/usr/include/gmm/gmm_range_basis.h is in libgmm-dev 4.0.0-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 | // -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2009-2009 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++ is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
//
// As a special exception, you may use this file as it is a part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this file,
// or you compile this file and link it with other files to produce an
// executable, this file does not by itself cause the resulting executable
// to be covered by the GNU Lesser General Public License. This exception
// does not however invalidate any other reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================
/**@file gmm_range_basis.h
@author Yves Renard <Yves.Renard@insa-lyon.fr>
@date March 10, 2009.
@brief Extract a basis of the range of a (large sparse) matrix from the
columns of this matrix.
*/
#ifndef GMM_RANGE_BASIS_H
#define GMM_RANGE_BASIS_H
#include "gmm_dense_qr.h"
#include "gmm_dense_lu.h"
#include "gmm_kernel.h"
#include "gmm_iter.h"
#include <set>
#include <list>
namespace gmm {
template <typename T, typename VECT, typename MAT1>
void tridiag_qr_algorithm
(std::vector<typename number_traits<T>::magnitude_type> diag,
std::vector<T> sdiag, const VECT &eigval_, const MAT1 &eigvect_,
bool compvect, tol_type_for_qr tol = default_tol_for_qr) {
VECT &eigval = const_cast<VECT &>(eigval_);
MAT1 &eigvect = const_cast<MAT1 &>(eigvect_);
typedef typename number_traits<T>::magnitude_type R;
if (compvect) gmm::copy(identity_matrix(), eigvect);
size_type n = diag.size(), q = 0, p, ite = 0;
if (n == 0) return;
if (n == 1) { eigval[0] = gmm::real(diag[0]); return; }
symmetric_qr_stop_criterion(diag, sdiag, p, q, tol);
while (q < n) {
sub_interval SUBI(p, n-p-q), SUBJ(0, mat_ncols(eigvect)), SUBK(p, n-p-q);
if (!compvect) SUBK = sub_interval(0,0);
symmetric_Wilkinson_qr_step(sub_vector(diag, SUBI),
sub_vector(sdiag, SUBI),
sub_matrix(eigvect, SUBJ, SUBK), compvect);
symmetric_qr_stop_criterion(diag, sdiag, p, q, tol*R(3));
++ite;
GMM_ASSERT1(ite < n*100, "QR algorithm failed.");
}
gmm::copy(diag, eigval);
}
// Range basis with a restarted Lanczos method
template <typename Mat>
void range_basis_eff_Lanczos(const Mat &BB, std::set<size_type> &columns,
double EPS=1E-12) {
typedef std::set<size_type> TAB;
typedef typename linalg_traits<Mat>::value_type T;
typedef typename number_traits<T>::magnitude_type R;
size_type nc_r = columns.size(), k;
col_matrix< rsvector<T> > B(mat_nrows(BB), mat_ncols(BB));
k = 0;
for (TAB::iterator it = columns.begin(); it!=columns.end(); ++it, ++k)
gmm::copy(scaled(mat_col(BB, *it), T(1)/vect_norm2(mat_col(BB, *it))),
mat_col(B, *it));
std::vector<T> w(mat_nrows(B));
size_type restart = 120;
std::vector<T> sdiag(restart);
std::vector<R> eigval(restart), diag(restart);
dense_matrix<T> eigvect(restart, restart);
R rho = R(-1), rho2;
while (nc_r) {
std::vector<T> v(nc_r), v0(nc_r), wl(nc_r);
dense_matrix<T> lv(nc_r, restart);
if (rho < R(0)) { // Estimate of the spectral radius of B^* B
gmm::fill_random(v);
for (size_type i = 0; i < 100; ++i) {
gmm::scale(v, T(1)/vect_norm2(v));
gmm::copy(v, v0);
k = 0; gmm::clear(w);
for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k)
add(scaled(mat_col(B, *it), v[k]), w);
k = 0;
for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k)
