This file is indexed.

/usr/include/gmm/gmm_precond_ildltt.h is in libgmm-dev 4.0.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2003-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
// under  the  terms  of the  GNU  Lesser General Public License as published
// by  the  Free Software Foundation;  either version 2.1 of the License,  or
// (at your option) any later version.
// This program  is  distributed  in  the  hope  that it will be useful,  but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// You  should  have received a copy of the GNU Lesser General Public License
// along  with  this program;  if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, you  may use  this file  as it is a part of a free
// software  library  without  restriction.  Specifically,  if   other  files
// instantiate  templates  or  use macros or inline functions from this file,
// or  you compile this  file  and  link  it  with other files  to produce an
// executable, this file  does  not  by itself cause the resulting executable
// to be covered  by the GNU Lesser General Public License.  This   exception
// does not  however  invalidate  any  other  reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================

/**@file gmm_precond_ildltt.h
   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
   @date June 30, 2003.
   @brief incomplete LDL^t (cholesky) preconditioner with fill-in and threshold.
*/

#ifndef GMM_PRECOND_ILDLTT_H
#define GMM_PRECOND_ILDLTT_H

// Store U = LT and D in indiag. On each line, the fill-in is the number
// of non-zero elements on the line of the original matrix plus K, except if
// the matrix is dense. In this case the fill-in is K on each line.

#include "gmm_precond_ilut.h"

namespace gmm {
  /** incomplete LDL^t (cholesky) preconditioner with fill-in and
      threshold. */
  template <typename Matrix>
  class ildltt_precond  {
  public :
    typedef typename linalg_traits<Matrix>::value_type value_type;
    typedef typename number_traits<value_type>::magnitude_type magnitude_type;
    
    typedef rsvector<value_type> svector;

    row_matrix<svector> U;
    std::vector<magnitude_type> indiag;

  protected:
    size_type K;
    double eps;    

    template<typename M> void do_ildltt(const M&, row_major);
    void do_ildltt(const Matrix&, col_major);

  public:
    void build_with(const Matrix& A) {
      gmm::resize(U, mat_nrows(A), mat_ncols(A));
      indiag.resize(std::min(mat_nrows(A), mat_ncols(A)));
      do_ildltt(A, typename principal_orientation_type<typename
		linalg_traits<Matrix>::sub_orientation>::potype());
    }
    ildltt_precond(const Matrix& A, int k_, double eps_) 
      : U(mat_nrows(A),mat_ncols(A)), K(k_), eps(eps_) { build_with(A); }
    ildltt_precond(void) { K=10; eps = 1E-7; }
    ildltt_precond(size_type k_, double eps_) :  K(k_), eps(eps_) {}
    size_type memsize() const { 
      return sizeof(*this) + nnz(U)*sizeof(value_type) + indiag.size() * sizeof(magnitude_type);
    }    
  };

  template<typename Matrix> template<typename M> 
  void ildltt_precond<Matrix>::do_ildltt(const M& A,row_major) {
    typedef value_type T;
    typedef typename number_traits<T>::magnitude_type R;

    size_type n = mat_nrows(A);
    if (n == 0) return;
    svector w(n);
    T tmp;
    R prec = default_tol(R()), max_pivot = gmm::abs(A(0,0)) * prec;

    gmm::clear(U);
    for (size_type i = 0; i < n; ++i) {
      gmm::copy(mat_const_row(A, i), w);
      double norm_row = gmm::vect_norm2(w);

      for (size_type krow = 0, k; krow < w.nb_stored(); ++krow) {
	typename svector::iterator wk = w.begin() + krow;
	if ((k = wk->c) >= i) break;
 	if (gmm::is_complex(wk->e)) {
 	  tmp = gmm::conj(U(k, i))/indiag[k]; // not completely satisfactory ..
 	  gmm::add(scaled(mat_row(U, k), -tmp), w);
 	}
 	else {
	  tmp = wk->e;
	  if (gmm::abs(tmp) < eps * norm_row) { w.sup(k); --krow; } 
	  else { wk->e += tmp; gmm::add(scaled(mat_row(U, k), -tmp), w); }
	}
      }
      tmp = w[i];

