/usr/include/gmm/gmm_vector.h is in libgmm-dev 4.0.0-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 | // -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2002-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++ is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
//
// As a special exception, you may use this file as it is a part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this file,
// or you compile this file and link it with other files to produce an
// executable, this file does not by itself cause the resulting executable
// to be covered by the GNU Lesser General Public License. This exception
// does not however invalidate any other reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================
/**@file gmm_vector.h
@author Yves Renard <Yves.Renard@insa-lyon.fr>
@date October 13, 2002.
@brief Declaration of the vector types (gmm::rsvector, gmm::wsvector,
gmm::slvector ,..)
*/
#ifndef GMM_VECTOR_H__
#define GMM_VECTOR_H__
#include <map>
#include "gmm_interface.h"
namespace gmm {
/*************************************************************************/
/* */
/* Class ref_elt_vector: reference on a vector component. */
/* */
/*************************************************************************/
template<typename T, typename V> class ref_elt_vector {
V *pm;
size_type l;
public :
operator T() const { return pm->r(l); }
ref_elt_vector(V *p, size_type ll) : pm(p), l(ll) {}
inline ref_elt_vector &operator =(T v)
{ (*pm).w(l,v); return *this; }
inline bool operator ==(T v) const { return ((*pm).r(l) == v); }
inline bool operator !=(T v) const { return ((*pm).r(l) != v); }
inline ref_elt_vector &operator +=(T v)
{ (*pm).w(l,(*pm).r(l) + v); return *this; }
inline ref_elt_vector &operator -=(T v)
{ (*pm).w(l,(*pm).r(l) - v); return *this; }
inline ref_elt_vector &operator /=(T v)
{ (*pm).w(l,(*pm).r(l) / v); return *this; }
inline ref_elt_vector &operator *=(T v)
{ (*pm).w(l,(*pm).r(l) * v); return *this; }
inline ref_elt_vector &operator =(const ref_elt_vector &re)
{ *this = T(re); return *this; }
T operator +() { return T(*this); } // necessary for unknow reason
T operator -() { return -T(*this); } // necessary for unknow reason
T operator +(T v) { return T(*this)+ v; } // necessary for unknow reason
T operator -(T v) { return T(*this)- v; } // necessary for unknow reason
T operator *(T v) { return T(*this)* v; } // necessary for unknow reason
T operator /(T v) { return T(*this)/ v; } // necessary for unknow reason
};
template<typename T, typename V> inline
bool operator ==(T v, const ref_elt_vector<T, V> &re) { return (v==T(re)); }
template<typename T, typename V> inline
bool operator !=(T v, const ref_elt_vector<T, V> &re) { return (v!=T(re)); }
template<typename T, typename V> inline
T &operator +=(T &v, const ref_elt_vector<T, V> &re)
{ v += T(re); return v; }
template<typename T, typename V> inline
T &operator -=(T &v, const ref_elt_vector<T, V> &re)
{ v -= T(re); return v; }
template<typename T, typename V> inline
T &operator *=(T &v, const ref_elt_vector<T, V> &re)
{ v *= T(re); return v; }
template<typename T, typename V> inline
T &operator /=(T &v, const ref_elt_vector<T, V> &re)
{ v /= T(re); return v; }
template<typename T, typename V> inline
T operator +(const ref_elt_vector<T, V> &re) { return T(re); }
template<typename T, typename V> inline
T operator -(const ref_elt_vector<T, V> &re) { return -T(re); }
template<typename T, typename V> inline
T operator +(const ref_elt_vector<T, V> &re, T v) { return T(re)+ v; }
template<typename T, typename V> inline
T operator +(T v, const ref_elt_vector<T, V> &re) { return v+ T(re); }
template<typename T, typename V> inline
T operator -(const ref_elt_vector<T, V> &re, T v) { return T(re)- v; }
template<typename T, typename V> inline
T operator -(T v, const ref_elt_vector<T, V> &re) { return v- T(re); }
template<typename T, typename V> inline
T operator *(const ref_elt_vector<T, V> &re, T v) { return T(re)* v; }
template<typename T, typename V> inline
T operator *(T v, const ref_elt_vector<T, V> &re) { return v* T(re); }
