This file is indexed.

/usr/include/gmm/gmm_matrix.h is in libgmm-dev 4.0.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
// -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2002-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
// under  the  terms  of the  GNU  Lesser General Public License as published
// by  the  Free Software Foundation;  either version 2.1 of the License,  or
// (at your option) any later version.
// This program  is  distributed  in  the  hope  that it will be useful,  but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// You  should  have received a copy of the GNU Lesser General Public License
// along  with  this program;  if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, you  may use  this file  as it is a part of a free
// software  library  without  restriction.  Specifically,  if   other  files
// instantiate  templates  or  use macros or inline functions from this file,
// or  you compile this  file  and  link  it  with other files  to produce an
// executable, this file  does  not  by itself cause the resulting executable
// to be covered  by the GNU Lesser General Public License.  This   exception
// does not  however  invalidate  any  other  reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================

/** @file gmm_matrix.h
   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
   @date October 13, 2002.
    @brief Declaration of some matrix types (gmm::dense_matrix,
    gmm::row_matrix, gmm::col_matrix, gmm::csc_matrix, etc.)
*/

#ifndef GMM_MATRIX_H__
#define GMM_MATRIX_H__

#include "gmm_vector.h"
#include "gmm_sub_vector.h"
#include "gmm_sub_matrix.h"
#include "gmm_transposed.h"

namespace gmm
{

  /* ******************************************************************** */
  /*		                                            		  */
  /*		Identity matrix                         		  */
  /*		                                            		  */
  /* ******************************************************************** */

  struct identity_matrix {
    template <class MAT> void build_with(const MAT &) {}
  };

  template <typename M> inline
  void add(const identity_matrix&, M &v1) {
    size_type n = std::min(gmm::mat_nrows(v1), gmm::mat_ncols(v1));
    for (size_type i = 0; i < n; ++i)
      v1(i,i) += typename linalg_traits<M>::value_type(1);
  }
  template <typename M> inline
  void add(const identity_matrix &I, const M &v1)
  { add(I, linalg_const_cast(v1)); }

  template <typename V1, typename V2> inline
  void mult(const identity_matrix&, const V1 &v1, V2 &v2)
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void mult(const identity_matrix&, const V1 &v1, const V2 &v2) 
  { copy(v1, v2); }
  template <typename V1, typename V2, typename V3> inline
  void mult(const identity_matrix&, const V1 &v1, const V2 &v2, V3 &v3)
  { add(v1, v2, v3); }
  template <typename V1, typename V2, typename V3> inline
  void mult(const identity_matrix&, const V1 &v1, const V2 &v2, const V3 &v3)
  { add(v1, v2, v3); }
  template <typename V1, typename V2> inline
  void left_mult(const identity_matrix&, const V1 &v1, V2 &v2)
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void left_mult(const identity_matrix&, const V1 &v1, const V2 &v2) 
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void right_mult(const identity_matrix&, const V1 &v1, V2 &v2)
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void right_mult(const identity_matrix&, const V1 &v1, const V2 &v2) 
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void transposed_left_mult(const identity_matrix&, const V1 &v1, V2 &v2)
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void transposed_left_mult(const identity_matrix&, const V1 &v1,const V2 &v2) 
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void transposed_right_mult(const identity_matrix&, const V1 &v1, V2 &v2)
  { copy(v1, v2); }
  template <typename V1, typename V2> inline
  void transposed_right_mult(const identity_matrix&,const V1 &v1,const V2 &v2) 
  { copy(v1, v2); }
  template <typename M> void copy_ident(const identity_matrix&, M &m) {
    size_type i = 0, n = std::min(mat_nrows(m), mat_ncols(m));
    clear(m);
    for (; i < n; ++i) m(i,i) = typename linalg_traits<M>::value_type(1);
  }
  template <typename M> inline void copy(const identity_matrix&, M &m)
  { copy_ident(identity_matrix(), m); } 
  template <typename M> inline void copy(const identity_matrix &, const M &m)
  { copy_ident(identity_matrix(), linalg_const_cast(m)); }
  template <typename V1, typename V2> inline
  typename linalg_traits<V1>::value_type
  vect_sp(const identity_matrix &, const V1 &v1, const V2 &v2)
  { return vect_sp(v1, v2); }
  template <typename V1, typename V2> inline
  typename linalg_traits<V1>::value_type
  vect_hp(const identity_matrix &, const V1 &v1, const V2 &v2)
  { return vect_hp(v1, v2); }
  template<typename M> inline bool is_identity(const M&) { return false; }
  inline bool is_identity(const identity_matrix&) { return true; }

  /* ******************************************************************** */
  /*		                                            		  */
  /*		Row matrix                                   		  */
  /*		                                            		  */
  /* ******************************************************************** */

  template<typename V> class row_matrix {
  protected :
    std::vector<V> li; /* array of rows.                                  */
    size_type nc;
    
  public :
    
    typedef typename linalg_traits<V>::reference reference;
    typedef typename linalg_traits<V>::value_type value_type;
    
    row_matrix(size_type r, size_type c) : li(r, V(c)), nc(c) {}
    row_matrix(void) : nc(0) {}
    reference operator ()(size_type l, size_type c) 
    { return li[l][c]; }
    value_type operator ()(size_type l, size_type c) const
    { return li[l][c]; }

    void clear_mat();
    void resize(size_type m, size_type n);

    typename std::vector<V>::iterator begin(void)
    { return li.begin(); }
    typename std::vector<V>::iterator end(void)  
    { return li.end(); }
    typename std::vector<V>::const_iterator begin(void) const
    { return li.begin(); }
    typename std::vector<V>::const_iterator end(void) const
    { return li.end(); }
    
