/usr/include/gmm/gmm_matrix.h is in libgmm-dev 4.0.0-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 | // -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2002-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++ is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published
// by the Free Software Foundation; either version 2.1 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
// License for more details.
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
//
// As a special exception, you may use this file as it is a part of a free
// software library without restriction. Specifically, if other files
// instantiate templates or use macros or inline functions from this file,
// or you compile this file and link it with other files to produce an
// executable, this file does not by itself cause the resulting executable
// to be covered by the GNU Lesser General Public License. This exception
// does not however invalidate any other reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================
/** @file gmm_matrix.h
@author Yves Renard <Yves.Renard@insa-lyon.fr>
@date October 13, 2002.
@brief Declaration of some matrix types (gmm::dense_matrix,
gmm::row_matrix, gmm::col_matrix, gmm::csc_matrix, etc.)
*/
#ifndef GMM_MATRIX_H__
#define GMM_MATRIX_H__
#include "gmm_vector.h"
#include "gmm_sub_vector.h"
#include "gmm_sub_matrix.h"
#include "gmm_transposed.h"
namespace gmm
{
/* ******************************************************************** */
/* */
/* Identity matrix */
/* */
/* ******************************************************************** */
struct identity_matrix {
template <class MAT> void build_with(const MAT &) {}
};
template <typename M> inline
void add(const identity_matrix&, M &v1) {
size_type n = std::min(gmm::mat_nrows(v1), gmm::mat_ncols(v1));
for (size_type i = 0; i < n; ++i)
v1(i,i) += typename linalg_traits<M>::value_type(1);
}
template <typename M> inline
void add(const identity_matrix &I, const M &v1)
{ add(I, linalg_const_cast(v1)); }
template <typename V1, typename V2> inline
void mult(const identity_matrix&, const V1 &v1, V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void mult(const identity_matrix&, const V1 &v1, const V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2, typename V3> inline
void mult(const identity_matrix&, const V1 &v1, const V2 &v2, V3 &v3)
{ add(v1, v2, v3); }
template <typename V1, typename V2, typename V3> inline
void mult(const identity_matrix&, const V1 &v1, const V2 &v2, const V3 &v3)
{ add(v1, v2, v3); }
template <typename V1, typename V2> inline
void left_mult(const identity_matrix&, const V1 &v1, V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void left_mult(const identity_matrix&, const V1 &v1, const V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void right_mult(const identity_matrix&, const V1 &v1, V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void right_mult(const identity_matrix&, const V1 &v1, const V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void transposed_left_mult(const identity_matrix&, const V1 &v1, V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void transposed_left_mult(const identity_matrix&, const V1 &v1,const V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void transposed_right_mult(const identity_matrix&, const V1 &v1, V2 &v2)
{ copy(v1, v2); }
template <typename V1, typename V2> inline
void transposed_right_mult(const identity_matrix&,const V1 &v1,const V2 &v2)
{ copy(v1, v2); }
template <typename M> void copy_ident(const identity_matrix&, M &m) {
size_type i = 0, n = std::min(mat_nrows(m), mat_ncols(m));
clear(m);
for (; i < n; ++i) m(i,i) = typename linalg_traits<M>::value_type(1);
}
template <typename M> inline void copy(const identity_matrix&, M &m)
{ copy_ident(identity_matrix(), m); }
template <typename M> inline void copy(const identity_matrix &, const M &m)
{ copy_ident(identity_matrix(), linalg_const_cast(m)); }
template <typename V1, typename V2> inline
typename linalg_traits<V1>::value_type
vect_sp(const identity_matrix &, const V1 &v1, const V2 &v2)
{ return vect_sp(v1, v2); }
template <typename V1, typename V2> inline
typename linalg_traits<V1>::value_type
vect_hp(const identity_matrix &, const V1 &v1, const V2 &v2)
{ return vect_hp(v1, v2); }
template<typename M> inline bool is_identity(const M&) { return false; }
inline bool is_identity(const identity_matrix&) { return true; }
/* ******************************************************************** */
/* */
/* Row matrix */
/* */
/* ******************************************************************** */
template<typename V> class row_matrix {
protected :
std::vector<V> li; /* array of rows. */
size_type nc;
public :
typedef typename linalg_traits<V>::reference reference;
typedef typename linalg_traits<V>::value_type value_type;
row_matrix(size_type r, size_type c) : li(r, V(c)), nc(c) {}
row_matrix(void) : nc(0) {}
reference operator ()(size_type l, size_type c)
{ return li[l][c]; }
value_type operator ()(size_type l, size_type c) const
{ return li[l][c]; }
void clear_mat();
void resize(size_type m, size_type n);
typename std::vector<V>::iterator begin(void)
{ return li.begin(); }
typename std::vector<V>::iterator end(void)
{ return li.end(); }
typename std::vector<V>::const_iterator begin(void) const
{ return li.begin(); }
typename std::vector<V>::const_iterator end(void) const
{ return li.end(); }
V& row(size_type i) { return li[i]; }
const V& row(size_type i) const { return li[i]; }
V& operator[](size_type i) { return li[i]; }
const V& operator[](size_type i) const { return li[i]; }
inline size_type nrows(void) const { return li.size(); }
inline size_type ncols(void) const { return nc; }
