This file is indexed.

/usr/include/gmm/gmm_precond_ildlt.h is in libgmm-dev 4.0.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2003-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
// under  the  terms  of the  GNU  Lesser General Public License as published
// by  the  Free Software Foundation;  either version 2.1 of the License,  or
// (at your option) any later version.
// This program  is  distributed  in  the  hope  that it will be useful,  but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// You  should  have received a copy of the GNU Lesser General Public License
// along  with  this program;  if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, you  may use  this file  as it is a part of a free
// software  library  without  restriction.  Specifically,  if   other  files
// instantiate  templates  or  use macros or inline functions from this file,
// or  you compile this  file  and  link  it  with other files  to produce an
// executable, this file  does  not  by itself cause the resulting executable
// to be covered  by the GNU Lesser General Public License.  This   exception
// does not  however  invalidate  any  other  reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================

// This file is a modified version of cholesky.h from ITL.
// See http://osl.iu.edu/research/itl/
// Following the corresponding Copyright notice.
//===========================================================================
//
// Copyright (c) 1997-2001, The Trustees of Indiana University.
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//    * Redistributions of source code must retain the above copyright
//      notice, this list of conditions and the following disclaimer.
//    * Redistributions in binary form must reproduce the above copyright
//      notice, this list of conditions and the following disclaimer in the
//      documentation and/or other materials provided with the distribution.
//    * Neither the name of the University of California, Berkeley nor the
//      names of its contributors may be used to endorse or promote products
//      derived from this software without specific prior written permission.
//
// THIS SOFTWARE  IS  PROVIDED  BY  THE TRUSTEES  OF  INDIANA UNIVERSITY  AND
// CONTRIBUTORS  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,
// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  FITNESS
// FOR  A PARTICULAR PURPOSE ARE DISCLAIMED. IN  NO  EVENT SHALL THE TRUSTEES
// OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY,  OR CONSEQUENTIAL DAMAGES (INCLUDING,  BUT
// NOT  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA,  OR PROFITS;  OR BUSINESS  INTERRUPTION)  HOWEVER  CAUSED AND ON ANY
// THEORY  OF  LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY, OR TORT
// (INCLUDING  NEGLIGENCE  OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS  SOFTWARE,  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//===========================================================================

#ifndef GMM_PRECOND_ILDLT_H
#define GMM_PRECOND_ILDLT_H

/**@file gmm_precond_ildlt.h
   @author Andrew Lumsdaine <lums@osl.iu.edu>
   @author Lie-Quan Lee <llee@osl.iu.edu>
   @author Yves Renard <yves.renard@insa-lyon.fr>
   @date June 5, 2003.
   @brief Incomplete Level 0 ILDLT Preconditioner.
*/

#include "gmm_precond.h"

namespace gmm {

  /** Incomplete Level 0 LDLT Preconditioner.
      
  For use with symmetric real or hermitian complex sparse matrices.

  Notes: The idea under a concrete Preconditioner such as Incomplete
  Cholesky is to create a Preconditioner object to use in iterative
  methods.


  Y. Renard : Transformed in LDLT for stability reason.
  
  U=LT is stored in csr format. D is stored on the diagonal of U.
  */
  template <typename Matrix>
  class ildlt_precond {

  public :
    typedef typename linalg_traits<Matrix>::value_type value_type;
    typedef typename number_traits<value_type>::magnitude_type magnitude_type;
    typedef csr_matrix_ref<value_type *, size_type *, size_type *, 0> tm_type;

    tm_type U;

  protected :
    std::vector<value_type> Tri_val;
    std::vector<size_type> Tri_ind, Tri_ptr;
 
    template<typename M> void do_ildlt(const M& A, row_major);
    void do_ildlt(const Matrix& A, col_major);

  public:

    size_type nrows(void) const { return mat_nrows(U); }
    size_type ncols(void) const { return mat_ncols(U); }
    value_type &D(size_type i) { return Tri_val[Tri_ptr[i]]; }
    const value_type &D(size_type i) const { return Tri_val[Tri_ptr[i]]; }
    ildlt_precond(void) {}
    void build_with(const Matrix& A) {
      Tri_ptr.resize(mat_nrows(A)+1);
      do_ildlt(A, typename principal_orientation_type<typename
		  linalg_traits<Matrix>::sub_orientation>::potype());
    }
    ildlt_precond(const Matrix& A)  { build_with(A); }
    size_type memsize() const { 
      return sizeof(*this) + 
	Tri_val.size() * sizeof(value_type) + 
	(Tri_ind.size()+Tri_ptr.size()) * sizeof(size_type); 
    }
  };

  template <typename Matrix> template<typename M>
  void ildlt_precond<Matrix>::do_ildlt(const M& A, row_major) {
    typedef typename linalg_traits<Matrix>::storage_type store_type;
    typedef value_type T;
    typedef typename number_traits<T>::magnitude_type R;
    