    
    V& row(size_type i) { return li[i]; }
    const V& row(size_type i) const { return li[i]; }
    V& operator[](size_type i) { return li[i]; }
    const V& operator[](size_type i) const { return li[i]; }
    
    inline size_type nrows(void) const { return li.size(); }
    inline size_type ncols(void) const { return nc;        }

    void swap(row_matrix<V> &m) { std::swap(li, m.li); std::swap(nc, m.nc); }
    void swap_row(size_type i, size_type j) { std::swap(li[i], li[j]); }
  };

  template<typename V> void row_matrix<V>::resize(size_type m, size_type n) {
    size_type nr = std::min(nrows(), m);
    li.resize(m);
    for (size_type i=nr; i < m; ++i) gmm::resize(li[i], n);
    if (n != nc) {
      for (size_type i=0; i < nr; ++i) gmm::resize(li[i], n);    
      nc = n;
    }
  }


  template<typename V> void row_matrix<V>::clear_mat()
  { for (size_type i=0; i < nrows(); ++i) clear(li[i]); }

  template <typename V> struct linalg_traits<row_matrix<V> > {
    typedef row_matrix<V> this_type;
    typedef this_type origin_type;
    typedef linalg_false is_reference;
    typedef abstract_matrix linalg_type;
    typedef typename linalg_traits<V>::value_type value_type;
    typedef typename linalg_traits<V>::reference reference;
    typedef typename linalg_traits<V>::storage_type storage_type;
    typedef simple_vector_ref<V *> sub_row_type;
    typedef simple_vector_ref<const V *> const_sub_row_type;
    typedef typename std::vector<V>::iterator row_iterator;
    typedef typename std::vector<V>::const_iterator const_row_iterator;
    typedef abstract_null_type sub_col_type;
    typedef abstract_null_type const_sub_col_type;
    typedef abstract_null_type col_iterator;
    typedef abstract_null_type const_col_iterator;
    typedef row_major sub_orientation;
    typedef linalg_true index_sorted;
    static size_type nrows(const this_type &m) { return m.nrows(); }
    static size_type ncols(const this_type &m) { return m.ncols(); }
    static row_iterator row_begin(this_type &m) { return m.begin(); }
    static row_iterator row_end(this_type &m) { return m.end(); }
    static const_row_iterator row_begin(const this_type &m)
    { return m.begin(); }
    static const_row_iterator row_end(const this_type &m)
    { return m.end(); }
    static const_sub_row_type row(const const_row_iterator &it)
    { return const_sub_row_type(*it); }
    static sub_row_type row(const row_iterator &it) 
    { return sub_row_type(*it); }
    static origin_type* origin(this_type &m) { return &m; }
    static const origin_type* origin(const this_type &m) { return &m; }
    static void do_clear(this_type &m) { m.clear_mat(); }
    static value_type access(const const_row_iterator &itrow, size_type j)
    { return (*itrow)[j]; }
    static reference access(const row_iterator &itrow, size_type j)
    { return (*itrow)[j]; }
    static void resize(this_type &v, size_type m, size_type n)
    { v.resize(m, n); }
    static void reshape(this_type &, size_type, size_type)
    { GMM_ASSERT1(false, "Sorry, to be done"); }
  };

  template<typename V> std::ostream &operator <<
    (std::ostream &o, const row_matrix<V>& m) { gmm::write(o,m); return o; }

  /* ******************************************************************** */
  /*		                                            		  */
  /*		Column matrix                                		  */
  /*		                                            		  */
  /* ******************************************************************** */

  template<typename V> class col_matrix {
  protected :
    std::vector<V> li; /* array of columns.                               */
    size_type nr;
    
  public :
    
    typedef typename linalg_traits<V>::reference reference;
    typedef typename linalg_traits<V>::value_type value_type;
    
    col_matrix(size_type r, size_type c) : li(c, V(r)), nr(r) { }
    col_matrix(void) : nr(0) {}
    reference operator ()(size_type l, size_type c)
    { return li[c][l]; }
    value_type operator ()(size_type l, size_type c) const
    { return li[c][l]; }

    void clear_mat();
    void resize(size_type, size_type);

    V& col(size_type i) { return li[i]; }
    const V& col(size_type i) const { return li[i]; }
    V& operator[](size_type i) { return li[i]; }
    const V& operator[](size_type i) const { return li[i]; }

    typename std::vector<V>::iterator begin(void)
    { return li.begin(); }
    typename std::vector<V>::iterator end(void)  
    { return li.end(); }
    typename std::vector<V>::const_iterator begin(void) const
    { return li.begin(); }
    typename std::vector<V>::const_iterator end(void) const
    { return li.end(); }
    
    inline size_type ncols(void) const { return li.size(); }
    inline size_type nrows(void) const { return nr; }

    void swap(col_matrix<V> &m) { std::swap(li, m.li); std::swap(nr, m.nr); }
    void swap_col(size_type i, size_type j) { std::swap(li[i], li[j]); }
  };

  template<typename V> void col_matrix<V>::resize(size_type m, size_type n) {
    size_type nc = std::min(ncols(), n);
    li.resize(n);
    for (size_type i=nc; i < n; ++i) gmm::resize(li[i], m);
    if (m != nr) {
      for (size_type i=0; i < nc; ++i) gmm::resize(li[i], m);    
      nr = m;
    }
  }

  template<typename V> void col_matrix<V>::clear_mat()
  { for (size_type i=0; i < ncols(); ++i)  clear(li[i]); }

  template <typename V> struct linalg_traits<col_matrix<V> > {
    typedef col_matrix<V> this_type;
    typedef this_type origin_type;
    typedef linalg_false is_reference;
    typedef abstract_matrix linalg_type;
    typedef typename linalg_traits<V>::value_type value_type;
    typedef typename linalg_traits<V>::reference reference;
    typedef typename linalg_traits<V>::storage_type storage_type;
    typedef simple_vector_ref<V *> sub_col_type;
    typedef simple_vector_ref<const V *> const_sub_col_type;
    typedef typename std::vector<V>::iterator col_iterator;
    typedef typename std::vector<V>::const_iterator const_col_iterator;
    typedef abstract_null_type sub_row_type;
    typedef abstract_null_type const_sub_row_type;
    typedef abstract_null_type row_iterator;
    typedef abstract_null_type const_row_iterator;
    typedef col_major sub_orientation;
    typedef linalg_true index_sorted;
    static size_type nrows(const this_type &m) { return m.nrows(); }
    static size_type ncols(const this_type &m) { return m.ncols(); }
    static col_iterator col_begin(this_type &m) { return m.begin(); }
    static col_iterator col_end(this_type &m) { return m.end(); }
    static const_col_iterator col_begin(const this_type &m)
    { return m.begin(); }
    static const_col_iterator col_end(const this_type &m)
    { return m.end(); }
    static const_sub_col_type col(const const_col_iterator &it)
    { return const_sub_col_type(*it); }
    static sub_col_type col(const col_iterator &it) 
    { return sub_col_type(*it); }
    static origin_type* origin(this_type &m) { return &m; }
    static const origin_type* origin(const this_type &m) { return &m; }
    static void do_clear(this_type &m) { m.clear_mat(); }
    static value_type access(const const_col_iterator &itcol, size_type j)
    { return (*itcol)[j]; }
    static reference access(const col_iterator &itcol, size_type j)
    { return (*itcol)[j]; }
    static void resize(this_type &v, size_type m, size_type n)
    { v.resize(m,n); }
    static void reshape(this_type &, size_type, size_type)
    { GMM_ASSERT1(false, "Sorry, to be done"); }
  };

  template<typename V> std::ostream &operator <<
    (std::ostream &o, const col_matrix<V>& m) { gmm::write(o,m); return o; }

