This file is indexed.

/usr/include/gmm/gmm_dense_qr.h is in libgmm-dev 4.0.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
// -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2003-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
// under  the  terms  of the  GNU  Lesser General Public License as published
// by  the  Free Software Foundation;  either version 2.1 of the License,  or
// (at your option) any later version.
// This program  is  distributed  in  the  hope  that it will be useful,  but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// You  should  have received a copy of the GNU Lesser General Public License
// along  with  this program;  if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, you  may use  this file  as it is a part of a free
// software  library  without  restriction.  Specifically,  if   other  files
// instantiate  templates  or  use macros or inline functions from this file,
// or  you compile this  file  and  link  it  with other files  to produce an
// executable, this file  does  not  by itself cause the resulting executable
// to be covered  by the GNU Lesser General Public License.  This   exception
// does not  however  invalidate  any  other  reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================

/**@file gmm_dense_qr.h
   @author  Caroline Lecalvez, Caroline.Lecalvez@gmm.insa-tlse.fr, Yves Renard <Yves.Renard@insa-lyon.fr>
   @date September 12, 2003.
   @brief Dense QR factorization.
*/
#ifndef GMM_DENSE_QR_H
#define GMM_DENSE_QR_H

#include "gmm_dense_Householder.h"

namespace gmm {


  /**
     QR factorization using Householder method (complex and real version).
  */
  template <typename MAT1>
  void qr_factor(const MAT1 &A_) { 
    MAT1 &A = const_cast<MAT1 &>(A_);
    typedef typename linalg_traits<MAT1>::value_type value_type;

    size_type m = mat_nrows(A), n = mat_ncols(A);
    GMM_ASSERT2(m >= n, "dimensions mismatch");

    std::vector<value_type> W(m), V(m);

    for (size_type j = 0; j < n; ++j) {
      sub_interval SUBI(j, m-j), SUBJ(j, n-j);
      V.resize(m-j); W.resize(n-j);

      for (size_type i = j; i < m; ++i) V[i-j] = A(i, j);
      house_vector(V);

      row_house_update(sub_matrix(A, SUBI, SUBJ), V, W);
      for (size_type i = j+1; i < m; ++i) A(i, j) = V[i-j];
    }
  }

  
  // QR comes from QR_factor(QR) where the upper triangular part stands for R
  // and the lower part contains the Householder reflectors.
  // A <- AQ
  template <typename MAT1, typename MAT2>
  void apply_house_right(const MAT1 &QR, const MAT2 &A_) { 
    MAT2 &A = const_cast<MAT2 &>(A_);
    typedef typename linalg_traits<MAT1>::value_type T;
    size_type m = mat_nrows(QR), n = mat_ncols(QR);
    GMM_ASSERT2(m == mat_ncols(A), "dimensions mismatch");
    if (m == 0) return;
    std::vector<T> V(m), W(mat_nrows(A));
    V[0] = T(1);
    for (size_type j = 0; j < n; ++j) {
      V.resize(m-j);
      for (size_type i = j+1; i < m; ++i) V[i-j] = QR(i, j);
      col_house_update(sub_matrix(A, sub_interval(0, mat_nrows(A)),
				  sub_interval(j, m-j)), V, W);
    }
  }

  // QR comes from QR_factor(QR) where the upper triangular part stands for R
  // and the lower part contains the Householder reflectors.
  // A <- Q*A
  template <typename MAT1, typename MAT2>
  void apply_house_left(const MAT1 &QR, const MAT2 &A_) { 
    MAT2 &A = const_cast<MAT2 &>(A_);
    typedef typename linalg_traits<MAT1>::value_type T;
    size_type m = mat_nrows(QR), n = mat_ncols(QR);
    GMM_ASSERT2(m == mat_nrows(A), "dimensions mismatch");
    if (m == 0) return;
    std::vector<T> V(m), W(mat_ncols(A));
    V[0] = T(1);
    for (size_type j = 0; j < n; ++j) {
      V.resize(m-j);
      for (size_type i = j+1; i < m; ++i) V[i-j] = QR(i, j);
      row_house_update(sub_matrix(A, sub_interval(j, m-j),
				  sub_interval(0, mat_ncols(A))), V, W);
    }
  }  