template<typename T, typename V> inline
T operator /(const ref_elt_vector<T, V> &re, T v) { return T(re)/ v; }
template<typename T, typename V> inline
T operator /(T v, const ref_elt_vector<T, V> &re) { return v/ T(re); }
template<typename T, typename V> inline
typename number_traits<T>::magnitude_type
abs(const ref_elt_vector<T, V> &re) { return gmm::abs(T(re)); }
template<typename T, typename V> inline
T sqr(const ref_elt_vector<T, V> &re) { return gmm::sqr(T(re)); }
template<typename T, typename V> inline
typename number_traits<T>::magnitude_type
abs_sqr(const ref_elt_vector<T, V> &re) { return gmm::abs_sqr(T(re)); }
template<typename T, typename V> inline
T conj(const ref_elt_vector<T, V> &re) { return gmm::conj(T(re)); }
template<typename T, typename V> std::ostream &operator <<
(std::ostream &o, const ref_elt_vector<T, V> &re) { o << T(re); return o; }
template<typename T, typename V> inline
typename number_traits<T>::magnitude_type
real(const ref_elt_vector<T, V> &re) { return gmm::real(T(re)); }
template<typename T, typename V> inline
typename number_traits<T>::magnitude_type
imag(const ref_elt_vector<T, V> &re) { return gmm::imag(T(re)); }
/*************************************************************************/
/* */
/* Class wsvector: sparse vector optimized for random write operations. */
/* */
/*************************************************************************/
template<typename T> struct wsvector_iterator
: public std::map<size_type, T>::iterator {
typedef typename std::map<size_type, T>::iterator base_it_type;
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
// typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
reference operator *() const { return (base_it_type::operator*()).second; }
pointer operator->() const { return &(operator*()); }
size_type index(void) const { return (base_it_type::operator*()).first; }
wsvector_iterator(void) {}
wsvector_iterator(const base_it_type &it) : base_it_type(it) {}
};
template<typename T> struct wsvector_const_iterator
: public std::map<size_type, T>::const_iterator {
typedef typename std::map<size_type, T>::const_iterator base_it_type;
typedef T value_type;
typedef const value_type* pointer;
typedef const value_type& reference;
// typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
reference operator *() const { return (base_it_type::operator*()).second; }
pointer operator->() const { return &(operator*()); }
size_type index(void) const { return (base_it_type::operator*()).first; }
wsvector_const_iterator(void) {}
wsvector_const_iterator(const wsvector_iterator<T> &it)
: base_it_type(it) {}
wsvector_const_iterator(const base_it_type &it) : base_it_type(it) {}
};
/**
sparse vector built upon std::map.
Read and write access are quite fast (log n)
*/
template<typename T> class wsvector : public std::map<size_type, T> {
public:
typedef typename std::map<int, T>::size_type size_type;
typedef std::map<size_type, T> base_type;
typedef typename base_type::iterator iterator;
typedef typename base_type::const_iterator const_iterator;
protected:
size_type nbl;
public:
void clean(double eps);
void resize(size_type);
inline ref_elt_vector<T, wsvector<T> > operator [](size_type c)
{ return ref_elt_vector<T, wsvector<T> >(this, c); }
inline void w(size_type c, const T &e) {
GMM_ASSERT2(c < nbl, "out of range");
if (e == T(0)) { base_type::erase(c); }
else base_type::operator [](c) = e;
}
inline T r(size_type c) const {
GMM_ASSERT2(c < nbl, "out of range");
const_iterator it = this->lower_bound(c);
if (it != this->end() && c == it->first) return it->second;
else return T(0);
}
inline T operator [](size_type c) const { return r(c); }
size_type nb_stored(void) const { return base_type::size(); }
size_type size(void) const { return nbl; }
void swap(wsvector<T> &v)
{ std::swap(nbl, v.nbl); std::map<size_type, T>::swap(v); }
/* Constructeurs */
void init(size_type l) { nbl = l; this->clear(); }
explicit wsvector(size_type l){ init(l); }
wsvector(void) { init(0); }
};
template<typename T> void wsvector<T>::clean(double eps) {
