser;
if (!@ARGV) {
system("perldoc $0");
exit;
}
if ("@ARGV" eq "-h") {
system("perldoc $0");
exit;
}
use Getopt::Long;
my $opt = {};
GetOptions($opt,
"help",
"dbname|d=s",
"host|h=s",
"out|o=s",
"err|e=s",
"force",
"ontdir=s",
"outmap=s",
"shownames",
"cache=s",
"inmap=s",
"gff",
"aspect|a=s",
"count|c",
"tab|t",
"bucket|b=s",
"evcode|ev=s@",
"verbose|v");
if ($opt->{help}) {
system("perldoc $0");
exit;
}
my $verbose = $opt->{verbose};
# cached results
my %memo_mapslim = ();
my $slimfile = shift @ARGV;
my $assocfile;
$assocfile = pop @ARGV unless $opt->{outmap};
my @ontfiles = @ARGV;
if ($opt->{ontdir}) {
@ontfiles = glob($opt->{ontdir}."/*{obo}");
@ontfiles = glob($opt->{ontdir}."/*{ontology}") unless @ontfiles;
}
# parse GO-slim and get the slim graph
my $parser = GO::Parser->new({handler=>'obj'});
printf STDERR "Parsing slimfile: $slimfile\n" if $verbose;
$parser->parse($slimfile);
my $gslim = $parser->handler->graph;
# optionally add "slop" terms; eg "OTHER nucleotide binding"
my $bucketf = $opt->{bucket};
if ($bucketf) {
printf STDERR "Adding bucket terms to: $bucketf\n" if $verbose;
$gslim->add_buckets;
if (-f $bucketf && !$opt->{force}) {
printf STDERR "Overwrite existing $bucketf file?\n(use -force option to skip this prompt)\n";
my $yesno = <STDIN>;
unless ($yesno =~ /^y/i) {
printf STDERR "Will not overwrite $bucketf. Quitting!\n";
exit 1;
}
}
my $fh = FileHandle->new(">$bucketf") ||
die("can't write to $bucketf");
$gslim->to_text_output(-fh=>$fh);
$fh->close;
}
# make a hash of term objects keyed by slim term accession
my $slimterms = $gslim->get_all_terms;
my %slimh = map {$_->acc => $_} @$slimterms;
# parse full ontology
# use cache if required (secret option)
my $cache = $opt->{cache};
require "Storable.pm" if $cache;
my $ont;
if ($cache && -f $cache) {
print STDERR "Using cache: $cache\n" if $verbose;
#$ont = YAML::LoadFile($cache);
$ont = Storable::retrieve($cache);
}
else {
if ($opt->{dbname}) {
# secret db mode
require "GO/AppHandle.pm";
my $apph = GO::AppHandle->connect(-dbname=>$opt->{dbname},
-dbhost=>$opt->{host},
);
$ont = $apph->get_graph(-template=>{terms=>{acc=>1}});
$apph->disconnect;
}
else {
my $parser2 = GO::Parser->new({handler=>'obj'});
foreach my $ontfile (@ontfiles) {
printf STDERR "Parsing ontology file: $ontfile\n" if $verbose;
$parser2->litemode(1);
$parser2->parse($ontfile);
}
$ont = $parser2->handler->graph;
}
if ($cache) {
print STDERR "Writing to cache: $cache\n" if $verbose;
#print YAML::DumpFile($cache, $ont);
store($ont, $cache);
}
}
# write output to stdout or a file
my $ofh;
if ($opt->{out}) {
$ofh = FileHandle->new(">".$opt->{out}) || die($opt->{out});
}
else {
$ofh = \*STDOUT;
}
# initialize counts to 0
my %countleaf = map { ($_ => 0) } keys %slimh;
my %countall = %countleaf;
# write out slim mappings and exit if in outmap mode
if ($opt->{outmap}) {
printf STDERR "Writing slim mappings\n" if $verbose;
my $outmap = FileHandle->new(">$opt->{outmap}") ||
die("cannot open $opt->{outmap} for writing");
# write slim mapping for all GO terms
my $terms = $ont->get_all_terms;
foreach my $t (sort {$a->acc cmp $b->acc} @$terms) {
my $acc = $t->acc;
my ($leaf_pnodes, $all_pnodes) = mapslim($acc);
if ($opt->{shownames}) {
printf $outmap "%s => %s // %s\n",
fmt_acc_names($acc),
fmt_acc_names(@$leaf_pnodes),