  /** Compute the QR factorization, where Q is assembled. */
  template <typename MAT1, typename MAT2, typename MAT3>
    void qr_factor(const MAT1 &A, const MAT2 &QQ, const MAT3 &RR) { 
    MAT2 &Q = const_cast<MAT2 &>(QQ); MAT3 &R = const_cast<MAT3 &>(RR); 
    typedef typename linalg_traits<MAT1>::value_type value_type;

    size_type m = mat_nrows(A), n = mat_ncols(A);
    GMM_ASSERT2(m >= n, "dimensions mismatch");
    gmm::copy(A, Q);
    
    std::vector<value_type> W(m);
    dense_matrix<value_type> VV(m, n);

    for (size_type j = 0; j < n; ++j) {
      sub_interval SUBI(j, m-j), SUBJ(j, n-j);

      for (size_type i = j; i < m; ++i) VV(i,j) = Q(i, j);
      house_vector(sub_vector(mat_col(VV,j), SUBI));

      row_house_update(sub_matrix(Q, SUBI, SUBJ),
		       sub_vector(mat_col(VV,j), SUBI), sub_vector(W, SUBJ));
    }

    gmm::copy(sub_matrix(Q, sub_interval(0, n), sub_interval(0, n)), R);
    gmm::copy(identity_matrix(), Q);
    
    for (size_type j = n-1; j != size_type(-1); --j) {
      sub_interval SUBI(j, m-j), SUBJ(j, n-j);
      row_house_update(sub_matrix(Q, SUBI, SUBJ), 
		       sub_vector(mat_col(VV,j), SUBI), sub_vector(W, SUBJ));
    }
  }

  ///@cond DOXY_SHOW_ALL_FUNCTIONS
  template <typename TA, typename TV, typename Ttol, 
	    typename MAT, typename VECT>
  void extract_eig(const MAT &A, VECT &V, Ttol tol, TA, TV) {
    size_type n = mat_nrows(A);
    if (n == 0) return;
    tol *= Ttol(2);
    Ttol tol_i = tol * gmm::abs(A(0,0)), tol_cplx = tol_i;
    for (size_type i = 0; i < n; ++i) {
      if (i < n-1) {
	tol_i = (gmm::abs(A(i,i))+gmm::abs(A(i+1,i+1)))*tol;
	tol_cplx = std::max(tol_cplx, tol_i);
      }
      if ((i < n-1) && gmm::abs(A(i+1,i)) >= tol_i) {
	TA tr = A(i,i) + A(i+1, i+1);
	TA det = A(i,i)*A(i+1, i+1) - A(i,i+1)*A(i+1, i);
	TA delta = tr*tr - TA(4) * det;
	if (delta < -tol_cplx) {
	  GMM_WARNING1("A complex eigenvalue has been detected : "
		      << std::complex<TA>(tr/TA(2), gmm::sqrt(-delta)/TA(2)));
	  V[i] = V[i+1] = tr / TA(2);
	}
	else {
	  delta = std::max(TA(0), delta);
	  V[i  ] = TA(tr + gmm::sqrt(delta))/ TA(2);
	  V[i+1] = TA(tr -  gmm::sqrt(delta))/ TA(2);
	}
	++i;
      }
      else
	V[i] = TV(A(i,i));
    }
  }

  template <typename TA, typename TV, typename Ttol, 
	    typename MAT, typename VECT>
  void extract_eig(const MAT &A, VECT &V, Ttol tol, TA, std::complex<TV>) {
    size_type n = mat_nrows(A);
    tol *= Ttol(2);
    for (size_type i = 0; i < n; ++i)
      if ((i == n-1) ||
	  gmm::abs(A(i+1,i)) < (gmm::abs(A(i,i))+gmm::abs(A(i+1,i+1)))*tol)
	V[i] = std::complex<TV>(A(i,i));
      else {
	TA tr = A(i,i) + A(i+1, i+1);
	TA det = A(i,i)*A(i+1, i+1) - A(i,i+1)*A(i+1, i);
	TA delta = tr*tr - TA(4) * det;
	if (delta < TA(0)) {
	  V[i] = std::complex<TV>(tr / TA(2), gmm::sqrt(-delta) / TA(2));
	  V[i+1] = std::complex<TV>(tr / TA(2), -gmm::sqrt(-delta)/ TA(2));
	}
	else {
	  V[i  ] = TA(tr + gmm::sqrt(delta)) / TA(2);
	  V[i+1] = TA(tr -  gmm::sqrt(delta)) / TA(2);
	}
	++i;
      }
  }