iterator it = this->begin(), itf = it, ite = this->end();
while (it != ite) {
++itf; if (gmm::abs(it->second) <= eps) erase(it); it = itf;
}
}
template<typename T> void wsvector<T>::resize(size_type n) {
if (n < nbl) {
iterator it = this->begin(), itf = it, ite = this->end();
while (it != ite) { ++itf; if (it->first >= n) erase(it); it = itf; }
}
nbl = n;
}
template <typename T> struct linalg_traits<wsvector<T> > {
typedef wsvector<T> this_type;
typedef this_type origin_type;
typedef linalg_false is_reference;
typedef abstract_vector linalg_type;
typedef T value_type;
typedef ref_elt_vector<T, wsvector<T> > reference;
typedef wsvector_iterator<T> iterator;
typedef wsvector_const_iterator<T> const_iterator;
typedef abstract_sparse storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v) { return v.begin(); }
static const_iterator begin(const this_type &v) { return v.begin(); }
static iterator end(this_type &v) { return v.end(); }
static const_iterator end(const this_type &v) { return v.end(); }
static origin_type* origin(this_type &v) { return &v; }
static const origin_type* origin(const this_type &v) { return &v; }
static void clear(origin_type* o, const iterator &, const iterator &)
{ o->clear(); }
static void do_clear(this_type &v) { v.clear(); }
static value_type access(const origin_type *o, const const_iterator &,
const const_iterator &, size_type i)
{ return (*o)[i]; }
static reference access(origin_type *o, const iterator &, const iterator &,
size_type i)
{ return (*o)[i]; }
static void resize(this_type &v, size_type n) { v.resize(n); }
};
template<typename T> std::ostream &operator <<
(std::ostream &o, const wsvector<T>& v) { gmm::write(o,v); return o; }
/******* Optimized BLAS for wsvector<T> **********************************/
template <typename T> inline void copy(const wsvector<T> &v1,
wsvector<T> &v2) {
GMM_ASSERT2(vect_size(v1) == vect_size(v2), "dimensions mismatch");
v2 = v1;
}
template <typename T> inline
void copy(const wsvector<T> &v1, const simple_vector_ref<wsvector<T> *> &v2){
simple_vector_ref<wsvector<T> *>
*svr = const_cast<simple_vector_ref<wsvector<T> *> *>(&v2);
wsvector<T>
*pv = const_cast<wsvector<T> *>(v2.origin);
GMM_ASSERT2(vect_size(v1) == vect_size(v2), "dimensions mismatch");
*pv = v1; svr->begin_ = vect_begin(*pv); svr->end_ = vect_end(*pv);
}
template <typename T> inline
void copy(const simple_vector_ref<const wsvector<T> *> &v1,
wsvector<T> &v2)
{ copy(*(v1.origin), v2); }
template <typename T> inline
void copy(const simple_vector_ref<wsvector<T> *> &v1, wsvector<T> &v2)
{ copy(*(v1.origin), v2); }
template <typename T> inline void clean(wsvector<T> &v, double eps) {
typedef typename number_traits<T>::magnitude_type R;
typename wsvector<T>::iterator it = v.begin(), ite = v.end(), itc;
while (it != ite)
if (gmm::abs((*it).second) <= R(eps))
{ itc=it; ++it; v.erase(itc); } else ++it;
}
template <typename T>
inline void clean(const simple_vector_ref<wsvector<T> *> &l, double eps) {
simple_vector_ref<wsvector<T> *>
*svr = const_cast<simple_vector_ref<wsvector<T> *> *>(&l);
wsvector<T>
*pv = const_cast<wsvector<T> *>((l.origin));
clean(*pv, eps);
svr->begin_ = vect_begin(*pv); svr->end_ = vect_end(*pv);
}
template <typename T>
inline size_type nnz(const wsvector<T>& l) { return l.nb_stored(); }
/*************************************************************************/
/* */
/* rsvector: sparse vector optimized for linear algebra operations. */
/* */
/*************************************************************************/
template<typename T> struct elt_rsvector_ {
size_type c; T e;
/* e is initialized by default to avoid some false warnings of valgrind..
(from http://valgrind.org/docs/manual/mc-manual.html:
When memory is read into the CPU's floating point registers, the
relevant V bits are read from memory and they are immediately
checked. If any are invalid, an uninitialised value error is
emitted. This precludes using the floating-point registers to copy
possibly-uninitialised memory, but simplifies Valgrind in that it
does not have to track the validity status of the floating-point
registers.