void swap(row_matrix<V> &m) { std::swap(li, m.li); std::swap(nc, m.nc); }
void swap_row(size_type i, size_type j) { std::swap(li[i], li[j]); }
};
template<typename V> void row_matrix<V>::resize(size_type m, size_type n) {
size_type nr = std::min(nrows(), m);
li.resize(m);
for (size_type i=nr; i < m; ++i) gmm::resize(li[i], n);
if (n != nc) {
for (size_type i=0; i < nr; ++i) gmm::resize(li[i], n);
nc = n;
}
}
template<typename V> void row_matrix<V>::clear_mat()
{ for (size_type i=0; i < nrows(); ++i) clear(li[i]); }
template <typename V> struct linalg_traits<row_matrix<V> > {
typedef row_matrix<V> this_type;
typedef this_type origin_type;
typedef linalg_false is_reference;
typedef abstract_matrix linalg_type;
typedef typename linalg_traits<V>::value_type value_type;
typedef typename linalg_traits<V>::reference reference;
typedef typename linalg_traits<V>::storage_type storage_type;
typedef simple_vector_ref<V *> sub_row_type;
typedef simple_vector_ref<const V *> const_sub_row_type;
typedef typename std::vector<V>::iterator row_iterator;
typedef typename std::vector<V>::const_iterator const_row_iterator;
typedef abstract_null_type sub_col_type;
typedef abstract_null_type const_sub_col_type;
typedef abstract_null_type col_iterator;
typedef abstract_null_type const_col_iterator;
typedef row_major sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static row_iterator row_begin(this_type &m) { return m.begin(); }
static row_iterator row_end(this_type &m) { return m.end(); }
static const_row_iterator row_begin(const this_type &m)
{ return m.begin(); }
static const_row_iterator row_end(const this_type &m)
{ return m.end(); }
static const_sub_row_type row(const const_row_iterator &it)
{ return const_sub_row_type(*it); }
static sub_row_type row(const row_iterator &it)
{ return sub_row_type(*it); }
static origin_type* origin(this_type &m) { return &m; }
static const origin_type* origin(const this_type &m) { return &m; }
static void do_clear(this_type &m) { m.clear_mat(); }
static value_type access(const const_row_iterator &itrow, size_type j)
{ return (*itrow)[j]; }
static reference access(const row_iterator &itrow, size_type j)
{ return (*itrow)[j]; }
static void resize(this_type &v, size_type m, size_type n)
{ v.resize(m, n); }
static void reshape(this_type &, size_type, size_type)
{ GMM_ASSERT1(false, "Sorry, to be done"); }
};
template<typename V> std::ostream &operator <<
(std::ostream &o, const row_matrix<V>& m) { gmm::write(o,m); return o; }
/* ******************************************************************** */
/* */
/* Column matrix */
/* */
/* ******************************************************************** */
template<typename V> class col_matrix {
protected :
std::vector<V> li; /* array of columns. */
size_type nr;
public :
typedef typename linalg_traits<V>::reference reference;
typedef typename linalg_traits<V>::value_type value_type;
col_matrix(size_type r, size_type c) : li(c, V(r)), nr(r) { }
col_matrix(void) : nr(0) {}
reference operator ()(size_type l, size_type c)
{ return li[c][l]; }
value_type operator ()(size_type l, size_type c) const
{ return li[c][l]; }
void clear_mat();
void resize(size_type, size_type);
V& col(size_type i) { return li[i]; }
const V& col(size_type i) const { return li[i]; }
V& operator[](size_type i) { return li[i]; }
const V& operator[](size_type i) const { return li[i]; }
typename std::vector<V>::iterator begin(void)
{ return li.begin(); }
typename std::vector<V>::iterator end(void)
{ return li.end(); }
typename std::vector<V>::const_iterator begin(void) const
{ return li.begin(); }
typename std::vector<V>::const_iterator end(void) const
{ return li.end(); }
inline size_type ncols(void) const { return li.size(); }
inline size_type nrows(void) const { return nr; }
void swap(col_matrix<V> &m) { std::swap(li, m.li); std::swap(nr, m.nr); }
void swap_col(size_type i, size_type j) { std::swap(li[i], li[j]); }
};
template<typename V> void col_matrix<V>::resize(size_type m, size_type n) {
size_type nc = std::min(ncols(), n);
li.resize(n);
for (size_type i=nc; i < n; ++i) gmm::resize(li[i], m);
if (m != nr) {
for (size_type i=0; i < nc; ++i) gmm::resize(li[i], m);
nr = m;
}
}
template<typename V> void col_matrix<V>::clear_mat()
{ for (size_type i=0; i < ncols(); ++i) clear(li[i]); }
template <typename V> struct linalg_traits<col_matrix<V> > {
typedef col_matrix<V> this_type;
typedef this_type origin_type;
typedef linalg_false is_reference;
typedef abstract_matrix linalg_type;
typedef typename linalg_traits<V>::value_type value_type;
typedef typename linalg_traits<V>::reference reference;
typedef typename linalg_traits<V>::storage_type storage_type;
typedef simple_vector_ref<V *> sub_col_type;
typedef simple_vector_ref<const V *> const_sub_col_type;
typedef typename std::vector<V>::iterator col_iterator;
typedef typename std::vector<V>::const_iterator const_col_iterator;
typedef abstract_null_type sub_row_type;
typedef abstract_null_type const_sub_row_type;
typedef abstract_null_type row_iterator;
typedef abstract_null_type const_row_iterator;
typedef col_major sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static col_iterator col_begin(this_type &m) { return m.begin(); }
static col_iterator col_end(this_type &m) { return m.end(); }
static const_col_iterator col_begin(const this_type &m)
{ return m.begin(); }
static const_col_iterator col_end(const this_type &m)
{ return m.end(); }
static const_sub_col_type col(const const_col_iterator &it)
{ return const_sub_col_type(*it); }
static sub_col_type col(const col_iterator &it)
{ return sub_col_type(*it); }
static origin_type* origin(this_type &m) { return &m; }
static const origin_type* origin(const this_type &m) { return &m; }