  template <typename TA, typename TV, typename Ttol,
	    typename MAT, typename VECT>
  void extract_eig(const MAT &A, VECT &V, Ttol tol, std::complex<TA>, TV) {
    typedef std::complex<TA> T;
    size_type n = mat_nrows(A);
    if (n == 0) return;
    tol *= Ttol(2);
    Ttol tol_i = tol * gmm::abs(A(0,0)), tol_cplx = tol_i;
    for (size_type i = 0; i < n; ++i) {
      if (i < n-1) {
	tol_i = (gmm::abs(A(i,i))+gmm::abs(A(i+1,i+1)))*tol;
	tol_cplx = std::max(tol_cplx, tol_i);
      }
      if ((i == n-1) || gmm::abs(A(i+1,i)) < tol_i) {
	if (gmm::abs(std::imag(A(i,i))) > tol_cplx)
	  GMM_WARNING1("A complex eigenvalue has been detected : "
		      << T(A(i,i)) << " : "  << gmm::abs(std::imag(A(i,i)))
		      / gmm::abs(std::real(A(i,i))) << " : " << tol_cplx);
	V[i] = std::real(A(i,i));
      }
      else {
	T tr = A(i,i) + A(i+1, i+1);
	T det = A(i,i)*A(i+1, i+1) - A(i,i+1)*A(i+1, i);
	T delta = tr*tr - TA(4) * det;
	T a1 = (tr + gmm::sqrt(delta)) / TA(2);
	T a2 = (tr - gmm::sqrt(delta)) / TA(2);
	if (gmm::abs(std::imag(a1)) > tol_cplx)
	  GMM_WARNING1("A complex eigenvalue has been detected : " << a1);
	if (gmm::abs(std::imag(a2)) > tol_cplx)
	  GMM_WARNING1("A complex eigenvalue has been detected : " << a2);

	V[i] = std::real(a1); V[i+1] = std::real(a2);
	++i;
      }
    }
  }

  template <typename TA, typename TV, typename Ttol,
	    typename MAT, typename VECT>
  void extract_eig(const MAT &A, VECT &V, Ttol tol,
		   std::complex<TA>, std::complex<TV>) {
    size_type n = mat_nrows(A);
    tol *= Ttol(2);
    for (size_type i = 0; i < n; ++i)
      if ((i == n-1) ||
	  gmm::abs(A(i+1,i)) < (gmm::abs(A(i,i))+gmm::abs(A(i+1,i+1)))*tol)
	V[i] = std::complex<TV>(A(i,i));
      else {
	std::complex<TA> tr = A(i,i) + A(i+1, i+1);
	std::complex<TA> det = A(i,i)*A(i+1, i+1) - A(i,i+1)*A(i+1, i);
	std::complex<TA> delta = tr*tr - TA(4) * det;
	V[i] = (tr + gmm::sqrt(delta)) / TA(2);
	V[i+1] = (tr - gmm::sqrt(delta)) / TA(2);
	++i;
      }
  }

  ///@endcond
  /**
     Compute eigenvalue vector.
  */
  template <typename MAT, typename Ttol, typename VECT> inline
  void extract_eig(const MAT &A, const VECT &V, Ttol tol) {
    extract_eig(A, const_cast<VECT&>(V), tol,
		typename linalg_traits<MAT>::value_type(),
		typename linalg_traits<VECT>::value_type());
  }

  /* ********************************************************************* */
  /*    Stop criterion for QR algorithms                                   */
  /* ********************************************************************* */

  template <typename MAT, typename Ttol>
  void qr_stop_criterion(MAT &A, size_type &p, size_type &q, Ttol tol) {
    typedef typename linalg_traits<MAT>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;
    R rmin = default_min(R()) * R(2);
    size_type n = mat_nrows(A);
    if (n <= 2) { q = n; p = 0; }
    else {
      for (size_type i = 1; i < n-q; ++i)
	if (gmm::abs(A(i,i-1)) < (gmm::abs(A(i,i))+ gmm::abs(A(i-1,i-1)))*tol
	    || gmm::abs(A(i,i-1)) < rmin)
	  A(i,i-1) = T(0);
      
      while ((q < n-1 && A(n-1-q, n-2-q) == T(0)) ||
	     (q < n-2 && A(n-2-q, n-3-q) == T(0))) ++q;
      if (q >= n-2) q = n;
      p = n-q; if (p) --p; if (p) --p;
      while (p > 0 && A(p,p-1) != T(0)) --p;
    }
  }
  