fmt_acc_names(@$all_pnodes),
}
else {
print $outmap "$acc => @$leaf_pnodes // @$all_pnodes\n";
}
}
$outmap->close;
exit 0;
}
# use pre-made mappings
if ($opt->{inmap}) {
printf STDERR "Using predefined mappings\n" if $verbose;
my $inmap = FileHandle->new(">$opt->{inmap}") ||
die("cannot open $opt->{inmap}");
while (<$inmap>) {
chomp;
if (/(\S+)\s*=\>\s*(.*)\s+\/\.\s+(.*)/) {
my $acc = $1;
$memo_mapslim{$acc} =
[[split(' ', $2)], [split(' ', $3)]];
}
else {
warn("illegal slimmap line: $_");
}
}
$inmap->close;
exit 0;
}
# hash of hashes - maps slim accessions to gene products
# key of outer hash is slim accession
# key of inner hash is gene product accession
# value is boolean
my %leafh = ();
my %allh = ();
my %counted = ();
my $fh;
if ($assocfile =~ /\.(Z|gz)$/) {
printf STDERR "Uncompressing and mapping $assocfile to slim\n" if $verbose;
$fh = FileHandle->new("gzip -dc $assocfile|") ||
die("cannot open assocfile: $assocfile");
}
else {
printf STDERR "Mapping $assocfile to slim\n" if $verbose;
$fh = FileHandle->new($assocfile) ||
die("cannot open assocfile: $assocfile");
}
my $gff = $opt->{gff};
while(<$fh>) {
next if /^\!/;
chomp;
next unless $_;
my @cols = split('\t', $_);
my $is_not = $cols[3];
my $acc = $cols[4];
if ($gff) {
$is_not = 0;
my $type = $cols[2];
if ($type =~ /^SO:/) {
$acc = $type;
}
else {
my $term = $ont->get_term_by_name($type);
if (!$term) {
warn("ignoring type: $type");
next;
}
$acc = $term->acc;
}
}
if (!$acc) {
printf STDERR "WARNING! NO ACCESSION: $_\n" if $verbose;
next;
}
my $prod = $cols[1];
if ($gff) {
$prod = $cols[8];
}
next if $is_not && $is_not =~ /^not$/i; # skip NOT assocs
if ($opt->{aspect}) {
next unless $cols[8] eq $opt->{aspect};
}
if ($opt->{count}) {
# save time - if we've encoutered this pair before
# then skip it
next if $counted{$acc.$prod};
$counted{$acc.$prod} = 1;
}
# map the annotated GO term up to the slim term(s)
my ($leaf_pnodes, $all_pnodes) = mapslim($acc);
# mark the gene product as belonging to that slim term
$leafh{$_}->{$prod} = 1 foreach @$leaf_pnodes;
$allh{$_}->{$prod} = 1 foreach @$all_pnodes;
unless ($opt->{count}) {
foreach my $replacement_acc (@$leaf_pnodes) {
if ($gff) {
$cols[2] = $replacement_acc;
}
else {
$cols[4] = $replacement_acc;
}
print $ofh join("\t", @cols), "\n";
}
}
}
close($fh) || die("problem reading $assocfile");
if ($opt->{count}) {
printf STDERR "Getting gene product counts\n" if $verbose;
# iterate through the slim graph, depth-first traversal,
# printing out slim term accession & name, and the total
# distinct gene products attached to that term or its children
$gslim->iterate(
sub {
my $ni = shift;
my $t = $ni->term;
return if $t->is_relationship_type;
my $acc = $t->acc;
my $t2; # equivalent term in GO-full
if ($acc) {
$t2 = $ont->get_term($acc);
} else {
# no equivalent term - the slim id has been
# retired and not tracked; this should
# only happen with old slims
$acc = "NO_ACC";
}
if ($opt->{tab}) {
my $depth = $ni->depth +1;
printf $ofh ' ' x $depth;
}
my $count_leaf = scalar(keys %{$leafh{$acc} || {}}) || 0;
my $count_all = scalar(keys %{$allh{$acc} || {}}) || 0;
printf $ofh ("%s %s (%s)\t%d\t%d\t%s\t%s\n",
$acc,
$t->name,
$t2 && $t2->name ? $t2->name : '?',
$count_leaf || 0,
$count_all || 0,
$t2 && $t2->is_obsolete ? 'OBSOLETE' : '',
$t->type || '',