static void do_clear(this_type &m) { m.clear_mat(); }
static value_type access(const const_col_iterator &itcol, size_type j)
{ return (*itcol)[j]; }
static reference access(const col_iterator &itcol, size_type j)
{ return (*itcol)[j]; }
static void resize(this_type &v, size_type m, size_type n)
{ v.resize(m,n); }
static void reshape(this_type &, size_type, size_type)
{ GMM_ASSERT1(false, "Sorry, to be done"); }
};
template<typename V> std::ostream &operator <<
(std::ostream &o, const col_matrix<V>& m) { gmm::write(o,m); return o; }
/* ******************************************************************** */
/* */
/* Dense matrix */
/* */
/* ******************************************************************** */
template<typename T> class dense_matrix : public std::vector<T> {
public:
typedef typename std::vector<T>::size_type size_type;
typedef typename std::vector<T>::iterator iterator;
typedef typename std::vector<T>::const_iterator const_iterator;
protected:
size_type nbc, nbl;
public:
inline const T& operator ()(size_type l, size_type c) const {
GMM_ASSERT2(l < nbl && c < nbc, "out of range");
return *(this->begin() + c*nbl+l);
}
inline T& operator ()(size_type l, size_type c) {
GMM_ASSERT2(l < nbl && c < nbc, "out of range");
return *(this->begin() + c*nbl+l);
}
void resize(size_type, size_type);
void reshape(size_type, size_type);
void fill(T a, T b = T(0));
inline size_type nrows(void) const { return nbl; }
inline size_type ncols(void) const { return nbc; }
void swap(dense_matrix<T> &m)
{ std::vector<T>::swap(m); std::swap(nbc, m.nbc); std::swap(nbl, m.nbl); }
dense_matrix(size_type l, size_type c)
: std::vector<T>(c*l), nbc(c), nbl(l) {}
dense_matrix(void) { nbl = nbc = 0; }
};
template<typename T> void dense_matrix<T>::reshape(size_type m,size_type n) {
GMM_ASSERT2(n*m == nbl*nbc, "dimensions mismatch");
nbl = m; nbc = n;
}
template<typename T> void dense_matrix<T>::resize(size_type m, size_type n) {
if (n*m > nbc*nbl) std::vector<T>::resize(n*m);
if (m < nbl) {
for (size_type i = 1; i < std::min(nbc, n); ++i)
std::copy(this->begin()+i*nbl, this->begin()+(i*nbl+m),
this->begin()+i*m);
for (size_type i = std::min(nbc, n); i < n; ++i)
std::fill(this->begin()+(i*m), this->begin()+(i+1)*m, T(0));
}
else if (m > nbl) { /* do nothing when the nb of rows does not change */
for (size_type i = std::min(nbc, n); i > 1; --i)
std::copy(this->begin()+(i-1)*nbl, this->begin()+i*nbl,
this->begin()+(i-1)*m);
for (size_type i = 0; i < std::min(nbc, n); ++i)
std::fill(this->begin()+(i*m+nbl), this->begin()+(i+1)*m, T(0));
}
if (n*m < nbc*nbl) std::vector<T>::resize(n*m);
nbl = m; nbc = n;
}
template<typename T> void dense_matrix<T>::fill(T a, T b) {
std::fill(this->begin(), this->end(), b);
size_type n = std::min(nbl, nbc);
if (a != b) for (size_type i = 0; i < n; ++i) (*this)(i,i) = a;
}
template <typename T> struct linalg_traits<dense_matrix<T> > {
typedef dense_matrix<T> this_type;
typedef this_type origin_type;
typedef linalg_false is_reference;
typedef abstract_matrix linalg_type;
typedef T value_type;
typedef T& reference;
typedef abstract_dense storage_type;
typedef tab_ref_reg_spaced_with_origin<typename this_type::iterator,
this_type> sub_row_type;
typedef tab_ref_reg_spaced_with_origin<typename this_type::const_iterator,
this_type> const_sub_row_type;
typedef dense_compressed_iterator<typename this_type::iterator,
typename this_type::iterator,
this_type *> row_iterator;
typedef dense_compressed_iterator<typename this_type::const_iterator,
typename this_type::iterator,
const this_type *> const_row_iterator;
typedef tab_ref_with_origin<typename this_type::iterator,
this_type> sub_col_type;
typedef tab_ref_with_origin<typename this_type::const_iterator,
this_type> const_sub_col_type;
typedef dense_compressed_iterator<typename this_type::iterator,
typename this_type::iterator,
this_type *> col_iterator;
typedef dense_compressed_iterator<typename this_type::const_iterator,
typename this_type::iterator,
const this_type *> const_col_iterator;
typedef col_and_row sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static const_sub_row_type row(const const_row_iterator &it)
{ return const_sub_row_type(*it, it.nrows, it.ncols, it.origin); }
static const_sub_col_type col(const const_col_iterator &it)
{ return const_sub_col_type(*it, *it + it.nrows, it.origin); }
static sub_row_type row(const row_iterator &it)
{ return sub_row_type(*it, it.nrows, it.ncols, it.origin); }
static sub_col_type col(const col_iterator &it)
{ return sub_col_type(*it, *it + it.nrows, it.origin); }
static row_iterator row_begin(this_type &m)
{ return row_iterator(m.begin(), m.size() ? 1 : 0, m.nrows(), m.ncols(), 0, &m); }
static row_iterator row_end(this_type &m)
{ return row_iterator(m.begin(), m.size() ? 1 : 0, m.nrows(), m.ncols(), m.nrows(), &m); }
static const_row_iterator row_begin(const this_type &m)
{ return const_row_iterator(m.begin(), m.size() ? 1 : 0, m.nrows(), m.ncols(), 0, &m); }
static const_row_iterator row_end(const this_type &m)
{ return const_row_iterator(m.begin(), m.size() ? 1 : 0, m.nrows(), m.ncols(), m.nrows(), &m); }
static col_iterator col_begin(this_type &m)
{ return col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(), 0, &m); }
static col_iterator col_end(this_type &m)
{ return col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(), m.ncols(), &m); }
static const_col_iterator col_begin(const this_type &m)
{ return const_col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(), 0, &m); }
static const_col_iterator col_end(const this_type &m)
{ return const_col_iterator(m.begin(),m.nrows(),m.nrows(),m.ncols(),m.ncols(), &m); }
static origin_type* origin(this_type &m) { return &m; }