*/
elt_rsvector_(void) : e(0) {}
elt_rsvector_(size_type cc) : c(cc), e(0) {}
elt_rsvector_(size_type cc, const T &ee) : c(cc), e(ee) {}
bool operator < (const elt_rsvector_ &a) const { return c < a.c; }
bool operator == (const elt_rsvector_ &a) const { return c == a.c; }
bool operator != (const elt_rsvector_ &a) const { return c != a.c; }
};
template<typename T> struct rsvector_iterator {
typedef typename std::vector<elt_rsvector_<T> >::iterator IT;
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
typedef rsvector_iterator<T> iterator;
IT it;
reference operator *() const { return it->e; }
pointer operator->() const { return &(operator*()); }
iterator &operator ++() { ++it; return *this; }
iterator operator ++(int) { iterator tmp = *this; ++(*this); return tmp; }
iterator &operator --() { --it; return *this; }
iterator operator --(int) { iterator tmp = *this; --(*this); return tmp; }
bool operator ==(const iterator &i) const { return it == i.it; }
bool operator !=(const iterator &i) const { return !(i == *this); }
size_type index(void) const { return it->c; }
rsvector_iterator(void) {}
rsvector_iterator(const IT &i) : it(i) {}
};
template<typename T> struct rsvector_const_iterator {
typedef typename std::vector<elt_rsvector_<T> >::const_iterator IT;
typedef T value_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
typedef rsvector_const_iterator<T> iterator;
IT it;
reference operator *() const { return it->e; }
pointer operator->() const { return &(operator*()); }
size_type index(void) const { return it->c; }
iterator &operator ++() { ++it; return *this; }
iterator operator ++(int) { iterator tmp = *this; ++(*this); return tmp; }
iterator &operator --() { --it; return *this; }
iterator operator --(int) { iterator tmp = *this; --(*this); return tmp; }
bool operator ==(const iterator &i) const { return it == i.it; }
bool operator !=(const iterator &i) const { return !(i == *this); }
rsvector_const_iterator(void) {}
rsvector_const_iterator(const rsvector_iterator<T> &i) : it(i.it) {}
rsvector_const_iterator(const IT &i) : it(i) {}
};
/**
sparse vector built upon std::vector. Read access is fast,
but insertion is O(n)
*/
template<typename T> class rsvector : public std::vector<elt_rsvector_<T> > {
public:
typedef std::vector<elt_rsvector_<T> > base_type_;
typedef typename base_type_::iterator iterator;
typedef typename base_type_::const_iterator const_iterator;
typedef typename base_type_::size_type size_type;
typedef T value_type;
protected:
size_type nbl; /* size of the vector. */
public:
void sup(size_type j);
void base_resize(size_type n) { base_type_::resize(n); }
void resize(size_type);
ref_elt_vector<T, rsvector<T> > operator [](size_type c)
{ return ref_elt_vector<T, rsvector<T> >(this, c); }
void w(size_type c, const T &e);
T r(size_type c) const;
void swap_indices(size_type i, size_type j);
inline T operator [](size_type c) const { return r(c); }
size_type nb_stored(void) const { return base_type_::size(); }
size_type size(void) const { return nbl; }
void clear(void) { base_type_::resize(0); }
void swap(rsvector<T> &v)
{ std::swap(nbl, v.nbl); std::vector<elt_rsvector_<T> >::swap(v); }
/* Constructeurs */
explicit rsvector(size_type l) : nbl(l) { }
rsvector(void) : nbl(0) { }
};
template <typename T>
void rsvector<T>::swap_indices(size_type i, size_type j) {
if (i > j) std::swap(i, j);
if (i != j) {
int situation = 0;
elt_rsvector_<T> ei(i), ej(j), a;
iterator it, ite, iti, itj;
iti = std::lower_bound(this->begin(), this->end(), ei);
if (iti != this->end() && iti->c == i) situation += 1;
itj = std::lower_bound(this->begin(), this->end(), ej);
if (itj != this->end() && itj->c == j) situation += 2;
switch (situation) {
case 1 : a = *iti; a.c = j; it = iti; ++it; ite = this->end();
for (; it != ite && it->c <= j; ++it, ++iti) *iti = *it;
*iti = a;
break;
case 2 : a = *itj; a.c = i; it = itj; ite = this->begin();