  /* ******************************************************************** */
  /*		                                            		  */
  /*		Dense matrix                                		  */
  /*		                                            		  */
  /* ******************************************************************** */

  template<typename T> class dense_matrix : public std::vector<T> {
  public:
    typedef typename std::vector<T>::size_type size_type;
    typedef typename std::vector<T>::iterator iterator;
    typedef typename std::vector<T>::const_iterator const_iterator;
    
  protected:
    size_type nbc, nbl;
    
  public:
    
    inline const T& operator ()(size_type l, size_type c) const {
      GMM_ASSERT2(l < nbl && c < nbc, "out of range");
      return *(this->begin() + c*nbl+l);
    }
    inline T& operator ()(size_type l, size_type c) {
      GMM_ASSERT2(l < nbl && c < nbc, "out of range");
      return *(this->begin() + c*nbl+l);
    }

    void resize(size_type, size_type);
    void reshape(size_type, size_type);
    
    void fill(T a, T b = T(0));
    inline size_type nrows(void) const { return nbl; }
    inline size_type ncols(void) const { return nbc; }
    void swap(dense_matrix<T> &m)
    { std::vector<T>::swap(m); std::swap(nbc, m.nbc); std::swap(nbl, m.nbl); }
    
    dense_matrix(size_type l, size_type c)
      : std::vector<T>(c*l), nbc(c), nbl(l)  {}
    dense_matrix(void) { nbl = nbc = 0; }
  };

  template<typename T> void dense_matrix<T>::reshape(size_type m,size_type n) {
    GMM_ASSERT2(n*m == nbl*nbc, "dimensions mismatch");
    nbl = m; nbc = n;
  }

  template<typename T> void dense_matrix<T>::resize(size_type m, size_type n) {
    if (n*m > nbc*nbl) std::vector<T>::resize(n*m);
    if (m < nbl) {
      for (size_type i = 1; i < std::min(nbc, n); ++i)
	std::copy(this->begin()+i*nbl, this->begin()+(i*nbl+m),
		  this->begin()+i*m);
      for (size_type i = std::min(nbc, n); i < n; ++i)
	std::fill(this->begin()+(i*m), this->begin()+(i+1)*m, T(0));
      }
    else if (m > nbl) { /* do nothing when the nb of rows does not change */
      for (size_type i = std::min(nbc, n); i > 1; --i)
	std::copy(this->begin()+(i-1)*nbl, this->begin()+i*nbl,
		  this->begin()+(i-1)*m);
      for (size_type i = 0; i < std::min(nbc, n); ++i)
	std::fill(this->begin()+(i*m+nbl), this->begin()+(i+1)*m, T(0));
    }
    if (n*m < nbc*nbl) std::vector<T>::resize(n*m);
    nbl = m; nbc = n;
  }
  
  template<typename T> void dense_matrix<T>::fill(T a, T b) {
    std::fill(this->begin(), this->end(), b);
    size_type n = std::min(nbl, nbc);
    if (a != b) for (size_type i = 0; i < n; ++i) (*this)(i,i) = a; 
  }

  template <typename T> struct linalg_traits<dense_matrix<T> > {
    typedef dense_matrix<T> this_type;
    typedef this_type origin_type;
    typedef linalg_false is_reference;
    typedef abstract_matrix linalg_type;
    typedef T value_type;
    typedef T& reference;
    typedef abstract_dense storage_type;
    typedef tab_ref_reg_spaced_with_origin<typename this_type::iterator,
					   this_type> sub_row_type;
    typedef tab_ref_reg_spaced_with_origin<typename this_type::const_iterator,
					   this_type> const_sub_row_type;
    typedef dense_compressed_iterator<typename this_type::iterator,
				      typename this_type::iterator,
				      this_type *> row_iterator;
    typedef dense_compressed_iterator<typename this_type::const_iterator,
				      typename this_type::iterator,
				      const this_type *> const_row_iterator;
    typedef tab_ref_with_origin<typename this_type::iterator, 
				this_type> sub_col_type;
    typedef tab_ref_with_origin<typename this_type::const_iterator,
				this_type> const_sub_col_type;
    typedef dense_compressed_iterator<typename this_type::iterator,
				      typename this_type::iterator,
				      this_type *> col_iterator;
    typedef dense_compressed_iterator<typename this_type::const_iterator,
				      typename this_type::iterator,
				      const this_type *> const_col_iterator;
    typedef col_and_row sub_orientation;
    typedef linalg_true index_sorted;
    static size_type nrows(const this_type &m) { return m.nrows(); }
    static size_type ncols(const this_type &m) { return m.ncols(); }
    static const_sub_row_type row(const const_row_iterator &it)
    { return const_sub_row_type(*it, it.nrows, it.ncols, it.origin); }
    static const_sub_col_type col(const const_col_iterator &it)
    { return const_sub_col_type(*it, *it + it.nrows, it.origin); }
    static sub_row_type row(const row_iterator &it)
    { return sub_row_type(*it, it.nrows, it.ncols, it.origin); }
    static sub_col_type col(const col_iterator &it)
    { return sub_col_type(*it, *it + it.nrows, it.origin); }
    static row_iterator row_begin(this_type &m)
    { return row_iterator(m.begin(), m.size() ? 1 : 0, m.nrows(), m.ncols(), 0, &m); }
    static row_iterator row_end(this_type &m)
    { return row_iterator(m.begin(), m.size() ? 1 : 0, m.nrows(), m.ncols(), m.nrows(), &m); }
    static const_row_iterator row_begin(const this_type &m)
    { return const_row_iterator(m.begin(), m.size() ? 1 : 0, m.nrows(), m.ncols(), 0, &m); }
    static const_row_iterator row_end(const this_type &m)
    { return const_row_iterator(m.begin(),  m.size() ? 1 : 0, m.nrows(), m.ncols(), m.nrows(), &m); }
    static col_iterator col_begin(this_type &m)
    { return col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(), 0, &m); }
    static col_iterator col_end(this_type &m)
    { return col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(), m.ncols(), &m); }
    static const_col_iterator col_begin(const this_type &m)
    { return const_col_iterator(m.begin(), m.nrows(), m.nrows(), m.ncols(), 0, &m); }
    static const_col_iterator col_end(const this_type &m)
    { return const_col_iterator(m.begin(),m.nrows(),m.nrows(),m.ncols(),m.ncols(), &m); }
    static origin_type* origin(this_type &m) { return &m; }
    static const origin_type* origin(const this_type &m) { return &m; }
    static void do_clear(this_type &m) { m.fill(value_type(0)); }
    static value_type access(const const_col_iterator &itcol, size_type j)
    { return (*itcol)[j]; }
    static reference access(const col_iterator &itcol, size_type j)
    { return (*itcol)[j]; }
    static void resize(this_type &v, size_type m, size_type n)
    { v.resize(m,n); }
    static void reshape(this_type &v, size_type m, size_type n)
    { v.reshape(m, n); }
  };

  template<typename T> std::ostream &operator <<
    (std::ostream &o, const dense_matrix<T>& m) { gmm::write(o,m); return o; }