static const origin_type* origin(const this_type &m) { return &m; }
static void do_clear(this_type &m) { m.fill(value_type(0)); }
static value_type access(const const_col_iterator &itcol, size_type j)
{ return (*itcol)[j]; }
static reference access(const col_iterator &itcol, size_type j)
{ return (*itcol)[j]; }
static void resize(this_type &v, size_type m, size_type n)
{ v.resize(m,n); }
static void reshape(this_type &v, size_type m, size_type n)
{ v.reshape(m, n); }
};
template<typename T> std::ostream &operator <<
(std::ostream &o, const dense_matrix<T>& m) { gmm::write(o,m); return o; }
/* ******************************************************************** */
/* */
/* Read only compressed sparse column matrix */
/* */
/* ******************************************************************** */
template <typename T, int shift = 0>
struct csc_matrix {
typedef unsigned int IND_TYPE;
std::vector<T> pr;
std::vector<IND_TYPE> ir;
std::vector<IND_TYPE> jc;
size_type nc, nr;
typedef T value_type;
typedef T& access_type;
template <typename Matrix> void init_with_good_format(const Matrix &B);
template <typename Matrix> void init_with(const Matrix &A);
void init_with(const col_matrix<gmm::rsvector<T> > &B)
{ init_with_good_format(B); }
void init_with(const col_matrix<wsvector<T> > &B)
{ init_with_good_format(B); }
template <typename PT1, typename PT2, typename PT3, int cshift>
void init_with(const csc_matrix_ref<PT1,PT2,PT3,cshift>& B)
{ init_with_good_format(B); }
template <typename U, int cshift>
void init_with(const csc_matrix<U, cshift>& B)
{ init_with_good_format(B); }
void init_with_identity(size_type n);
csc_matrix(void) : nc(0), nr(0) {}
csc_matrix(size_type nnr, size_type nnc);
size_type nrows(void) const { return nr; }
size_type ncols(void) const { return nc; }
void swap(csc_matrix<T, shift> &m) {
std::swap(pr, m.pr);
std::swap(ir, m.ir); std::swap(jc, m.jc);
std::swap(nc, m.nc); std::swap(nr, m.nr);
}
value_type operator()(size_type i, size_type j) const
{ return mat_col(*this, j)[i]; }
};
template <typename T, int shift> template<typename Matrix>
void csc_matrix<T, shift>::init_with_good_format(const Matrix &B) {
typedef typename linalg_traits<Matrix>::const_sub_col_type col_type;
nc = mat_ncols(B); nr = mat_nrows(B);
jc.resize(nc+1);
jc[0] = shift;
for (size_type j = 0; j < nc; ++j) {
jc[j+1] = IND_TYPE(jc[j] + nnz(mat_const_col(B, j)));
}
pr.resize(jc[nc]);
ir.resize(jc[nc]);
for (size_type j = 0; j < nc; ++j) {
col_type col = mat_const_col(B, j);
typename linalg_traits<col_type>::const_iterator
it = vect_const_begin(col), ite = vect_const_end(col);
for (size_type k = 0; it != ite; ++it, ++k) {
pr[jc[j]-shift+k] = *it;
ir[jc[j]-shift+k] = IND_TYPE(it.index() + shift);
}
}
}
template <typename T, int shift> template <typename Matrix>
void csc_matrix<T, shift>::init_with(const Matrix &A) {
col_matrix<wsvector<T> > B(mat_nrows(A), mat_ncols(A));
copy(A, B);
init_with_good_format(B);
}
template <typename T, int shift>
void csc_matrix<T, shift>::init_with_identity(size_type n) {
if (pr) { delete[] pr; delete[] ir; delete[] jc; }
nc = nr = n;
pr.resize(nc); ir.resize(nc); jc.resize(nc+1);
for (size_type j = 0; j < nc; ++j)
{ ir[j] = jc[j] = shift + j; pr[j] = T(1); }
jc[nc] = shift + nc;
}
template <typename T, int shift>
csc_matrix<T, shift>::csc_matrix(size_type nnr, size_type nnc)
: nc(nnc), nr(nnr) {
pr.resize(1); ir.resize(1); jc.resize(nc+1);
for (size_type j = 0; j <= nc; ++j) jc[j] = shift;
}
template <typename T, int shift>
struct linalg_traits<csc_matrix<T, shift> > {
typedef csc_matrix<T, shift> this_type;
typedef typename this_type::IND_TYPE IND_TYPE;
typedef linalg_const is_reference;
typedef abstract_matrix linalg_type;
typedef T value_type;
typedef T origin_type;
typedef T reference;
typedef abstract_sparse storage_type;
typedef abstract_null_type sub_row_type;
typedef abstract_null_type const_sub_row_type;
typedef abstract_null_type row_iterator;
typedef abstract_null_type const_row_iterator;
typedef abstract_null_type sub_col_type;
typedef cs_vector_ref<const T *, const IND_TYPE *, shift>
const_sub_col_type;
typedef sparse_compressed_iterator<const T *, const IND_TYPE *,
const IND_TYPE *, shift>
const_col_iterator;
typedef abstract_null_type col_iterator;
typedef col_major sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static const_col_iterator col_begin(const this_type &m)
{ return const_col_iterator(&m.pr[0],&m.ir[0],&m.jc[0], m.nr, &m.pr[0]); }
static const_col_iterator col_end(const this_type &m) {
return const_col_iterator(&m.pr[0],&m.ir[0],&m.jc[0]+m.nc,
m.nr,&m.pr[0]);
}
static const_sub_col_type col(const const_col_iterator &it) {
return const_sub_col_type(it.pr + *(it.jc) - shift,
it.ir + *(it.jc) - shift,
*(it.jc + 1) - *(it.jc), it.n);
}
static const origin_type* origin(const this_type &m) { return &m.pr[0]; }
static void do_clear(this_type &m) { m.do_clear(); }
static value_type access(const const_col_iterator &itcol, size_type j)
{ return col(itcol)[j]; }
};
template <typename T, int shift>
std::ostream &operator <<
(std::ostream &o, const csc_matrix<T, shift>& m)
{ gmm::write(o,m); return o; }
template <typename T, int shift>
inline void copy(const identity_matrix &, csc_matrix<T, shift>& M)
{ M.init_with_identity(mat_nrows(M)); }
template <typename Matrix, typename T, int shift>
inline void copy(const Matrix &A, csc_matrix<T, shift>& M)
{ M.init_with(A); }
/* ******************************************************************** */
/* */
/* Read only compressed sparse row matrix */
/* */
/* ******************************************************************** */
template <typename T, int shift = 0>
struct csr_matrix {
typedef unsigned int IND_TYPE;
std::vector<T> pr; // values.