);
return;
},
{no_duplicates=>1}
);
}
$ofh->close;
printf STDERR "Done!\n" if $verbose;
exit 0;
# function: mapslim($acc)
#
# argument: accession [in full GO]
# returns: slim-direct-acc-list, slim-all-acc-list
#
# slim-direct-acc-list is the slim accs that the input acc DIRECTLY maps to
# - this corresponds to the most pertinent slim term
#
# slim-all-acc-list is the slim accs that the input acc maps to
# DIRECT & INDIRECT
# - this corresponds to ALL the slim terms that are ancestors of input term
#
# algorithm for finding most pertinent slim term:
#
# IF a GO acc has two ancestors in the slim,
# AND the parents are NOT ancestors of one another
# THEN the acc maps to BOTH parents
#
# IF an acc has two ancestors in the slim,
# AND the parents ARE ancestors of one another,
# THEN the MORE SPECIFIC parent acc is returned
#
sub mapslim {
my $acc = shift;
# save time - never recompute on the same accession
my $memo = $memo_mapslim{$acc};
return (@$memo) if $memo; # return same result
# trace the paths to root of the input acc in the full GO
# (there may be multiple paths to the root)
my $paths = $ont->paths_to_top($acc);
my $term = $ont->get_term($acc);
if (!$term) {
# no such accession in GO
return ([],[]);
}
# keep hash, keyed by slim accession, boolean value -
# will have true if the slim term is an ancestor of $acc
my %ancestorh = (); # ALL ancestors of $acc in slim
my %pancestorh = (); # ancestors of $acc in slim for which there
# is a path through another ancestor
foreach my $path (@$paths) {
my $terms = $path->term_list;
unshift(@$terms, $term); # make path inclusive of base term
# if there are "slop" terms (eg OTHER nucleotide binding)
# AND there is an IMPLICIT path through this slop term,
# then add this to the explicit path
if ($opt->{bucket}) {
my $got_leaf = 0;
@$terms =
map {
my $slimt = $slimh{$_};
my @R = ($_);
if ($slimt && !$got_leaf) {
my $crs = $gslim->get_child_relationships($_);
my @brels = grep {$_->type eq "bucket"} @$crs;
if (@brels) {
my $bterm = $gslim->get_term($brels[0]->acc2);
@R = ($bterm, $_);
}
}
if ($slimt) {
$got_leaf = 1;
}
@R;
} @$terms;
}
my $got_leaf = 0;
# follow path from $acc up to root, checking to
# see if the intermediate term is in the slim
foreach my $term (@$terms) {
my $pacc = $term->acc;
if ($slimh{$pacc}) {
# intermediate term is in the slim
$ancestorh{$pacc} = 1;
if ($got_leaf) {
$pancestorh{$pacc} = 1;
}
$got_leaf = 1;
}
}
}
# find unique ancestors, ie ancestors that are not intermediates to
# another anestor
my @uancestors = grep {!$pancestorh{$_}} keys %ancestorh;
$memo = [[@uancestors], [keys %ancestorh]];
#printf STDERR "SLIM($acc) = @{$memo->[0]} // @{$memo->[1]}\n";
$memo_mapslim{$acc} = $memo;
return @$memo;
}
sub fmt_acc_names {
my @accs = @_;
return join(' ',
map {
my $t = $ont->get_term($_);
if (!$t) {
$t = $gslim->get_term($_);
}
sprintf('%s "%s"',$_,$t ? $t->name : '?');
} @accs);
}
__END__
=head1 NAME
map2slim - maps gene associations to a 'slim' ontology
=head1 SYNOPSIS
cd go
map2slim GO_slims/goslim_generic.obo ontology/gene_ontology.obo gene-associations/gene_association.fb
=head1 DESCRIPTION
Given a GO slim file, and a current ontology (in one or more files),
this script will map a gene association file (containing annotations
to the full GO) to the terms in the GO slim.