  /* ******************************************************************** */
  /*                                                                      */
  /*	        Read only compressed sparse column matrix                 */
  /*                                                                      */
  /* ******************************************************************** */

  template <typename T, int shift = 0>
  struct csc_matrix {
    typedef unsigned int IND_TYPE;

    std::vector<T> pr;
    std::vector<IND_TYPE> ir;
    std::vector<IND_TYPE> jc;
    size_type nc, nr;

    typedef T value_type;
    typedef T& access_type;

    template <typename Matrix> void init_with_good_format(const Matrix &B);
    template <typename Matrix> void init_with(const Matrix &A);
    void init_with(const col_matrix<gmm::rsvector<T> > &B)
    { init_with_good_format(B); }
    void init_with(const col_matrix<wsvector<T> > &B)
    { init_with_good_format(B); }
    template <typename PT1, typename PT2, typename PT3, int cshift>
    void init_with(const csc_matrix_ref<PT1,PT2,PT3,cshift>& B)
    { init_with_good_format(B); }
    template <typename U, int cshift>    
    void init_with(const csc_matrix<U, cshift>& B)
    { init_with_good_format(B); }

    void init_with_identity(size_type n);

    csc_matrix(void) :  nc(0), nr(0) {}
    csc_matrix(size_type nnr, size_type nnc);

    size_type nrows(void) const { return nr; }
    size_type ncols(void) const { return nc; }
    void swap(csc_matrix<T, shift> &m) { 
      std::swap(pr, m.pr); 
      std::swap(ir, m.ir); std::swap(jc, m.jc); 
      std::swap(nc, m.nc); std::swap(nr, m.nr);
    }
    value_type operator()(size_type i, size_type j) const
    { return mat_col(*this, j)[i]; }
  };

  template <typename T, int shift> template<typename Matrix>
  void csc_matrix<T, shift>::init_with_good_format(const Matrix &B) {
    typedef typename linalg_traits<Matrix>::const_sub_col_type col_type;
    nc = mat_ncols(B); nr = mat_nrows(B);
    jc.resize(nc+1);
    jc[0] = shift;
    for (size_type j = 0; j < nc; ++j) {
      jc[j+1] = IND_TYPE(jc[j] + nnz(mat_const_col(B, j)));
    }
    pr.resize(jc[nc]);
    ir.resize(jc[nc]);
    for (size_type j = 0; j < nc; ++j) {
      col_type col = mat_const_col(B, j);
      typename linalg_traits<col_type>::const_iterator
	it = vect_const_begin(col), ite = vect_const_end(col);
      for (size_type k = 0; it != ite; ++it, ++k) {
	pr[jc[j]-shift+k] = *it;
	ir[jc[j]-shift+k] = IND_TYPE(it.index() + shift);
      }
    }
  }
  
  template <typename T, int shift> template <typename Matrix>
  void csc_matrix<T, shift>::init_with(const Matrix &A) {
    col_matrix<wsvector<T> > B(mat_nrows(A), mat_ncols(A));
    copy(A, B);
    init_with_good_format(B);
  }
  
  template <typename T, int shift>
  void csc_matrix<T, shift>::init_with_identity(size_type n) {
    if (pr) { delete[] pr; delete[] ir; delete[] jc; }
    nc = nr = n; 
    pr.resize(nc); ir.resize(nc); jc.resize(nc+1);
    for (size_type j = 0; j < nc; ++j)
      { ir[j] = jc[j] = shift + j; pr[j] = T(1); }
    jc[nc] = shift + nc;
  }
  
  template <typename T, int shift>
  csc_matrix<T, shift>::csc_matrix(size_type nnr, size_type nnc)
    : nc(nnc), nr(nnr) {
    pr.resize(1);  ir.resize(1); jc.resize(nc+1);
    for (size_type j = 0; j <= nc; ++j) jc[j] = shift;
  }

  template <typename T, int shift>
  struct linalg_traits<csc_matrix<T, shift> > {
    typedef csc_matrix<T, shift> this_type;
    typedef typename this_type::IND_TYPE IND_TYPE;
    typedef linalg_const is_reference;
    typedef abstract_matrix linalg_type;
    typedef T value_type;
    typedef T origin_type;
    typedef T reference;
    typedef abstract_sparse storage_type;
    typedef abstract_null_type sub_row_type;
    typedef abstract_null_type const_sub_row_type;
    typedef abstract_null_type row_iterator;
    typedef abstract_null_type const_row_iterator;
    typedef abstract_null_type sub_col_type;
    typedef cs_vector_ref<const T *, const IND_TYPE *, shift>
    const_sub_col_type;
    typedef sparse_compressed_iterator<const T *, const IND_TYPE *,
				       const IND_TYPE *, shift>
    const_col_iterator;
    typedef abstract_null_type col_iterator;
    typedef col_major sub_orientation;
    typedef linalg_true index_sorted;
    static size_type nrows(const this_type &m) { return m.nrows(); }
    static size_type ncols(const this_type &m) { return m.ncols(); }
    static const_col_iterator col_begin(const this_type &m)
    { return const_col_iterator(&m.pr[0],&m.ir[0],&m.jc[0], m.nr, &m.pr[0]); }
    static const_col_iterator col_end(const this_type &m) {
      return const_col_iterator(&m.pr[0],&m.ir[0],&m.jc[0]+m.nc,
				m.nr,&m.pr[0]);
    }
    static const_sub_col_type col(const const_col_iterator &it) {
      return const_sub_col_type(it.pr + *(it.jc) - shift,
				it.ir + *(it.jc) - shift,
				*(it.jc + 1) - *(it.jc), it.n);
    }
    static const origin_type* origin(const this_type &m) { return &m.pr[0]; }
    static void do_clear(this_type &m) { m.do_clear(); }
    static value_type access(const const_col_iterator &itcol, size_type j)
    { return col(itcol)[j]; }
  };

  template <typename T, int shift>
  std::ostream &operator <<
    (std::ostream &o, const csc_matrix<T, shift>& m)
  { gmm::write(o,m); return o; }
  
  template <typename T, int shift>
  inline void copy(const identity_matrix &, csc_matrix<T, shift>& M)
  { M.init_with_identity(mat_nrows(M)); }

  template <typename Matrix, typename T, int shift>
  inline void copy(const Matrix &A, csc_matrix<T, shift>& M)
  { M.init_with(A); }