v[k] = vect_hp(w, mat_col(B, *it));
rho = gmm::abs(vect_hp(v, v0) / vect_hp(v0, v0));
}
}
// Computing vectors of the null space of de B^* B with restarted Lanczos
rho2 = 0;
gmm::fill_random(v);
size_type iter = 0;
for(;;++iter) {
R rho_old = rho2;
R beta = R(0), alpha;
gmm::scale(v, T(1)/vect_norm2(v));
for (size_type i = 0; i < restart; ++i) { // Lanczos iterations
gmm::copy(v, mat_col(lv, i));
gmm::clear(w);
k = 0;
for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k)
add(scaled(mat_col(B, *it), v[k]), w);
k = 0;
for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++k)
wl[k] = v[k]*rho - vect_hp(w, mat_col(B, *it)) - beta*v0[k];
alpha = gmm::real(vect_hp(wl, v));
diag[i] = alpha;
gmm::add(gmm::scaled(v, -alpha), wl);
sdiag[i] = beta = vect_norm2(wl);
gmm::copy(v, v0);
gmm::copy(gmm::scaled(wl, T(1) / beta), v);
}
tridiag_qr_algorithm(diag, sdiag, eigval, eigvect, true);
size_type num = size_type(-1);
rho2 = R(0);
for (size_type j = 0; j < restart; ++j)
{ R nvp=gmm::abs(eigval[j]); if (nvp > rho2) { rho2=nvp; num=j; } }
GMM_ASSERT1(num != size_type(-1), "Internal error");
gmm::mult(lv, mat_col(eigvect, num), v);
if (gmm::abs(rho2-rho_old) < rho_old*R(EPS)*R(1000)) break;
if (gmm::abs(rho-rho2) <= rho*R(gmm::sqrt(EPS))) break;
}
// cout << " iter = " << iter << endl;
if (gmm::abs(rho-rho2) < rho*R(gmm::sqrt(EPS))) {
size_type j_max = size_type(-1), j = 0;
R val_max = R(0);
for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it, ++j)
if (gmm::abs(v[j]) > val_max)
{ val_max = gmm::abs(v[j]); j_max = *it; }
// cout << "Eliminate " << j_max << endl;
columns.erase(j_max); nc_r = columns.size();
}
else break;
}
}
// Range basis with LU decomposition. Not stable from a numerical viewpoint.
// Complex version not verified
template <typename Mat>
void range_basis_eff_lu(const Mat &B, std::set<size_type> &columns,
std::vector<bool> &c_ortho, double EPS) {
typedef std::set<size_type> TAB;
typedef typename linalg_traits<Mat>::value_type T;
typedef typename number_traits<T>::magnitude_type R;
size_type nc_r = 0, nc_o = 0, nc = mat_ncols(B), nr = mat_nrows(B), i, j;
for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it)
if (!(c_ortho[*it])) ++nc_r; else nc_o++;
if (nc_r > 0) {
gmm::row_matrix< gmm::rsvector<T> > Hr(nc, nc_r), Ho(nc, nc_o);
gmm::row_matrix< gmm::rsvector<T> > BBr(nr, nc_r), BBo(nr, nc_o);
i = j = 0;
for (TAB::iterator it=columns.begin(); it!=columns.end(); ++it)
if (!(c_ortho[*it]))
{ Hr(*it, i) = T(1)/ vect_norminf(mat_col(B, *it)); ++i; }
else
{ Ho(*it, j) = T(1)/ vect_norm2(mat_col(B, *it)); ++j; }
gmm::mult(B, Hr, BBr);
gmm::mult(B, Ho, BBo);
gmm::dense_matrix<T> M(nc_r, nc_r), BBB(nc_r, nc_o), MM(nc_r, nc_r);
gmm::mult(gmm::conjugated(BBr), BBr, M);
gmm::mult(gmm::conjugated(BBr), BBo, BBB);
gmm::mult(BBB, gmm::conjugated(BBB), MM);
gmm::add(gmm::scaled(MM, T(-1)), M);
std::vector<int> ipvt(nc_r);
gmm::lu_factor(M, ipvt);
R emax = R(0);
for (i = 0; i < nc_r; ++i) emax = std::max(emax, gmm::abs(M(i,i)));
i = 0;
std::set<size_type> c = columns;
for (TAB::iterator it = c.begin(); it != c.end(); ++it)
if (!(c_ortho[*it])) {
if (gmm::abs(M(i,i)) <= R(EPS)*emax) columns.erase(*it);
++i;
}
}
}
// Range basis with Gram-Schmidt orthogonalization (sparse version)
// The sparse version is better when the sparsity is high and less efficient
// than the dense version for high degree elements (P3, P4 ...)