The script can be used to either create a new gene association file,
containing the most pertinent GO slim accessions, or in count-mode, in
which case it will give distinct gene product counts for each slim
term
The association file format is described here:
L<http://www.geneontology.org/GO.annotation.shtml#file>
=head1 ARGUMENTS
=over
=item -b B<bucket slim file>
This argument adds B<bucket terms> to the slim ontology; see the
documentation below for an explanation. The new slim ontology file,
including bucket terms will be written to B<bucket slim file>
=item -outmap B<slim mapping file>
This will generate a mapping file for every term in the full ontology
showing both the most pertinent slim term and all slim terms that are
ancestors. If you use this option, do NOT supply a gene-associations
file
=item shownames
(Only works with -outmap)
Show the names of the term in the slim mapping file
=item -c
This will force map2slim to give counts of the assoc file, rather than map it
=item -t
When used in conjunction with B<-c> will tab the output so that the
indentation reflects the tree hierarchy in the slim file
=item -o B<out file>
This will write the mapped assocs (or counts) to the specified file,
rather than to the screen
=back
=head1 DOWNLOAD
This script is part of the B<go-perl> package, available from CPAN
L<http://search.cpan.org/~cmungall/go-perl/>
This script will not work without installing go-perl
=head2 MAPPING ALGORITHM
GO is a DAG, not a tree. This means that there is often more than one
path from a GO term up to the root Gene_Ontology node; the path may
intersect multiple terms in the slim ontology - which means that one
annotation can map to multiple slim terms!
(B<note> you need to view this online to see the image below - if you
are not viewing this on the http://www.geneontology.org site, you can look at the following URL:
L<http://geneontology.cvs.sourceforge.net/*checkout*/geneontology/go-dev/go-perl/doc/map2slim.gif> )
=begin html
<img src="http://geneontology.cvs.sourceforge.net/*checkout*/geneontology/go-dev/go-perl/doc/map2slim.gif"/>
=end html
A hypothetical example blue circles show terms in the GO slim, and yellow circles show terms in the full ontology. The full ontology subsumes the slim, so the blue terms are also in the ontology.
GO ID MAPS TO SLIM ID ALL SLIM ANCESTORS
===== =============== ==================
5 2+3 2,3,1
6 3 only 3,1
7 4 only 4,3,1
8 3 only 3,1
9 4 only 4,3,1
10 2+3 2,3,1
The 2nd column shows the most pertinent ID(s) in the slim the direct mapping. The 3rd column shows all ancestors in the slim.
Note in particular the mapping of ID 9 although this has two paths to the root through the slim via 3 and 4, 3 is discarded because it is subsumed by 4.
On the other hand, 10 maps to both 2 and 3 because these are both the first slim ID in the two valid paths to the root, and neither subsumes the other.
The algorithm used is:
to map any one term in the full ontology:
find all valid paths through to the root node in the full ontology
for each path, take the first slim term encountered in the path
discard any redundant slim terms in this set ie slim terms subsumed by other slim terms in the set
=head2 BUCKET TERMS
If you run the script with the -b option, bucket terms will be added. For any term P in the slim, if P has at least one child C, a bucket term P' will be created under P. This is a catch-all term for mapping any term in the full ontology that is a descendant of P, but NOT a descendant of any child of P in the slim ontology.
For example, the slim generic.0208 has the following terms and structure:
%DNA binding ; GO:0003677
%chromatin binding ; GO:0003682
%transcription factor activity ; GO:0003700, GO:0000130
After adding bucket terms, it will look like this:
%DNA binding ; GO:0003677
%chromatin binding ; GO:0003682
%transcription factor activity ; GO:0003700 ; synonym:GO:0000130
@bucket:Z-OTHER-DNA binding ; slim_temp_id:12
Terms from the full ontology that are other children of DNA binding, such as single-stranded DNA binding and its descendents will map to the bucket term.