  /* ******************************************************************** */
  /*                                                                      */
  /*	        Read only compressed sparse row matrix                    */
  /*                                                                      */
  /* ******************************************************************** */

  template <typename T, int shift = 0>
  struct csr_matrix {

    typedef unsigned int IND_TYPE;

    std::vector<T> pr;        // values.
    std::vector<IND_TYPE> ir; // col indices.
    std::vector<IND_TYPE> jc; // row repartition on pr and ir.
    size_type nc, nr;

    typedef T value_type;
    typedef T& access_type;


    template <typename Matrix> void init_with_good_format(const Matrix &B);
    void init_with(const row_matrix<wsvector<T> > &B)
    { init_with_good_format(B); }
    void init_with(const row_matrix<rsvector<T> > &B)
    { init_with_good_format(B); }
    template <typename PT1, typename PT2, typename PT3, int cshift>
    void init_with(const csr_matrix_ref<PT1,PT2,PT3,cshift>& B)
    { init_with_good_format(B); }
    template <typename U, int cshift>
    void init_with(const csr_matrix<U, cshift>& B)
    { init_with_good_format(B); }

    template <typename Matrix> void init_with(const Matrix &A);
    void init_with_identity(size_type n);

    csr_matrix(void) : nc(0), nr(0) {}
    csr_matrix(size_type nnr, size_type nnc);

    size_type nrows(void) const { return nr; }
    size_type ncols(void) const { return nc; }
    void swap(csr_matrix<T, shift> &m) { 
      std::swap(pr, m.pr); 
      std::swap(ir,m.ir); std::swap(jc, m.jc); 
      std::swap(nc, m.nc); std::swap(nr,m.nr);
    }
   
    value_type operator()(size_type i, size_type j) const
    { return mat_row(*this, i)[j]; }
  };
  
  template <typename T, int shift> template <typename Matrix>
  void csr_matrix<T, shift>::init_with_good_format(const Matrix &B) {
    typedef typename linalg_traits<Matrix>::const_sub_row_type row_type;
    nc = mat_ncols(B); nr = mat_nrows(B);
    jc.resize(nr+1);
    jc[0] = shift;
    for (size_type j = 0; j < nr; ++j) {
      jc[j+1] = IND_TYPE(jc[j] + nnz(mat_const_row(B, j)));
    }
    pr.resize(jc[nr]);
    ir.resize(jc[nr]);
    for (size_type j = 0; j < nr; ++j) {
      row_type row = mat_const_row(B, j);
      typename linalg_traits<row_type>::const_iterator
	it = vect_const_begin(row), ite = vect_const_end(row);
      for (size_type k = 0; it != ite; ++it, ++k) {
	pr[jc[j]-shift+k] = *it;
	ir[jc[j]-shift+k] = IND_TYPE(it.index()+shift);
      }
    }
  }

  template <typename T, int shift> template <typename Matrix> 
  void csr_matrix<T, shift>::init_with(const Matrix &A) { 
    row_matrix<wsvector<T> > B(mat_nrows(A), mat_ncols(A)); 
    copy(A, B); 
    init_with_good_format(B);
  }

  template <typename T, int shift> 
  void csr_matrix<T, shift>::init_with_identity(size_type n) {
    nc = nr = n; 
    pr.resize(nr); ir.resize(nr); jc.resize(nr+1);
    for (size_type j = 0; j < nr; ++j)
      { ir[j] = jc[j] = shift + j; pr[j] = T(1); }
    jc[nr] = shift + nr;
  }

  template <typename T, int shift>
  csr_matrix<T, shift>::csr_matrix(size_type nnr, size_type nnc)
    : nc(nnc), nr(nnr) {
    pr.resize(1);  ir.resize(1); jc.resize(nr+1);
    for (size_type j = 0; j < nr; ++j) jc[j] = shift;
    jc[nr] = shift;
  }


  template <typename T, int shift>
  struct linalg_traits<csr_matrix<T, shift> > {
    typedef csr_matrix<T, shift> this_type;
    typedef typename this_type::IND_TYPE IND_TYPE;
    typedef linalg_const is_reference;
    typedef abstract_matrix linalg_type;
    typedef T value_type;
    typedef T origin_type;
    typedef T reference;
    typedef abstract_sparse storage_type;
    typedef abstract_null_type sub_col_type;
    typedef abstract_null_type const_sub_col_type;
    typedef abstract_null_type col_iterator;
    typedef abstract_null_type const_col_iterator;
    typedef abstract_null_type sub_row_type;
    typedef cs_vector_ref<const T *, const IND_TYPE *, shift>
    const_sub_row_type;
    typedef sparse_compressed_iterator<const T *, const IND_TYPE *,
				       const IND_TYPE *, shift>
    const_row_iterator;
    typedef abstract_null_type row_iterator;
    typedef row_major sub_orientation;
    typedef linalg_true index_sorted;
    static size_type nrows(const this_type &m) { return m.nrows(); }
    static size_type ncols(const this_type &m) { return m.ncols(); }
    static const_row_iterator row_begin(const this_type &m)
    { return const_row_iterator(&m.pr[0], &m.ir[0], &m.jc[0], m.nc, &m.pr[0]); }
    static const_row_iterator row_end(const this_type &m)
    { return const_row_iterator(&m.pr[0], &m.ir[0], &m.jc[0] + m.nr, m.nc, &m.pr[0]); }
    static const_sub_row_type row(const const_row_iterator &it) {
      return const_sub_row_type(it.pr + *(it.jc) - shift,
				it.ir + *(it.jc) - shift,
				*(it.jc + 1) - *(it.jc), it.n);
    }
    static const origin_type* origin(const this_type &m) { return &m.pr[0]; }
    static void do_clear(this_type &m) { m.do_clear(); }
    static value_type access(const const_row_iterator &itrow, size_type j)
    { return row(itrow)[j]; }
  };

  template <typename T, int shift>
  std::ostream &operator <<
    (std::ostream &o, const csr_matrix<T, shift>& m)
  { gmm::write(o,m); return o; }
  
  template <typename T, int shift>
  inline void copy(const identity_matrix &, csr_matrix<T, shift>& M)
  { M.init_with_identity(mat_nrows(M)); }

  template <typename Matrix, typename T, int shift>
  inline void copy(const Matrix &A, csr_matrix<T, shift>& M)
  { M.init_with(A); }