std::vector<IND_TYPE> ir; // col indices.
std::vector<IND_TYPE> jc; // row repartition on pr and ir.
size_type nc, nr;
typedef T value_type;
typedef T& access_type;
template <typename Matrix> void init_with_good_format(const Matrix &B);
void init_with(const row_matrix<wsvector<T> > &B)
{ init_with_good_format(B); }
void init_with(const row_matrix<rsvector<T> > &B)
{ init_with_good_format(B); }
template <typename PT1, typename PT2, typename PT3, int cshift>
void init_with(const csr_matrix_ref<PT1,PT2,PT3,cshift>& B)
{ init_with_good_format(B); }
template <typename U, int cshift>
void init_with(const csr_matrix<U, cshift>& B)
{ init_with_good_format(B); }
template <typename Matrix> void init_with(const Matrix &A);
void init_with_identity(size_type n);
csr_matrix(void) : nc(0), nr(0) {}
csr_matrix(size_type nnr, size_type nnc);
size_type nrows(void) const { return nr; }
size_type ncols(void) const { return nc; }
void swap(csr_matrix<T, shift> &m) {
std::swap(pr, m.pr);
std::swap(ir,m.ir); std::swap(jc, m.jc);
std::swap(nc, m.nc); std::swap(nr,m.nr);
}
value_type operator()(size_type i, size_type j) const
{ return mat_row(*this, i)[j]; }
};
template <typename T, int shift> template <typename Matrix>
void csr_matrix<T, shift>::init_with_good_format(const Matrix &B) {
typedef typename linalg_traits<Matrix>::const_sub_row_type row_type;
nc = mat_ncols(B); nr = mat_nrows(B);
jc.resize(nr+1);
jc[0] = shift;
for (size_type j = 0; j < nr; ++j) {
jc[j+1] = IND_TYPE(jc[j] + nnz(mat_const_row(B, j)));
}
pr.resize(jc[nr]);
ir.resize(jc[nr]);
for (size_type j = 0; j < nr; ++j) {
row_type row = mat_const_row(B, j);
typename linalg_traits<row_type>::const_iterator
it = vect_const_begin(row), ite = vect_const_end(row);
for (size_type k = 0; it != ite; ++it, ++k) {
pr[jc[j]-shift+k] = *it;
ir[jc[j]-shift+k] = IND_TYPE(it.index()+shift);
}
}
}
template <typename T, int shift> template <typename Matrix>
void csr_matrix<T, shift>::init_with(const Matrix &A) {
row_matrix<wsvector<T> > B(mat_nrows(A), mat_ncols(A));
copy(A, B);
init_with_good_format(B);
}
template <typename T, int shift>
void csr_matrix<T, shift>::init_with_identity(size_type n) {
nc = nr = n;
pr.resize(nr); ir.resize(nr); jc.resize(nr+1);
for (size_type j = 0; j < nr; ++j)
{ ir[j] = jc[j] = shift + j; pr[j] = T(1); }
jc[nr] = shift + nr;
}
template <typename T, int shift>
csr_matrix<T, shift>::csr_matrix(size_type nnr, size_type nnc)
: nc(nnc), nr(nnr) {
pr.resize(1); ir.resize(1); jc.resize(nr+1);
for (size_type j = 0; j < nr; ++j) jc[j] = shift;
jc[nr] = shift;
}
template <typename T, int shift>
struct linalg_traits<csr_matrix<T, shift> > {
typedef csr_matrix<T, shift> this_type;
typedef typename this_type::IND_TYPE IND_TYPE;
typedef linalg_const is_reference;
typedef abstract_matrix linalg_type;
typedef T value_type;
typedef T origin_type;
typedef T reference;
typedef abstract_sparse storage_type;
typedef abstract_null_type sub_col_type;
typedef abstract_null_type const_sub_col_type;
typedef abstract_null_type col_iterator;
typedef abstract_null_type const_col_iterator;
typedef abstract_null_type sub_row_type;
typedef cs_vector_ref<const T *, const IND_TYPE *, shift>
const_sub_row_type;
typedef sparse_compressed_iterator<const T *, const IND_TYPE *,
const IND_TYPE *, shift>
const_row_iterator;
typedef abstract_null_type row_iterator;
typedef row_major sub_orientation;
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static const_row_iterator row_begin(const this_type &m)
{ return const_row_iterator(&m.pr[0], &m.ir[0], &m.jc[0], m.nc, &m.pr[0]); }
static const_row_iterator row_end(const this_type &m)
{ return const_row_iterator(&m.pr[0], &m.ir[0], &m.jc[0] + m.nr, m.nc, &m.pr[0]); }
static const_sub_row_type row(const const_row_iterator &it) {
return const_sub_row_type(it.pr + *(it.jc) - shift,
it.ir + *(it.jc) - shift,
*(it.jc + 1) - *(it.jc), it.n);
}
static const origin_type* origin(const this_type &m) { return &m.pr[0]; }
static void do_clear(this_type &m) { m.do_clear(); }
static value_type access(const const_row_iterator &itrow, size_type j)
{ return row(itrow)[j]; }
};
template <typename T, int shift>
std::ostream &operator <<
(std::ostream &o, const csr_matrix<T, shift>& m)
{ gmm::write(o,m); return o; }
template <typename T, int shift>
inline void copy(const identity_matrix &, csr_matrix<T, shift>& M)
{ M.init_with_identity(mat_nrows(M)); }
template <typename Matrix, typename T, int shift>
inline void copy(const Matrix &A, csr_matrix<T, shift>& M)
{ M.init_with(A); }
/* ******************************************************************** */
/* */
/* Block matrix */
/* */
/* ******************************************************************** */
template <typename MAT> class block_matrix {
protected :
std::vector<MAT> blocks;
size_type nrowblocks_;
size_type ncolblocks_;
std::vector<sub_interval> introw, intcol;
public :