// Complex version not verified
template <typename Mat>
void range_basis_eff_Gram_Schmidt_sparse(const Mat &BB,
std::set<size_type> &columns,
std::vector<bool> &c_ortho,
double EPS) {
typedef std::set<size_type> TAB;
typedef typename linalg_traits<Mat>::value_type T;
typedef typename number_traits<T>::magnitude_type R;
size_type nc = mat_ncols(BB), nr = mat_nrows(BB);
std::set<size_type> c = columns, rc = columns;
gmm::col_matrix< rsvector<T> > B(nr, nc);
for (std::set<size_type>::iterator it = columns.begin();
it != columns.end(); ++it) {
gmm::copy(mat_col(BB, *it), mat_col(B, *it));
gmm::scale(mat_col(B, *it), T(1)/vect_norm2(mat_col(B, *it)));
}
for (std::set<size_type>::iterator it = c.begin(); it != c.end(); ++it)
if (c_ortho[*it]) {
for (std::set<size_type>::iterator it2 = rc.begin();
it2 != rc.end(); ++it2)
if (!(c_ortho[*it2])) {
T r = -vect_hp(mat_col(B, *it2), mat_col(B, *it));
if (r != T(0)) add(scaled(mat_col(B, *it), r), mat_col(B, *it2));
}
rc.erase(*it);
}
while (rc.size()) {
R nmax = R(0); size_type cmax = size_type(-1);
for (std::set<size_type>::iterator it=rc.begin(); it!=rc.end(); ++it) {
R n = vect_norm2(mat_col(B, *it));
if (nmax < n) { nmax = n; cmax = *it; }
if (n < R(EPS)) { columns.erase(*it); rc.erase(*it); }
}
if (nmax < R(EPS)) break;
gmm::scale(mat_col(B, cmax), T(1)/vect_norm2(mat_col(B, cmax)));
rc.erase(cmax);
for (std::set<size_type>::iterator it=rc.begin(); it!=rc.end(); ++it) {
T r = -vect_hp(mat_col(B, *it), mat_col(B, cmax));
if (r != T(0)) add(scaled(mat_col(B, cmax), r), mat_col(B, *it));
}
}
for (std::set<size_type>::iterator it=rc.begin(); it!=rc.end(); ++it)
columns.erase(*it);
}
// Range basis with Gram-Schmidt orthogonalization (dense version)
template <typename Mat>
void range_basis_eff_Gram_Schmidt_dense(const Mat &B,
std::set<size_type> &columns,
std::vector<bool> &c_ortho,
double EPS) {
typedef std::set<size_type> TAB;
typedef typename linalg_traits<Mat>::value_type T;
typedef typename number_traits<T>::magnitude_type R;
size_type nc_r = columns.size(), nc = mat_ncols(B), nr = mat_nrows(B), i;
std::set<size_type> rc;
row_matrix< gmm::rsvector<T> > H(nc, nc_r), BB(nr, nc_r);
std::vector<T> v(nc_r);
std::vector<size_type> ind(nc_r);
i = 0;
for (TAB::iterator it = columns.begin(); it != columns.end(); ++it, ++i)
H(*it, i) = T(1) / vect_norm2(mat_col(B, *it));
mult(B, H, BB);
dense_matrix<T> M(nc_r, nc_r);
mult(gmm::conjugated(BB), BB, M);
i = 0;
for (TAB::iterator it = columns.begin(); it != columns.end(); ++it, ++i)
if (c_ortho[*it]) {
gmm::copy(mat_row(M, i), v);
rank_one_update(M, scaled(v, T(-1)), v);
M(i, i) = T(1);
}
else { rc.insert(i); ind[i] = *it; }
while (rc.size() > 0) {
// Next pivot
R nmax = R(0); size_type imax = size_type(-1);
for (TAB::iterator it = rc.begin(); it != rc.end(); ++it) {
R a = gmm::abs(M(*it, *it));
if (a > nmax) { nmax = a; imax = *it; }
if (a < R(EPS)) { rc.erase(*it); columns.erase(ind[*it]); }
}
if (nmax < R(EPS)) break;
// Normalization
gmm::scale(mat_row(M, imax), T(1) / sqrt(nmax));
gmm::scale(mat_col(M, imax), T(1) / sqrt(nmax));
// orthogonalization
copy(mat_row(M, imax), v);
rank_one_update(M, scaled(v, T(-1)), v);
M(imax, imax) = T(1);
rc.erase(imax);
}
for (std::set<size_type>::iterator it=rc.begin(); it!=rc.end(); ++it)
columns.erase(ind[*it]);
}
template <typename L> size_type nnz_eps(const L& l, double eps) {
typename linalg_traits<L>::const_iterator it = vect_const_begin(l),
ite = vect_const_end(l);
size_type res(0);
for (; it != ite; ++it) if (gmm::abs(*it) >= eps) ++res;
return res;
}
template <typename L>
bool reserve__rb(const L& l, std::vector<bool> &b, double eps) {
typename linalg_traits<L>::const_iterator it = vect_const_begin(l),
ite = vect_const_end(l);
bool ok = true;
for (; it != ite; ++it)
if (gmm::abs(*it) >= eps && b[it.index()]) ok = false;
if (ok) {
for (it = vect_const_begin(l); it != ite; ++it)