  /* ******************************************************************** */
  /*		                                            		  */
  /*		Block matrix                                		  */
  /*		                                            		  */
  /* ******************************************************************** */

  template <typename MAT> class block_matrix {
  protected :
    std::vector<MAT> blocks;
    size_type nrowblocks_;
    size_type ncolblocks_;
    std::vector<sub_interval> introw, intcol;

  public :
    typedef typename linalg_traits<MAT>::value_type value_type;
    typedef typename linalg_traits<MAT>::reference reference;

    size_type nrows(void) const { return introw[nrowblocks_-1].max; }
    size_type ncols(void) const { return intcol[ncolblocks_-1].max; }
    size_type nrowblocks(void) const { return nrowblocks_; }
    size_type ncolblocks(void) const { return ncolblocks_; }
    const sub_interval &subrowinterval(size_type i) const { return introw[i]; }
    const sub_interval &subcolinterval(size_type i) const { return intcol[i]; }
    const MAT &block(size_type i, size_type j) const 
    { return blocks[j*ncolblocks_+i]; }
    MAT &block(size_type i, size_type j)
    { return blocks[j*ncolblocks_+i]; }
    void do_clear(void);
    // to be done : read and write access to a component
    value_type operator() (size_type i, size_type j) const {
      size_type k, l;
      for (k = 0; k < nrowblocks_; ++k)
	if (i >= introw[k].min && i <  introw[k].max) break;
      for (l = 0; l < nrowblocks_; ++l)
	if (j >= introw[l].min && j <  introw[l].max) break;
      return (block(k, l))(i - introw[k].min, j - introw[l].min);
    }
    reference operator() (size_type i, size_type j) {
      size_type k, l;
      for (k = 0; k < nrowblocks_; ++k)
	if (i >= introw[k].min && i <  introw[k].max) break;
      for (l = 0; l < nrowblocks_; ++l)
	if (j >= introw[l].min && j <  introw[l].max) break;
      return (block(k, l))(i - introw[k].min, j - introw[l].min);
    }
    
    template <typename CONT> void resize(const CONT &c1, const CONT &c2);
    template <typename CONT> block_matrix(const CONT &c1, const CONT &c2)
    { resize(c1, c2); }
    block_matrix(void) {}

  };

  template <typename MAT> struct linalg_traits<block_matrix<MAT> > {
    typedef block_matrix<MAT> this_type;
    typedef linalg_false is_reference;
    typedef abstract_matrix linalg_type;
    typedef this_type origin_type;
    typedef typename linalg_traits<MAT>::value_type value_type;
    typedef typename linalg_traits<MAT>::reference reference;
    typedef typename linalg_traits<MAT>::storage_type storage_type;
    typedef abstract_null_type sub_row_type;       // to be done ...
    typedef abstract_null_type const_sub_row_type; // to be done ...
    typedef abstract_null_type row_iterator;       // to be done ...
    typedef abstract_null_type const_row_iterator; // to be done ...
    typedef abstract_null_type sub_col_type;       // to be done ...
    typedef abstract_null_type const_sub_col_type; // to be done ...
    typedef abstract_null_type col_iterator;       // to be done ...
    typedef abstract_null_type const_col_iterator; // to be done ...
    typedef abstract_null_type sub_orientation;    // to be done ...
    typedef linalg_true index_sorted;
    static size_type nrows(const this_type &m) { return m.nrows(); }
    static size_type ncols(const this_type &m) { return m.ncols(); }
    static origin_type* origin(this_type &m) { return &m; }
    static const origin_type* origin(const this_type &m) { return &m; }
    static void do_clear(this_type &m) { m.do_clear(); }
    // access to be done ...    
    static void resize(this_type &, size_type , size_type)
    { GMM_ASSERT1(false, "Sorry, to be done"); }
    static void reshape(this_type &, size_type , size_type)
    { GMM_ASSERT1(false, "Sorry, to be done"); }
  };

  template <typename MAT> void block_matrix<MAT>::do_clear(void) { 
    for (size_type j = 0, l = 0; j < ncolblocks_; ++j)
      for (size_type i = 0, k = 0; i < nrowblocks_; ++i)
	clear(block(i,j));
  }

  template <typename MAT> template <typename CONT>
  void block_matrix<MAT>::resize(const CONT &c1, const CONT &c2) {
    nrowblocks_ = c1.size(); ncolblocks_ = c2.size();
    blocks.resize(nrowblocks_ * ncolblocks_);
    intcol.resize(ncolblocks_);
    introw.resize(nrowblocks_);
    for (size_type j = 0, l = 0; j < ncolblocks_; ++j) {
      intcol[j] = sub_interval(l, c2[j]); l += c2[j];
      for (size_type i = 0, k = 0; i < nrowblocks_; ++i) {
	if (j == 0) { introw[i] = sub_interval(k, c1[i]); k += c1[i]; }
	block(i, j) = MAT(c1[i], c2[j]);
      }
    }
  }

  template <typename M1, typename M2>
  void copy(const block_matrix<M1> &m1, M2 &m2) {
    for (size_type j = 0; j < m1.ncolblocks(); ++j)
      for (size_type i = 0; i < m1.nrowblocks(); ++i)
	copy(m1.block(i,j), sub_matrix(m2, m1.subrowinterval(i), 
				       m1.subcolinterval(j)));
  }

  template <typename M1, typename M2>
  void copy(const block_matrix<M1> &m1, const M2 &m2)
  { copy(m1, linalg_const_cast(m2)); }
  

  template <typename MAT, typename V1, typename V2>
  void mult(const block_matrix<MAT> &m, const V1 &v1, V2 &v2) {
    clear(v2);
    typename sub_vector_type<V2 *, sub_interval>::vector_type sv;
    for (size_type i = 0; i < m.nrowblocks() ; ++i)
      for (size_type j = 0; j < m.ncolblocks() ; ++j) {
	sv = sub_vector(v2, m.subrowinterval(i));
	mult(m.block(i,j),
	     sub_vector(v1, m.subcolinterval(j)), sv, sv);
      }
  }

  template <typename MAT, typename V1, typename V2, typename V3>
  void mult(const block_matrix<MAT> &m, const V1 &v1, const V2 &v2, V3 &v3) {
    typename sub_vector_type<V3 *, sub_interval>::vector_type sv;
    for (size_type i = 0; i < m.nrowblocks() ; ++i)
      for (size_type j = 0; j < m.ncolblocks() ; ++j) {
	sv = sub_vector(v3, m.subrowinterval(i));
	if (j == 0)
	  mult(m.block(i,j),
	       sub_vector(v1, m.subcolinterval(j)),
	       sub_vector(v2, m.subrowinterval(i)), sv);
	else
	  mult(m.block(i,j),
	       sub_vector(v1, m.subcolinterval(j)), sv, sv);
      }
    