The bucket term has a slim ID which is transient and is there only to facilitate the mapping. It should not be used externally.
The bucket term has the prefix Z-OTHER; the Z is a hack to make sure that the term is always listed last in the alphabetic ordering.
The algorithm is slightly modified if bucket terms are used. The bucket term has an implicit relationship to all OTHER siblings not in the slim.
=head3 Do I need bucket terms?
Nowadays most slim files are entirely or nearly 'complete', that is
there are no gaps. This means the the -b option will not produce
noticeable different results. For example, you may see a bucket term
OTHER-binding created, with nothing annotated to it: because all the
children of binding in the GO are represented in the slim file.
The bucket option is really only necessary for some of the older
archived slim files, which are static and were generated in a fairly
ad-hoc way; they tend to accumulate 'gaps' over time (eg GO will add a
new child of binding, but the static slim file won't be up to date, so
any gene products annotated to this new term will map to OTHER-binding
in the slim)
=head2 GRAPH MISMATCHES
Note that the slim ontology file(s) may be out of date with respect to
the current ontology.
Currently map2slim does not flag graph mismatches between the slim
graph and the graph in the full ontology file; it takes the full
ontology as being the real graph. However, the slim ontology will be
used to format the results if you select B<-t -c> as options.
=head2 OUTPUT
In normal mode, a standard format gene-association file will be
written. The GO ID column (5) will contain GO slim IDs. The mapping
corresponds to the 2nd column in the table above. Note that the output
file may contain more lines that the input file. This is because some
full GO IDs have more than one pertinent slim ID.
=head3 COUNT MODE
map2slim can be run with the -c option, which will gives the counts of
distinct gene products mapped to each slim term. The columns are as follows
=over
=item GO Term
The first column is the GO ID followed by the term name (the term name
is provided as it is found in both the full GO and slim ontologies -
these will usually be the same but occasionally the slim file will
lage behind changes in the GO file)
=item Count of gene products for which this is the most relevant slim term
the number of distinct gene products for which this is the most
pertinent/direct slim ID. By most direct we mean that either the
association is made directly to this term, OR the association is made
to a child of this slim term AND there is no child slim term which the
association maps to.
For most slims, this count will be equivalent to the number of
associations directly mapped to this slim term. However, some older
slim files are "spotty" in that they admit "gaps". For example, if the
slim has all children of "biological process" with the exception of
"behavior" then all annotations to "behavior" or its children will be
counted here
see example below
=item Count of gene products inferred to be associated with slim term
and the number of distinct gene products which are annotated
to any descendant of this slim ID (or annotated directly to the slim
ID).
=item obsoletion flag
=item GO ontology
=back
To take an example; if we use -t and -c like this:
map2slim -t -c GO_slims/goslim_generic.obo ontology/gene_ontology.obo gene-associations/gene_association.fb
Then part of the results may look like this:
GO:0008150 biological_process (biological_process) 34 10025 biological_process
GO:0007610 behavior (behavior) 632 632 biological_process
GO:0000004 biological process unknown (biological process unknown) 832 832 biological_process
GO:0007154 cell communication (cell communication) 333 1701 biological_process
GO:0008037 cell recognition (cell recognition) 19 19 biological_process
19 products were mapped to GO:0008037 or one of its children. (GO:0008037 is a leaf node in the slim, so the two counts are identical).
On the other hand, GO:0008150 only gets 34 products for which this is
the most relevant term. This is because most annotations would map to
some child of GO:0008150 in the slim, such as GO:0007610
(behavior). These 34 gene products are either annotated directly to
GO:0008150, or to some child of this term which is not in the
slim. This can point to 'gaps' in the slim. Note that running map2slim
with the -b option will 'plug' these gaps with artificial filler terms.
=head1 AUTHOR
Chris Mungall BDGP
=head1 SEE ALSO
http://www.godatabase.org/dev
L<GO::Parser>
L<GO::Model::Graph>
=cut
|