if (it != ite) {
--it;
while (it->c >= i) { *itj = *it; --itj; if (it==ite) break; --it; }
}
*itj = a;
break;
case 3 : std::swap(iti->e, itj->e);
break;
}
}
}
template <typename T> void rsvector<T>::sup(size_type j) {
if (nb_stored() != 0) {
elt_rsvector_<T> ev(j);
iterator it = std::lower_bound(this->begin(), this->end(), ev);
if (it != this->end() && it->c == j) {
for (iterator ite = this->end() - 1; it != ite; ++it) *it = *(it+1);
base_type_::resize(nb_stored()-1);
}
}
}
template<typename T> void rsvector<T>::resize(size_type n) {
if (n < nbl) {
for (size_type i = 0; i < nb_stored(); ++i)
if (base_type_::operator[](i).c >= n) { base_resize(i); break; }
}
nbl = n;
}
template <typename T> void rsvector<T>::w(size_type c, const T &e) {
GMM_ASSERT2(c < nbl, "out of range");
if (e == T(0)) sup(c);
else {
elt_rsvector_<T> ev(c, e);
if (nb_stored() == 0) {
base_type_::resize(1,ev);
}
else {
iterator it = std::lower_bound(this->begin(), this->end(), ev);
if (it != this->end() && it->c == c) it->e = e;
else {
size_type ind = it - this->begin();
base_type_::resize(nb_stored()+1, ev);
if (ind != nb_stored() - 1) {
it = this->begin() + ind;
for (iterator ite = this->end() - 1; ite != it; --ite)
*ite = *(ite-1);
*it = ev;
}
}
}
}
}
template <typename T> T rsvector<T>::r(size_type c) const {
GMM_ASSERT2(c < nbl, "out of range");
if (nb_stored() != 0) {
elt_rsvector_<T> ev(c);
const_iterator it = std::lower_bound(this->begin(), this->end(), ev);
if (it != this->end() && it->c == c) return it->e;
}
return T(0);
}
template <typename T> struct linalg_traits<rsvector<T> > {
typedef rsvector<T> this_type;
typedef this_type origin_type;
typedef linalg_false is_reference;
typedef abstract_vector linalg_type;
typedef T value_type;
typedef ref_elt_vector<T, rsvector<T> > reference;
typedef rsvector_iterator<T> iterator;
typedef rsvector_const_iterator<T> const_iterator;
typedef abstract_sparse storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v) { return iterator(v.begin()); }
static const_iterator begin(const this_type &v)
{ return const_iterator(v.begin()); }
static iterator end(this_type &v) { return iterator(v.end()); }
static const_iterator end(const this_type &v)
{ return const_iterator(v.end()); }
static origin_type* origin(this_type &v) { return &v; }
static const origin_type* origin(const this_type &v) { return &v; }
static void clear(origin_type* o, const iterator &, const iterator &)
{ o->clear(); }
static void do_clear(this_type &v) { v.clear(); }
static value_type access(const origin_type *o, const const_iterator &,
const const_iterator &, size_type i)
{ return (*o)[i]; }
static reference access(origin_type *o, const iterator &, const iterator &,
size_type i)
{ return (*o)[i]; }
static void resize(this_type &v, size_type n) { v.resize(n); }
};
template<typename T> std::ostream &operator <<
(std::ostream &o, const rsvector<T>& v) { gmm::write(o,v); return o; }
/******* Optimized operations for rsvector<T> ****************************/
template <typename T> inline void copy(const rsvector<T> &v1,
rsvector<T> &v2) {
GMM_ASSERT2(vect_size(v1) == vect_size(v2), "dimensions mismatch");
v2 = v1;
}
template <typename T> inline
void copy(const rsvector<T> &v1, const simple_vector_ref<rsvector<T> *> &v2){
simple_vector_ref<rsvector<T> *>
*svr = const_cast<simple_vector_ref<rsvector<T> *> *>(&v2);
rsvector<T>
*pv = const_cast<rsvector<T> *>((v2.origin));
GMM_ASSERT2(vect_size(v1) == vect_size(v2), "dimensions mismatch");
*pv = v1; svr->begin_ = vect_begin(*pv); svr->end_ = vect_end(*pv);
}
template <typename T> inline
void copy(const simple_vector_ref<const rsvector<T> *> &v1,
rsvector<T> &v2)
{ copy(*(v1.origin), v2); }
template <typename T> inline
void copy(const simple_vector_ref<rsvector<T> *> &v1, rsvector<T> &v2)
{ copy(*(v1.origin), v2); }
template <typename V, typename T> inline void add(const V &v1,