  }

  template <typename MAT, typename V1, typename V2>
  void mult(const block_matrix<MAT> &m, const V1 &v1, const V2 &v2)
  { mult(m, v1, linalg_const_cast(v2)); }

  template <typename MAT, typename V1, typename V2, typename V3>
  void mult(const block_matrix<MAT> &m, const V1 &v1, const V2 &v2, 
	    const V3 &v3)
  { mult_const(m, v1, v2, linalg_const_cast(v3)); }

}
  /* ******************************************************************** */
  /*		                                            		  */
  /*		Distributed matrices                                	  */
  /*		                                            		  */
  /* ******************************************************************** */

#ifdef GMM_USES_MPI
#include <mpi.h>
 
namespace gmm { 
  
  template <typename T> inline MPI_Datatype mpi_type(T)
  { GMM_ASSERT1(false, "Sorry unsupported type"); return MPI_FLOAT; }
  inline MPI_Datatype mpi_type(double) { return MPI_DOUBLE; }
  inline MPI_Datatype mpi_type(float) { return MPI_FLOAT; }
  inline MPI_Datatype mpi_type(long double) { return MPI_LONG_DOUBLE; }
#ifndef LAM_MPI
  inline MPI_Datatype mpi_type(std::complex<float>) { return MPI_COMPLEX; }
  inline MPI_Datatype mpi_type(std::complex<double>) { return MPI_DOUBLE_COMPLEX; }
#endif
  inline MPI_Datatype mpi_type(int) { return MPI_INT; }
  inline MPI_Datatype mpi_type(unsigned int) { return MPI_UNSIGNED; }
  inline MPI_Datatype mpi_type(size_t) {
    if (sizeof(int) == sizeof(size_t)) return MPI_UNSIGNED;
    if (sizeof(long) == sizeof(size_t)) return MPI_UNSIGNED_LONG;
    return MPI_LONG_LONG;
  }



  template <typename MAT> struct mpi_distributed_matrix {
    MAT M;

    mpi_distributed_matrix(size_type n, size_type m) : M(n, m) {}
    mpi_distributed_matrix() {}

    const MAT &local_matrix(void) const { return M; }
    MAT &local_matrix(void) { return M; }
  };
  
  template <typename MAT> inline MAT &eff_matrix(MAT &m) { return m; }
  template <typename MAT> inline
  const MAT &eff_matrix(const MAT &m) { return m; }
  template <typename MAT> inline
  MAT &eff_matrix(mpi_distributed_matrix<MAT> &m) { return m.M; }
  template <typename MAT> inline
  const MAT &eff_matrix(const mpi_distributed_matrix<MAT> &m) { return m.M; }
  

  template <typename MAT1, typename MAT2>
  inline void copy(const mpi_distributed_matrix<MAT1> &m1,
		   mpi_distributed_matrix<MAT2> &m2)
  { copy(eff_matrix(m1), eff_matrix(m2)); }
  template <typename MAT1, typename MAT2>
  inline void copy(const mpi_distributed_matrix<MAT1> &m1,
		   const mpi_distributed_matrix<MAT2> &m2)
  { copy(m1.M, m2.M); }
  
  template <typename MAT1, typename MAT2>
  inline void copy(const mpi_distributed_matrix<MAT1> &m1, MAT2 &m2)
  { copy(m1.M, m2); }
  template <typename MAT1, typename MAT2>
  inline void copy(const mpi_distributed_matrix<MAT1> &m1, const MAT2 &m2)
  { copy(m1.M, m2); }
  

  template <typename MATSP, typename V1, typename V2> inline
  typename strongest_value_type3<V1,V2,MATSP>::value_type
  vect_sp(const mpi_distributed_matrix<MATSP> &ps, const V1 &v1,
	  const V2 &v2) {
    typedef typename strongest_value_type3<V1,V2,MATSP>::value_type T;
    T res = vect_sp(ps.M, v1, v2), rest;
    MPI_Allreduce(&res, &rest, 1, mpi_type(T()), MPI_SUM,MPI_COMM_WORLD);
    return rest;
  }

  template <typename MAT, typename V1, typename V2>
  inline void mult_add(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
		       V2 &v2) {
    typedef typename linalg_traits<V2>::value_type T;
    std::vector<T> v3(vect_size(v2)), v4(vect_size(v2));
    static double tmult_tot = 0.0;
    static double tmult_tot2 = 0.0;
    double t_ref = MPI_Wtime();
    gmm::mult(m.M, v1, v3);
    if (is_sparse(v2)) GMM_WARNING2("Using a plain temporary, here.");
    double t_ref2 = MPI_Wtime();
    MPI_Allreduce(&(v3[0]), &(v4[0]),gmm::vect_size(v2), mpi_type(T()),
		  MPI_SUM,MPI_COMM_WORLD);
    tmult_tot2 = MPI_Wtime()-t_ref2;
    cout << "reduce mult mpi = " << tmult_tot2 << endl;
    gmm::add(v4, v2);
    tmult_tot = MPI_Wtime()-t_ref;
    cout << "tmult mpi = " << tmult_tot << endl;
  }

  template <typename MAT, typename V1, typename V2>
  void mult_add(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
		const V2 &v2_)
  { mult_add(m, v1, const_cast<V2 &>(v2_)); }

  template <typename MAT, typename V1, typename V2>
  inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
		   const V2 &v2_)
  { V2 &v2 = const_cast<V2 &>(v2_); clear(v2); mult_add(m, v1, v2); }

  template <typename MAT, typename V1, typename V2>
  inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
		   V2 &v2)
  { clear(v2); mult_add(m, v1, v2); }

  template <typename MAT, typename V1, typename V2, typename V3>
  inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
		   const V2 &v2, const V3 &v3_)
  { V3 &v3 = const_cast<V3 &>(v3_); gmm::copy(v2, v3); mult_add(m, v1, v3); }

  template <typename MAT, typename V1, typename V2, typename V3>
  inline void mult(const mpi_distributed_matrix<MAT> &m, const V1 &v1,
		   const V2 &v2, V3 &v3)
  { gmm::copy(v2, v3); mult_add(m, v1, v3); }
  

  template <typename MAT> inline
  size_type mat_nrows(const mpi_distributed_matrix<MAT> &M) 
  { return mat_nrows(M.M); }
  template <typename MAT> inline
  size_type mat_ncols(const mpi_distributed_matrix<MAT> &M) 
  { return mat_nrows(M.M); }
  template <typename MAT> inline
  void resize(mpi_distributed_matrix<MAT> &M, size_type m, size_type n)
  { resize(M.M, m, n); }
  template <typename MAT> inline void clear(mpi_distributed_matrix<MAT> &M)
  { clear(M.M); }
  