typedef typename linalg_traits<MAT>::value_type value_type;
typedef typename linalg_traits<MAT>::reference reference;
size_type nrows(void) const { return introw[nrowblocks_-1].max; }
size_type ncols(void) const { return intcol[ncolblocks_-1].max; }
size_type nrowblocks(void) const { return nrowblocks_; }
size_type ncolblocks(void) const { return ncolblocks_; }
const sub_interval &subrowinterval(size_type i) const { return introw[i]; }
const sub_interval &subcolinterval(size_type i) const { return intcol[i]; }
const MAT &block(size_type i, size_type j) const
{ return blocks[j*ncolblocks_+i]; }
MAT &block(size_type i, size_type j)
{ return blocks[j*ncolblocks_+i]; }
void do_clear(void);
// to be done : read and write access to a component
value_type operator() (size_type i, size_type j) const {
size_type k, l;
for (k = 0; k < nrowblocks_; ++k)
if (i >= introw[k].min && i < introw[k].max) break;
for (l = 0; l < nrowblocks_; ++l)
if (j >= introw[l].min && j < introw[l].max) break;
return (block(k, l))(i - introw[k].min, j - introw[l].min);
}
reference operator() (size_type i, size_type j) {
size_type k, l;
for (k = 0; k < nrowblocks_; ++k)
if (i >= introw[k].min && i < introw[k].max) break;
for (l = 0; l < nrowblocks_; ++l)
if (j >= introw[l].min && j < introw[l].max) break;
return (block(k, l))(i - introw[k].min, j - introw[l].min);
}
template <typename CONT> void resize(const CONT &c1, const CONT &c2);
template <typename CONT> block_matrix(const CONT &c1, const CONT &c2)
{ resize(c1, c2); }
block_matrix(void) {}
};
template <typename MAT> struct linalg_traits<block_matrix<MAT> > {
typedef block_matrix<MAT> this_type;
typedef linalg_false is_reference;
typedef abstract_matrix linalg_type;
typedef this_type origin_type;
typedef typename linalg_traits<MAT>::value_type value_type;
typedef typename linalg_traits<MAT>::reference reference;
typedef typename linalg_traits<MAT>::storage_type storage_type;
typedef abstract_null_type sub_row_type; // to be done ...
typedef abstract_null_type const_sub_row_type; // to be done ...
typedef abstract_null_type row_iterator; // to be done ...
typedef abstract_null_type const_row_iterator; // to be done ...
typedef abstract_null_type sub_col_type; // to be done ...
typedef abstract_null_type const_sub_col_type; // to be done ...
typedef abstract_null_type col_iterator; // to be done ...
typedef abstract_null_type const_col_iterator; // to be done ...
typedef abstract_null_type sub_orientation; // to be done ...
typedef linalg_true index_sorted;
static size_type nrows(const this_type &m) { return m.nrows(); }
static size_type ncols(const this_type &m) { return m.ncols(); }
static origin_type* origin(this_type &m) { return &m; }
static const origin_type* origin(const this_type &m) { return &m; }
static void do_clear(this_type &m) { m.do_clear(); }
// access to be done ...
static void resize(this_type &, size_type , size_type)
{ GMM_ASSERT1(false, "Sorry, to be done"); }
static void reshape(this_type &, size_type , size_type)
{ GMM_ASSERT1(false, "Sorry, to be done"); }
};
template <typename MAT> void block_matrix<MAT>::do_clear(void) {
for (size_type j = 0, l = 0; j < ncolblocks_; ++j)
for (size_type i = 0, k = 0; i < nrowblocks_; ++i)
clear(block(i,j));
}
template <typename MAT> template <typename CONT>
void block_matrix<MAT>::resize(const CONT &c1, const CONT &c2) {
nrowblocks_ = c1.size(); ncolblocks_ = c2.size();
blocks.resize(nrowblocks_ * ncolblocks_);
intcol.resize(ncolblocks_);
introw.resize(nrowblocks_);
for (size_type j = 0, l = 0; j < ncolblocks_; ++j) {
intcol[j] = sub_interval(l, c2[j]); l += c2[j];
for (size_type i = 0, k = 0; i < nrowblocks_; ++i) {
if (j == 0) { introw[i] = sub_interval(k, c1[i]); k += c1[i]; }
block(i, j) = MAT(c1[i], c2[j]);
}
}
}
template <typename M1, typename M2>
void copy(const block_matrix<M1> &m1, M2 &m2) {
for (size_type j = 0; j < m1.ncolblocks(); ++j)
for (size_type i = 0; i < m1.nrowblocks(); ++i)
copy(m1.block(i,j), sub_matrix(m2, m1.subrowinterval(i),
m1.subcolinterval(j)));
}
template <typename M1, typename M2>
void copy(const block_matrix<M1> &m1, const M2 &m2)
{ copy(m1, linalg_const_cast(m2)); }
template <typename MAT, typename V1, typename V2>
void mult(const block_matrix<MAT> &m, const V1 &v1, V2 &v2) {
clear(v2);
typename sub_vector_type<V2 *, sub_interval>::vector_type sv;
for (size_type i = 0; i < m.nrowblocks() ; ++i)
for (size_type j = 0; j < m.ncolblocks() ; ++j) {
sv = sub_vector(v2, m.subrowinterval(i));
mult(m.block(i,j),
sub_vector(v1, m.subcolinterval(j)), sv, sv);
}
}
template <typename MAT, typename V1, typename V2, typename V3>
void mult(const block_matrix<MAT> &m, const V1 &v1, const V2 &v2, V3 &v3) {
typename sub_vector_type<V3 *, sub_interval>::vector_type sv;
for (size_type i = 0; i < m.nrowblocks() ; ++i)
for (size_type j = 0; j < m.ncolblocks() ; ++j) {
sv = sub_vector(v3, m.subrowinterval(i));
if (j == 0)