rsvector<T> &v2) {
if ((const void *)(&v1) != (const void *)(&v2)) {
GMM_ASSERT2(vect_size(v1) == vect_size(v2), "dimensions mismatch");
add_rsvector(v1, v2, typename linalg_traits<V>::storage_type());
}
}
template <typename V, typename T>
inline void add_rsvector(const V &v1, rsvector<T> &v2, abstract_dense)
{ add(v1, v2, abstract_dense(), abstract_sparse()); }
template <typename V, typename T>
inline void add_rsvector(const V &v1, rsvector<T> &v2, abstract_skyline)
{ add(v1, v2, abstract_skyline(), abstract_sparse()); }
template <typename V, typename T>
void add_rsvector(const V &v1, rsvector<T> &v2, abstract_sparse) {
add_rsvector(v1, v2, typename linalg_traits<V>::index_sorted());
}
template <typename V, typename T>
void add_rsvector(const V &v1, rsvector<T> &v2, linalg_false) {
add(v1, v2, abstract_sparse(), abstract_sparse());
}
template <typename V, typename T>
void add_rsvector(const V &v1, rsvector<T> &v2, linalg_true) {
typename linalg_traits<V>::const_iterator it1 = vect_const_begin(v1),
ite1 = vect_const_end(v1);
typename rsvector<T>::iterator it2 = v2.begin(), ite2 = v2.end(), it3;
size_type nbc = 0, old_nbc = v2.nb_stored();
for (; it1 != ite1 && it2 != ite2 ; ++nbc)
if (it1.index() == it2->c) { ++it1; ++it2; }
else if (it1.index() < it2->c) ++it1; else ++it2;
for (; it1 != ite1; ++it1) ++nbc;
for (; it2 != ite2; ++it2) ++nbc;
v2.base_resize(nbc);
it3 = v2.begin() + old_nbc;
it2 = v2.end(); ite2 = v2.begin();
it1 = vect_end(v1); ite1 = vect_const_begin(v1);
while (it1 != ite1 && it3 != ite2) {
--it3; --it1; --it2;
if (it3->c > it1.index()) { *it2 = *it3; ++it1; }
else if (it3->c == it1.index()) { *it2=*it3; it2->e+=*it1; }
else { it2->c = it1.index(); it2->e = *it1; ++it3; }
}
while (it1 != ite1) { --it1; --it2; it2->c = it1.index(); it2->e = *it1; }
}
template <typename V, typename T> void copy(const V &v1, rsvector<T> &v2) {
if ((const void *)(&v1) != (const void *)(&v2)) {
GMM_ASSERT2(vect_size(v1) == vect_size(v2), "dimensions mismatch");
if (same_origin(v1, v2))
GMM_WARNING2("a conflict is possible in vector copy\n");
copy_rsvector(v1, v2, typename linalg_traits<V>::storage_type());
}
}
template <typename V, typename T>
void copy_rsvector(const V &v1, rsvector<T> &v2, abstract_dense)
{ copy_vect(v1, v2, abstract_dense(), abstract_sparse()); }
template <typename V, typename T>
void copy_rsvector(const V &v1, rsvector<T> &v2, abstract_skyline)
{ copy_vect(v1, v2, abstract_skyline(), abstract_sparse()); }
template <typename V, typename T>
void copy_rsvector(const V &v1, rsvector<T> &v2, abstract_sparse) {
copy_rsvector(v1, v2, typename linalg_traits<V>::index_sorted());
}
template <typename V, typename T2>
void copy_rsvector(const V &v1, rsvector<T2> &v2, linalg_true) {
typedef typename linalg_traits<V>::value_type T1;
typename linalg_traits<V>::const_iterator it = vect_const_begin(v1),
ite = vect_const_end(v1);
v2.base_resize(nnz(v1));
typename rsvector<T2>::iterator it2 = v2.begin();
size_type nn = 0;
for (; it != ite; ++it)
if ((*it) != T1(0)) { it2->c = it.index(); it2->e = *it; ++it2; ++nn; }
v2.base_resize(nn);
}
template <typename V, typename T2>
void copy_rsvector(const V &v1, rsvector<T2> &v2, linalg_false) {
typedef typename linalg_traits<V>::value_type T1;
typename linalg_traits<V>::const_iterator it = vect_const_begin(v1),
ite = vect_const_end(v1);
v2.base_resize(nnz(v1));
typename rsvector<T2>::iterator it2 = v2.begin();
size_type nn = 0;
for (; it != ite; ++it)
if ((*it) != T1(0)) { it2->c = it.index(); it2->e = *it; ++it2; ++nn; }
v2.base_resize(nn);
std::sort(v2.begin(), v2.end());
}
template <typename T> inline void clean(rsvector<T> &v, double eps) {
typedef typename number_traits<T>::magnitude_type R;
typename rsvector<T>::iterator it = v.begin(), ite = v.end();
for (; it != ite; ++it) if (gmm::abs((*it).e) <= eps) break;
if (it != ite) {
typename rsvector<T>::iterator itc = it;