    size_type Tri_loc = 0, n = mat_nrows(A), d, g, h, i, j, k;
    if (n == 0) return;
    T z, zz;
    Tri_ptr[0] = 0;
    R prec = default_tol(R());
    R max_pivot = gmm::abs(A(0,0)) * prec;
    
    for (int count = 0; count < 2; ++count) {
      if (count) { Tri_val.resize(Tri_loc); Tri_ind.resize(Tri_loc); }
      for (Tri_loc = 0, i = 0; i < n; ++i) {
	typedef typename linalg_traits<M>::const_sub_row_type row_type;
	row_type row = mat_const_row(A, i);
        typename linalg_traits<row_type>::const_iterator
	  it = vect_const_begin(row), ite = vect_const_end(row);

	if (count) { Tri_val[Tri_loc] = T(0); Tri_ind[Tri_loc] = i; }
	++Tri_loc; // diagonal element

	for (k = 0; it != ite; ++it, ++k) {
	  j = index_of_it(it, k, store_type());
	  if (i == j) {
	    if (count) Tri_val[Tri_loc-1] = *it; 
	  }
	  else if (j > i) {
	    if (count) { Tri_val[Tri_loc] = *it; Tri_ind[Tri_loc]=j; }
	    ++Tri_loc;
	  }
	}
	Tri_ptr[i+1] = Tri_loc;
      }
    }
    
    if (A(0,0) == T(0)) {
      Tri_val[Tri_ptr[0]] = T(1);
      GMM_WARNING2("pivot 0 is too small");
    }
    
    for (k = 0; k < n; k++) {
      d = Tri_ptr[k];
      z = T(gmm::real(Tri_val[d])); Tri_val[d] = z;
      if (gmm::abs(z) <= max_pivot) {
	Tri_val[d] = z = T(1);
	GMM_WARNING2("pivot " << k << " is too small [" << gmm::abs(z) << "]");
      }
      max_pivot = std::max(max_pivot, std::min(gmm::abs(z) * prec, R(1)));
      
      for (i = d + 1; i < Tri_ptr[k+1]; ++i) Tri_val[i] /= z;
      for (i = d + 1; i < Tri_ptr[k+1]; ++i) {
	zz = gmm::conj(Tri_val[i] * z);
	h = Tri_ind[i];
	g = i;
	
	for (j = Tri_ptr[h] ; j < Tri_ptr[h+1]; ++j)
	  for ( ; g < Tri_ptr[k+1] && Tri_ind[g] <= Tri_ind[j]; ++g)
	    if (Tri_ind[g] == Tri_ind[j])
	      Tri_val[j] -= zz * Tri_val[g];
      }
    }
    U = tm_type(&(Tri_val[0]), &(Tri_ind[0]), &(Tri_ptr[0]),
			n, mat_ncols(A));
  }
  
  template <typename Matrix>
  void ildlt_precond<Matrix>::do_ildlt(const Matrix& A, col_major)
  { do_ildlt(gmm::conjugated(A), row_major()); }

  template <typename Matrix, typename V1, typename V2> inline
  void mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    gmm::copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
    gmm::upper_tri_solve(P.U, v2, true);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_mult(const ildlt_precond<Matrix>& P,const V1 &v1,V2 &v2)
  { mult(P, v1, v2); }

  template <typename Matrix, typename V1, typename V2> inline
  void left_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void right_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2)
  { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true);  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_left_mult(const ildlt_precond<Matrix>& P, const V1 &v1,
			    V2 &v2) {
    copy(v1, v2);
    gmm::upper_tri_solve(P.U, v2, true);
    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_right_mult(const ildlt_precond<Matrix>& P, const V1 &v1,
			     V2 &v2)
  { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); }



  // for compatibility with old versions

  template <typename Matrix>
  struct cholesky_precond : public ildlt_precond<Matrix> {
    cholesky_precond(const Matrix& A) : ildlt_precond<Matrix>(A) {}
    cholesky_precond(void) {}
  } IS_DEPRECATED;

  template <typename Matrix, typename V1, typename V2> inline
  void mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    gmm::copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
    gmm::upper_tri_solve(P.U, v2, true);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_mult(const cholesky_precond<Matrix>& P,const V1 &v1,V2 &v2)
  { mult(P, v1, v2); }

  template <typename Matrix, typename V1, typename V2> inline
  void left_mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2) {
    copy(v1, v2);
    gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void right_mult(const cholesky_precond<Matrix>& P, const V1 &v1, V2 &v2)
  { copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true);  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_left_mult(const cholesky_precond<Matrix>& P, const V1 &v1,
			    V2 &v2) {
    copy(v1, v2);
    gmm::upper_tri_solve(P.U, v2, true);
    for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
  }

  template <typename Matrix, typename V1, typename V2> inline
  void transposed_right_mult(const cholesky_precond<Matrix>& P, const V1 &v1,
			     V2 &v2)
  { copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); }
  
}

#endif