mult(m.block(i,j),
sub_vector(v1, m.subcolinterval(j)),
sub_vector(v2, m.subrowinterval(i)), sv);
else
mult(m.block(i,j),
sub_vector(v1, m.subcolinterval(j)), sv, sv);
}
}
template <typename MAT, typename V1, typename V2>
void mult(const block_matrix<MAT> &m, const V1 &v1, const V2 &v2)
{ mult(m, v1, linalg_const_cast(v2)); }
template <typename MAT, typename V1, typename V2, typename V3>
void mult(const block_matrix<MAT> &m, const V1 &v1, const V2 &v2,
const V3 &v3)
{ mult_const(m, v1, v2, linalg_const_cast(v3)); }
}
/* ******************************************************************** */
/* */
/* Distributed matrices */
/* */
/* ******************************************************************** */
#ifdef GMM_USES_MPI
#include <mpi.h>
namespace gmm {
template <typename T> inline MPI_Datatype mpi_type(T)
{ GMM_ASSERT1(false, "Sorry unsupported type"); return MPI_FLOAT; }
inline MPI_Datatype mpi_type(double) { return MPI_DOUBLE; }
inline MPI_Datatype mpi_type(float) { return MPI_FLOAT; }
inline MPI_Datatype mpi_type(long double) { return MPI_LONG_DOUBLE; }
#ifndef LAM_MPI
inline MPI_Datatype mpi_type(std::complex<float>) { return MPI_COMPLEX; }
inline MPI_Datatype mpi_type(std::complex<double>) { return MPI_DOUBLE_COMPLEX; }
#endif
inline MPI_Datatype mpi_type(int) { return MPI_INT; }
inline MPI_Datatype mpi_type(unsigned int) { return MPI_UNSIGNED; }
inline MPI_Datatype mpi_type(size_t) {
if (sizeof(int) == sizeof(size_t)) return MPI_UNSIGNED;
if (sizeof(long) == sizeof(size_t)) return MPI_UNSIGNED_LONG;
return MPI_LONG_LONG;
}
template <typename MAT> struct mpi_distributed_matrix {
MAT M;
mpi_distributed_matrix(size_type n, size_type m) : M(n, m) {}
mpi_distributed_matrix() {}
const MAT &local_matrix(void) const { return M; }
MAT &local_matrix(void) { return M; }
};
template <typename MAT> inline MAT &eff_matrix(MAT &m) { return m; }
template <typename MAT> inline
const MAT &eff_matrix(const MAT &m) { return m; }
template <typename MAT> inline
MAT &eff_matrix(mpi_distributed_matrix<MAT> &m) { return m.M; }
template <typename MAT> inline
const MAT &eff_matrix(const mpi_distributed_matrix<MAT> &m) { return m.M; }
template <typename MAT1, typename MAT2>
inline void copy(const mpi_distributed_matrix<MAT1> &m1,
mpi_distributed_matrix<MAT2> &m2)
{ copy(eff_matrix(m1), eff_matrix(m2)); }
template <typename MAT1, typename MAT2>
inline void copy(const mpi_distributed_matrix<MAT1> &m1,
const mpi_distributed_matrix<MAT2> &m2)
{ copy(m1.M, m2.M); }
template <typename MAT1, typename MAT2>
inline void copy(const mpi_distributed_matrix<MAT1> &m1, MAT2 &m2)
{ copy(m1.M, m2); }
template <typename MAT1, typename MAT2>
inline void copy(const mpi_distributed_matrix<MAT1> &m1, const MAT2 &m2)
{ copy(m1.M, m2); }
template <typename MATSP, typename V1, typename V2> inline
typename strongest_value_type3<V1,V2,MATSP>::value_type
vect_sp(const mpi_distributed_matrix<MATSP> &ps, const V1 &v1,
const V2 &v2) {
typedef typename strongest_value_type3<V1,V2,MATSP>::value_type T;
T res = vect_sp(ps.M, v1, v2), rest;
MPI_Allreduce(&res, &rest, 1, mpi_type(T()), MPI_SUM,MPI_COMM_WORLD);
return rest;
}
template <typename MAT, typename V1, typename V2>
inline void mult_add(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
V2 &v2) {
typedef typename linalg_traits<V2>::value_type T;
std::vector<T> v3(vect_size(v2)), v4(vect_size(v2));
static double tmult_tot = 0.0;
static double tmult_tot2 = 0.0;
double t_ref = MPI_Wtime();
gmm::mult(m.M, v1, v3);
if (is_sparse(v2)) GMM_WARNING2("Using a plain temporary, here.");
double t_ref2 = MPI_Wtime();
MPI_Allreduce(&(v3[0]), &(v4[0]),gmm::vect_size(v2), mpi_type(T()),
MPI_SUM,MPI_COMM_WORLD);
tmult_tot2 = MPI_Wtime()-t_ref2;
cout << "reduce mult mpi = " << tmult_tot2 << endl;
gmm::add(v4, v2);
tmult_tot = MPI_Wtime()-t_ref;
cout << "tmult mpi = " << tmult_tot << endl;
}
template <typename MAT, typename V1, typename V2>
void mult_add(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
const V2 &v2_)
{ mult_add(m, v1, const_cast<V2 &>(v2_)); }
template <typename MAT, typename V1, typename V2>
inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
const V2 &v2_)
{ V2 &v2 = const_cast<V2 &>(v2_); clear(v2); mult_add(m, v1, v2); }
template <typename MAT, typename V1, typename V2>
inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
V2 &v2)
{ clear(v2); mult_add(m, v1, v2); }
template <typename MAT, typename V1, typename V2, typename V3>
inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
const V2 &v2, const V3 &v3_)
{ V3 &v3 = const_cast<V3 &>(v3_); gmm::copy(v2, v3); mult_add(m, v1, v3); }
template <typename MAT, typename V1, typename V2, typename V3>
inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
const V2 &v2, V3 &v3)
{ gmm::copy(v2, v3); mult_add(m, v1, v3); }
template <typename MAT> inline
size_type mat_nrows(const mpi_distributed_matrix<MAT> &M)
{ return mat_nrows(M.M); }