size_type erased = 1;
for (++it; it != ite; ++it)
{ *itc = *it; if (gmm::abs((*it).e) <= R(eps)) ++erased; else ++itc; }
v.base_resize(v.nb_stored() - erased);
}
}
template <typename T>
inline void clean(const simple_vector_ref<rsvector<T> *> &l, double eps) {
simple_vector_ref<rsvector<T> *>
*svr = const_cast<simple_vector_ref<rsvector<T> *> *>(&l);
rsvector<T>
*pv = const_cast<rsvector<T> *>((l.origin));
clean(*pv, eps);
svr->begin_ = vect_begin(*pv); svr->end_ = vect_end(*pv);
}
template <typename T>
inline size_type nnz(const rsvector<T>& l) { return l.nb_stored(); }
/*************************************************************************/
/* */
/* Class slvector: 'sky-line' vector. */
/* */
/*************************************************************************/
template<typename T> struct slvector_iterator {
typedef T value_type;
typedef T *pointer;
typedef T &reference;
typedef ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
typedef size_t size_type;
typedef slvector_iterator<T> iterator;
typedef typename std::vector<T>::iterator base_iterator;
base_iterator it;
size_type shift;
iterator &operator ++()
{ ++it; ++shift; return *this; }
iterator &operator --()
{ --it; --shift; return *this; }
iterator operator ++(int)
{ iterator tmp = *this; ++(*(this)); return tmp; }
iterator operator --(int)
{ iterator tmp = *this; --(*(this)); return tmp; }
iterator &operator +=(difference_type i)
{ it += i; shift += i; return *this; }
iterator &operator -=(difference_type i)
{ it -= i; shift -= i; return *this; }
iterator operator +(difference_type i) const
{ iterator tmp = *this; return (tmp += i); }
iterator operator -(difference_type i) const
{ iterator tmp = *this; return (tmp -= i); }
difference_type operator -(const iterator &i) const
{ return it - i.it; }
reference operator *() const
{ return *it; }
reference operator [](int ii)
{ return *(it + ii); }
bool operator ==(const iterator &i) const
{ return it == i.it; }
bool operator !=(const iterator &i) const
{ return !(i == *this); }
bool operator < (const iterator &i) const
{ return it < i.it; }
size_type index(void) const { return shift; }
slvector_iterator(void) {}
slvector_iterator(const base_iterator &iter, size_type s)
: it(iter), shift(s) {}
};
template<typename T> struct slvector_const_iterator {
typedef T value_type;
typedef const T *pointer;
typedef value_type reference;
typedef ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
typedef size_t size_type;
typedef slvector_const_iterator<T> iterator;
typedef typename std::vector<T>::const_iterator base_iterator;
base_iterator it;
size_type shift;
iterator &operator ++()
{ ++it; ++shift; return *this; }
iterator &operator --()
{ --it; --shift; return *this; }
iterator operator ++(int)
{ iterator tmp = *this; ++(*(this)); return tmp; }
iterator operator --(int)
{ iterator tmp = *this; --(*(this)); return tmp; }
iterator &operator +=(difference_type i)
{ it += i; shift += i; return *this; }
iterator &operator -=(difference_type i)
{ it -= i; shift -= i; return *this; }
iterator operator +(difference_type i) const
{ iterator tmp = *this; return (tmp += i); }
iterator operator -(difference_type i) const
{ iterator tmp = *this; return (tmp -= i); }
difference_type operator -(const iterator &i) const
{ return it - i.it; }
value_type operator *() const
{ return *it; }
value_type operator [](int ii)
{ return *(it + ii); }
bool operator ==(const iterator &i) const
{ return it == i.it; }
bool operator !=(const iterator &i) const
{ return !(i == *this); }
bool operator < (const iterator &i) const
{ return it < i.it; }
size_type index(void) const { return shift; }
slvector_const_iterator(void) {}
slvector_const_iterator(const slvector_iterator<T>& iter)
: it(iter.it), shift(iter.shift) {}
slvector_const_iterator(const base_iterator &iter, size_type s)
: it(iter), shift(s) {}
};
/** skyline vector.