      if (gmm::abs(gmm::real(tmp)) <= max_pivot)
	{ GMM_WARNING2("pivot " << i << " is too small"); tmp = T(1); }

      max_pivot = std::max(max_pivot, std::min(gmm::abs(tmp) * prec, R(1)));
      indiag[i] = R(1) / gmm::real(tmp);
      gmm::clean(w, eps * norm_row);
      gmm::scale(w, T(indiag[i]));
      std::sort(w.begin(), w.end(), elt_rsvector_value_less_<T>());
      typename svector::const_iterator wit = w.begin(), wite = w.end();
      for (size_type nnu = 0; wit != wite; ++wit)  // copy to be optimized ...
	if (wit->c > i) { if (nnu < K) { U(i, wit->c) = wit->e; ++nnu; } }
    }
  }

  template<typename Matrix> 
  void ildltt_precond<Matrix>::do_ildltt(const Matrix& A, col_major)
  { do_ildltt(gmm::conjugated(A), row_major()); }

  template <typename Matrix, typename V1, typename V2> inline
  void mult(const ildltt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    gmm::copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < P.indiag.size(); ++i) v2[i] *= P.indiag[i];
    gmm::upper_tri_solve(P.U, v2, true);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_mult(const ildltt_precond<Matrix>& P,const V1 &v1, V2 &v2)
  { mult(P, v1, v2); }

  template <typename Matrix, typename V1, typename V2> inline
  void left_mult(const ildltt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < P.indiag.size(); ++i) v2[i] *= P.indiag[i];
  }

  template <typename Matrix, typename V1, typename V2> inline
  void right_mult(const ildltt_precond<Matrix>& P, const V1 &v1, V2 &v2)
  { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true); }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_left_mult(const ildltt_precond<Matrix>& P, const V1 &v1,
			    V2 &v2) {
    copy(v1, v2);
    gmm::upper_tri_solve(P.U, v2, true);
    for (size_type i = 0; i < P.indiag.size(); ++i) v2[i] *= P.indiag[i];
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_right_mult(const ildltt_precond<Matrix>& P, const V1 &v1,
			     V2 &v2)
  { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); }


  // for compatibility with old versions

  template <typename Matrix>
  struct choleskyt_precond : public ildltt_precond<Matrix>{
    choleskyt_precond(const Matrix& A, int k_, double eps_)
      : ildltt_precond<Matrix>(A, k_, eps_) {}
    choleskyt_precond(void) {}
  } IS_DEPRECATED;

  template <typename Matrix, typename V1, typename V2> inline
  void mult(const choleskyt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    gmm::copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < P.indiag.size(); ++i) v2[i] *= P.indiag[i];
    gmm::upper_tri_solve(P.U, v2, true);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_mult(const choleskyt_precond<Matrix>& P,const V1 &v1, V2 &v2)
  { mult(P, v1, v2); }

  template <typename Matrix, typename V1, typename V2> inline
  void left_mult(const choleskyt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < P.indiag.size(); ++i) v2[i] *= P.indiag[i];
  }

  template <typename Matrix, typename V1, typename V2> inline
  void right_mult(const choleskyt_precond<Matrix>& P, const V1 &v1, V2 &v2)
  { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true); }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_left_mult(const choleskyt_precond<Matrix>& P, const V1 &v1,
			    V2 &v2) {
    copy(v1, v2);
    gmm::upper_tri_solve(P.U, v2, true);
    for (size_type i = 0; i < P.indiag.size(); ++i) v2[i] *= P.indiag[i];
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_right_mult(const choleskyt_precond<Matrix>& P, const V1 &v1,
			     V2 &v2)
  { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); }

}

#endif