if (gmm::abs(*it) >= eps) b[it.index()] = true;
}
return ok;
}
template <typename Mat>
void range_basis(const Mat &B, std::set<size_type> &columns,
double EPS, col_major, bool skip_init=false) {
typedef typename linalg_traits<Mat>::value_type T;
typedef typename number_traits<T>::magnitude_type R;
size_type nc = mat_ncols(B), nr = mat_nrows(B);
std::vector<R> norms(nc);
std::vector<bool> c_ortho(nc), booked(nr);
std::vector< std::set<size_type> > nnzs(mat_nrows(B));
if (!skip_init) {
R norm_max = R(0);
for (size_type i = 0; i < nc; ++i) {
norms[i] = vect_norminf(mat_col(B, i));
norm_max = std::max(norm_max, norms[i]);
}
columns.clear();
for (size_type i = 0; i < nc; ++i)
if (norms[i] >= norm_max*R(EPS)) {
columns.insert(i);
nnzs[nnz_eps(mat_col(B, i), R(EPS) * norms[i])].insert(i);
}
for (size_type i = 1; i < nr; ++i)
for (std::set<size_type>::iterator it = nnzs[i].begin();
it != nnzs[i].end(); ++it)
if (reserve__rb(mat_col(B, *it), booked, R(EPS) * norms[*it]))
c_ortho[*it] = true;
}
size_type sizesm[7] = {125, 200, 350, 550, 800, 1100, 1500}, actsize;
for (int k = 0; k < 7; ++k) {
size_type nc_r = columns.size();
// cout << "begin small range basis with " << columns.size()
// << " columns, sizesm = " << sizesm[k] << endl;
std::set<size_type> c1, cres;
actsize = sizesm[k];
for (std::set<size_type>::iterator it = columns.begin();
it != columns.end(); ++it) {
c1.insert(*it);
if (c1.size() >= actsize) {
range_basis_eff_Gram_Schmidt_dense(B, c1, c_ortho, EPS);
for (std::set<size_type>::iterator it2=c1.begin(); it2 != c1.end();
++it2) cres.insert(*it2);
c1.clear();
}
}
if (c1.size() > 10)
range_basis_eff_Gram_Schmidt_dense(B, c1, c_ortho, EPS);
for (std::set<size_type>::iterator it = c1.begin(); it != c1.end(); ++it)
cres.insert(*it);
columns = cres;
if (nc_r <= actsize) return;
if (columns.size() == nc_r) break;
if (sizesm[k] >= 350 && columns.size() > (nc_r*19)/20) break;
}
// cout << "begin global range basis with " << columns.size() << endl;
if (columns.size() > std::max(size_type(500), actsize))
range_basis_eff_Lanczos(B, columns, EPS);
else
range_basis_eff_Gram_Schmidt_dense(B, columns, c_ortho, EPS);
}
template <typename Mat>
void range_basis(const Mat &B, std::set<size_type> &columns,
double EPS, row_major) {
typedef typename linalg_traits<Mat>::value_type T;
gmm::col_matrix< rsvector<T> > BB(mat_nrows(B), mat_ncols(B));
GMM_WARNING3("A copy of a row matrix is done into a column matrix "
"for range basis algorithm.");
gmm::copy(B, BB);
range_basis(BB, columns, EPS);
}
/** Range Basis :
Extract a basis of the range of a (large sparse) matrix selecting some
column vectors of this matrix. This is in particular usefull to select
an independent set of linear constraints.
The algorithm is optimized for two cases :
- when the (not trivial) kernel is small. An iterativ algorithm
based on Lanczos method is applied
- when the (not trivial) kernel is large and most of the dependencies
can be detected locally. An block Gram-Schmidt is applied first then
a restarted Lanczos method when the remaining kernel is greatly
smaller.
The restarted Lanczos method could be improved or replaced by a block
Lanczos method, a block Wiedelann method (in order to be parallelized for
instance) or simply could compute more than one vector of the null
space at each iteration.
The LU decomposition has been tested for local elimination but gives bad
results : the algorithm is unstable and do not permit to give the right
number of vector at the end of the process. Moreover, the number of final
vector depend greatly on the number of vectors in a block of the local
analysis.
*/
template <typename Mat>
void range_basis(const Mat &B, std::set<size_type> &columns,
double EPS=1E-12) {
range_basis(B, columns, EPS,
typename principal_orientation_type
<typename linalg_traits<Mat>::sub_orientation>::potype());
}
}
#endif
|