template <typename MAT> inline
size_type mat_ncols(const mpi_distributed_matrix<MAT> &M)
{ return mat_nrows(M.M); }
template <typename MAT> inline
void resize(mpi_distributed_matrix<MAT> &M, size_type m, size_type n)
{ resize(M.M, m, n); }
template <typename MAT> inline void clear(mpi_distributed_matrix<MAT> &M)
{ clear(M.M); }
// For compute reduced system
template <typename MAT1, typename MAT2> inline
void mult(const MAT1 &M1, const mpi_distributed_matrix<MAT2> &M2,
mpi_distributed_matrix<MAT2> &M3)
{ mult(M1, M2.M, M3.M); }
template <typename MAT1, typename MAT2> inline
void mult(const mpi_distributed_matrix<MAT2> &M2,
const MAT1 &M1, mpi_distributed_matrix<MAT2> &M3)
{ mult(M2.M, M1, M3.M); }
template <typename MAT1, typename MAT2, typename MAT3> inline
void mult(const MAT1 &M1, const mpi_distributed_matrix<MAT2> &M2,
MAT3 &M3)
{ mult(M1, M2.M, M3); }
template <typename MAT1, typename MAT2, typename MAT3> inline
void mult(const MAT1 &M1, const mpi_distributed_matrix<MAT2> &M2,
const MAT3 &M3)
{ mult(M1, M2.M, M3); }
template <typename M, typename SUBI1, typename SUBI2>
struct sub_matrix_type<const mpi_distributed_matrix<M> *, SUBI1, SUBI2>
{ typedef abstract_null_type matrix_type; };
template <typename M, typename SUBI1, typename SUBI2>
struct sub_matrix_type<mpi_distributed_matrix<M> *, SUBI1, SUBI2>
{ typedef abstract_null_type matrix_type; };
template <typename M, typename SUBI1, typename SUBI2> inline
typename select_return<typename sub_matrix_type<const M *, SUBI1, SUBI2>
::matrix_type, typename sub_matrix_type<M *, SUBI1, SUBI2>::matrix_type,
M *>::return_type
sub_matrix(mpi_distributed_matrix<M> &m, const SUBI1 &si1, const SUBI2 &si2)
{ return sub_matrix(m.M, si1, si2); }
template <typename MAT, typename SUBI1, typename SUBI2> inline
typename select_return<typename sub_matrix_type<const MAT *, SUBI1, SUBI2>
::matrix_type, typename sub_matrix_type<MAT *, SUBI1, SUBI2>::matrix_type,
const MAT *>::return_type
sub_matrix(const mpi_distributed_matrix<MAT> &m, const SUBI1 &si1,
const SUBI2 &si2)
{ return sub_matrix(m.M, si1, si2); }
template <typename M, typename SUBI1> inline
typename select_return<typename sub_matrix_type<const M *, SUBI1, SUBI1>
::matrix_type, typename sub_matrix_type<M *, SUBI1, SUBI1>::matrix_type,
M *>::return_type
sub_matrix(mpi_distributed_matrix<M> &m, const SUBI1 &si1)
{ return sub_matrix(m.M, si1, si1); }
template <typename M, typename SUBI1> inline
typename select_return<typename sub_matrix_type<const M *, SUBI1, SUBI1>
::matrix_type, typename sub_matrix_type<M *, SUBI1, SUBI1>::matrix_type,
const M *>::return_type
sub_matrix(const mpi_distributed_matrix<M> &m, const SUBI1 &si1)
{ return sub_matrix(m.M, si1, si1); }
template <typename L> struct transposed_return<const mpi_distributed_matrix<L> *>
{ typedef abstract_null_type return_type; };
template <typename L> struct transposed_return<mpi_distributed_matrix<L> *>
{ typedef abstract_null_type return_type; };
template <typename L> inline typename transposed_return<const L *>::return_type
transposed(const mpi_distributed_matrix<L> &l)
{ return transposed(l.M); }
template <typename L> inline typename transposed_return<L *>::return_type
transposed(mpi_distributed_matrix<L> &l)
{ return transposed(l.M); }
template <typename MAT>
struct linalg_traits<mpi_distributed_matrix<MAT> > {
typedef mpi_distributed_matrix<MAT> this_type;
typedef MAT origin_type;
typedef linalg_false is_reference;
typedef abstract_matrix linalg_type;
typedef typename linalg_traits<MAT>::value_type value_type;
typedef typename linalg_traits<MAT>::reference reference;
typedef typename linalg_traits<MAT>::storage_type storage_type;
typedef abstract_null_type sub_row_type;
typedef abstract_null_type const_sub_row_type;
typedef abstract_null_type row_iterator;
typedef abstract_null_type const_row_iterator;
typedef abstract_null_type sub_col_type;
typedef abstract_null_type const_sub_col_type;
typedef abstract_null_type col_iterator;
typedef abstract_null_type const_col_iterator;
typedef abstract_null_type sub_orientation;
typedef abstract_null_type index_sorted;
static size_type nrows(const this_type &m) { return nrows(m.M); }
static size_type ncols(const this_type &m) { return ncols(m.M); }
static void do_clear(this_type &m) { clear(m.M); }
};
}
#endif // GMM_USES_MPI
namespace std {
template <typename V>
void swap(gmm::row_matrix<V> &m1, gmm::row_matrix<V> &m2)
{ m1.swap(m2); }
template <typename V>
void swap(gmm::col_matrix<V> &m1, gmm::col_matrix<V> &m2)
{ m1.swap(m2); }
template <typename T>
void swap(gmm::dense_matrix<T> &m1, gmm::dense_matrix<T> &m2)
{ m1.swap(m2); }
template <typename T, int shift> void
swap(gmm::csc_matrix<T,shift> &m1, gmm::csc_matrix<T,shift> &m2)
{ m1.swap(m2); }
template <typename T, int shift> void
swap(gmm::csr_matrix<T,shift> &m1, gmm::csr_matrix<T,shift> &m2)
{ m1.swap(m2); }
}
#endif /* GMM_MATRIX_H__ */
|