  // For compute reduced system
  template <typename MAT1, typename MAT2> inline
  void mult(const MAT1 &M1, const mpi_distributed_matrix<MAT2> &M2,
	    mpi_distributed_matrix<MAT2> &M3)
  { mult(M1, M2.M, M3.M); }
  template <typename MAT1, typename MAT2> inline
  void mult(const mpi_distributed_matrix<MAT2> &M2,
	    const MAT1 &M1, mpi_distributed_matrix<MAT2> &M3)
  { mult(M2.M, M1, M3.M); }
  template <typename MAT1, typename MAT2, typename MAT3> inline
  void mult(const MAT1 &M1, const mpi_distributed_matrix<MAT2> &M2,
		   MAT3 &M3)
  { mult(M1, M2.M, M3); }
  template <typename MAT1, typename MAT2, typename MAT3> inline
  void mult(const MAT1 &M1, const mpi_distributed_matrix<MAT2> &M2,
		   const MAT3 &M3)
  { mult(M1, M2.M, M3); }

  template <typename M, typename SUBI1, typename SUBI2>
  struct sub_matrix_type<const mpi_distributed_matrix<M> *, SUBI1, SUBI2>
  { typedef abstract_null_type matrix_type; };

  template <typename M, typename SUBI1, typename SUBI2>
  struct sub_matrix_type<mpi_distributed_matrix<M> *, SUBI1, SUBI2>
  { typedef abstract_null_type matrix_type; };

  template <typename M, typename SUBI1, typename SUBI2>  inline
  typename select_return<typename sub_matrix_type<const M *, SUBI1, SUBI2>
  ::matrix_type, typename sub_matrix_type<M *, SUBI1, SUBI2>::matrix_type,
   M *>::return_type
   sub_matrix(mpi_distributed_matrix<M> &m, const SUBI1 &si1, const SUBI2 &si2)
  { return sub_matrix(m.M, si1, si2); }

  template <typename MAT, typename SUBI1, typename SUBI2>  inline
  typename select_return<typename sub_matrix_type<const MAT *, SUBI1, SUBI2>
  ::matrix_type, typename sub_matrix_type<MAT *, SUBI1, SUBI2>::matrix_type,
			 const MAT *>::return_type
  sub_matrix(const mpi_distributed_matrix<MAT> &m, const SUBI1 &si1,
	     const SUBI2 &si2)
  { return sub_matrix(m.M, si1, si2);  }

  template <typename M, typename SUBI1>  inline
    typename select_return<typename sub_matrix_type<const M *, SUBI1, SUBI1>
    ::matrix_type, typename sub_matrix_type<M *, SUBI1, SUBI1>::matrix_type,
    M *>::return_type
  sub_matrix(mpi_distributed_matrix<M> &m, const SUBI1 &si1) 
  { return sub_matrix(m.M, si1, si1); }

  template <typename M, typename SUBI1>  inline
    typename select_return<typename sub_matrix_type<const M *, SUBI1, SUBI1>
    ::matrix_type, typename sub_matrix_type<M *, SUBI1, SUBI1>::matrix_type,
    const M *>::return_type
  sub_matrix(const mpi_distributed_matrix<M> &m, const SUBI1 &si1)
  { return sub_matrix(m.M, si1, si1); }


  template <typename L> struct transposed_return<const mpi_distributed_matrix<L> *> 
  { typedef abstract_null_type return_type; };
  template <typename L> struct transposed_return<mpi_distributed_matrix<L> *> 
  { typedef abstract_null_type return_type; };
  
  template <typename L> inline typename transposed_return<const L *>::return_type
  transposed(const mpi_distributed_matrix<L> &l)
  { return transposed(l.M); }

  template <typename L> inline typename transposed_return<L *>::return_type
  transposed(mpi_distributed_matrix<L> &l)
  { return transposed(l.M); }


  template <typename MAT>
  struct linalg_traits<mpi_distributed_matrix<MAT> > {
    typedef mpi_distributed_matrix<MAT> this_type;
    typedef MAT origin_type;
    typedef linalg_false is_reference;
    typedef abstract_matrix linalg_type;
    typedef typename linalg_traits<MAT>::value_type value_type;
    typedef typename linalg_traits<MAT>::reference reference;
    typedef typename linalg_traits<MAT>::storage_type storage_type;
    typedef abstract_null_type sub_row_type;
    typedef abstract_null_type const_sub_row_type;
    typedef abstract_null_type row_iterator;
    typedef abstract_null_type const_row_iterator;
    typedef abstract_null_type sub_col_type;
    typedef abstract_null_type const_sub_col_type;
    typedef abstract_null_type col_iterator;
    typedef abstract_null_type const_col_iterator;
    typedef abstract_null_type sub_orientation;
    typedef abstract_null_type index_sorted;
    static size_type nrows(const this_type &m) { return nrows(m.M); }
    static size_type ncols(const this_type &m) { return ncols(m.M); }
    static void do_clear(this_type &m) { clear(m.M); }
  };

}


#endif // GMM_USES_MPI

namespace std {
  template <typename V>
  void swap(gmm::row_matrix<V> &m1, gmm::row_matrix<V> &m2)
  { m1.swap(m2); }
  template <typename V>
  void swap(gmm::col_matrix<V> &m1, gmm::col_matrix<V> &m2)
  { m1.swap(m2); }
  template <typename T>
  void swap(gmm::dense_matrix<T> &m1, gmm::dense_matrix<T> &m2)
  { m1.swap(m2); }
  template <typename T, int shift> void 
  swap(gmm::csc_matrix<T,shift> &m1, gmm::csc_matrix<T,shift> &m2)
  { m1.swap(m2); }
  template <typename T, int shift> void 
  swap(gmm::csr_matrix<T,shift> &m1, gmm::csr_matrix<T,shift> &m2)
  { m1.swap(m2); }
}




#endif /* GMM_MATRIX_H__ */