*/
template <typename T> class slvector {
public :
typedef slvector_iterator<T> iterators;
typedef slvector_const_iterator<T> const_iterators;
typedef typename std::vector<T>::size_type size_type;
typedef T value_type;
protected :
std::vector<T> data;
size_type shift;
size_type size_;
public :
size_type size(void) const { return size_; }
size_type first(void) const { return shift; }
size_type last(void) const { return shift + data.size(); }
ref_elt_vector<T, slvector<T> > operator [](size_type c)
{ return ref_elt_vector<T, slvector<T> >(this, c); }
typename std::vector<T>::iterator data_begin(void) { return data.begin(); }
typename std::vector<T>::iterator data_end(void) { return data.end(); }
typename std::vector<T>::const_iterator data_begin(void) const
{ return data.begin(); }
typename std::vector<T>::const_iterator data_end(void) const
{ return data.end(); }
void w(size_type c, const T &e);
T r(size_type c) const {
GMM_ASSERT2(c < size_, "out of range");
if (c < shift || c >= shift + data.size()) return T(0);
return data[c - shift];
}
inline T operator [](size_type c) const { return r(c); }
void resize(size_type);
void clear(void) { data.resize(0); shift = 0; }
void swap(slvector<T> &v) {
std::swap(data, v.data);
std::swap(shift, v.shift);
std::swap(size_, v.size_);
}
slvector(void) : data(0), shift(0), size_(0) {}
explicit slvector(size_type l) : data(0), shift(0), size_(l) {}
slvector(size_type l, size_type d, size_type s)
: data(d), shift(s), size_(l) {}
};
template<typename T> void slvector<T>::resize(size_type n) {
if (n < last()) {
if (shift >= n) clear(); else { data.resize(n-shift); }
}
size_ = n;
}
template<typename T> void slvector<T>::w(size_type c, const T &e) {
GMM_ASSERT2(c < size_, "out of range");
size_type s = data.size();
if (!s) { data.resize(1); shift = c; }
else if (c < shift) {
data.resize(s + shift - c);
typename std::vector<T>::iterator it = data.begin(),it2=data.end()-1;
typename std::vector<T>::iterator it3 = it2 - shift + c;
for (; it3 >= it; --it3, --it2) *it2 = *it3;
std::fill(it, it + shift - c, T(0));
shift = c;
}
else if (c >= shift + s) {
data.resize(c - shift + 1);
std::fill(data.begin() + s, data.end(), T(0));
}
data[c - shift] = e;
}
template <typename T> struct linalg_traits<slvector<T> > {
typedef slvector<T> this_type;
typedef this_type origin_type;
typedef linalg_false is_reference;
typedef abstract_vector linalg_type;
typedef T value_type;
typedef ref_elt_vector<T, slvector<T> > reference;
typedef slvector_iterator<T> iterator;
typedef slvector_const_iterator<T> const_iterator;
typedef abstract_skyline storage_type;
typedef linalg_true index_sorted;
static size_type size(const this_type &v) { return v.size(); }
static iterator begin(this_type &v)
{ return iterator(v.data_begin(), v.first()); }
static const_iterator begin(const this_type &v)
{ return const_iterator(v.data_begin(), v.first()); }
static iterator end(this_type &v)
{ return iterator(v.data_end(), v.last()); }
static const_iterator end(const this_type &v)
{ return const_iterator(v.data_end(), v.last()); }
static origin_type* origin(this_type &v) { return &v; }
static const origin_type* origin(const this_type &v) { return &v; }
static void clear(origin_type* o, const iterator &, const iterator &)
{ o->clear(); }
static void do_clear(this_type &v) { v.clear(); }
static value_type access(const origin_type *o, const const_iterator &,
const const_iterator &, size_type i)
{ return (*o)[i]; }
static reference access(origin_type *o, const iterator &, const iterator &,
size_type i)
{ return (*o)[i]; }
static void resize(this_type &v, size_type n) { v.resize(n); }
};
template<typename T> std::ostream &operator <<
(std::ostream &o, const slvector<T>& v) { gmm::write(o,v); return o; }
template <typename T>
inline size_type nnz(const slvector<T>& l) { return l.last() - l.first(); }
}
namespace std {
template <typename T> void swap(gmm::wsvector<T> &v, gmm::wsvector<T> &w)
{ v.swap(w);}
template <typename T> void swap(gmm::rsvector<T> &v, gmm::rsvector<T> &w)
{ v.swap(w);}
template <typename T> void swap(gmm::slvector<T> &v, gmm::slvector<T> &w)
{ v.swap(w);}
}
#endif /* GMM_VECTOR_H__ */
|