  template <typename MAT, typename Ttol> inline
  void symmetric_qr_stop_criterion(const MAT &AA, size_type &p, size_type &q,
				Ttol tol) {
    typedef typename linalg_traits<MAT>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;
    R rmin = default_min(R()) * R(2);
    MAT& A = const_cast<MAT&>(AA);
    size_type n = mat_nrows(A);
    if (n <= 1) { q = n; p = 0; }
    else {
      for (size_type i = 1; i < n-q; ++i)
	if (gmm::abs(A(i,i-1)) < (gmm::abs(A(i,i))+ gmm::abs(A(i-1,i-1)))*tol
	    || gmm::abs(A(i,i-1)) < rmin)
	  A(i,i-1) = T(0);
      
      while (q < n-1 && A(n-1-q, n-2-q) == T(0)) ++q;
      if (q >= n-1) q = n;
      p = n-q; if (p) --p; if (p) --p;
      while (p > 0 && A(p,p-1) != T(0)) --p;
    }
  }

  template <typename VECT1, typename VECT2, typename Ttol> inline
  void symmetric_qr_stop_criterion(const VECT1 &diag, const VECT2 &sdiag_,
				   size_type &p, size_type &q, Ttol tol) {
    typedef typename linalg_traits<VECT2>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;
    R rmin = default_min(R()) * R(2);
    VECT2 &sdiag = const_cast<VECT2 &>(sdiag_);
    size_type n = vect_size(diag);
    if (n <= 1) { q = n; p = 0; return; }
    for (size_type i = 1; i < n-q; ++i)
      if (gmm::abs(sdiag[i-1]) < (gmm::abs(diag[i])+ gmm::abs(diag[i-1]))*tol
	  || gmm::abs(sdiag[i-1]) < rmin)
	sdiag[i-1] = T(0);
    while (q < n-1 && sdiag[n-2-q] == T(0)) ++q;
    if (q >= n-1) q = n;
    p = n-q; if (p) --p; if (p) --p;
    while (p > 0 && sdiag[p-1] != T(0)) --p;
  }

  /* ********************************************************************* */
  /*    2x2 blocks reduction for Schur vectors                             */
  /* ********************************************************************* */

  template <typename MATH, typename MATQ, typename Ttol>
  void block2x2_reduction(MATH &H, MATQ &Q, Ttol tol) {
    typedef typename linalg_traits<MATH>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;

    size_type n = mat_nrows(H), nq = mat_nrows(Q);
    sub_interval SUBQ(0, nq), SUBL(0, 2);
    std::vector<T> v(2), w(std::max(n, nq)); v[0] = T(1);
    if (n < 2) return;
    tol *= Ttol(2);
    Ttol tol_i = tol * gmm::abs(H(0,0)), tol_cplx = tol_i;
    for (size_type i = 0; i < n-1; ++i) {
      tol_i = (gmm::abs(H(i,i))+gmm::abs(H(i+1,i+1)))*tol;
      tol_cplx = std::max(tol_cplx, tol_i);
      
      if (gmm::abs(H(i+1,i)) > tol_i) { // 2x2 block detected
	T tr = (H(i+1, i+1) - H(i,i)) / T(2);
	T delta = tr*tr + H(i,i+1)*H(i+1, i);
	
	if (is_complex(T()) || gmm::real(delta) >= R(0)) {
	  sub_interval SUBI(i, 2);
	  T theta = (tr - gmm::sqrt(delta)) / H(i+1,i);
	  R a = gmm::abs(theta);
	  v[1] = (a == R(0)) ? T(-1)
	    : gmm::conj(theta) * (R(1) - gmm::sqrt(a*a + R(1)) / a);
	  row_house_update(sub_matrix(H, SUBI), v, sub_vector(w, SUBL));
	  col_house_update(sub_matrix(H, SUBI), v, sub_vector(w, SUBL));
	  col_house_update(sub_matrix(Q, SUBQ, SUBI), v, sub_vector(w, SUBQ));
	}
	++i;
      }
    }
  }

  /* ********************************************************************* */
  /*    Basic qr algorithm.                                                */
  /* ********************************************************************* */

  #define tol_type_for_qr typename number_traits<typename \
                          linalg_traits<MAT1>::value_type>::magnitude_type
  #define default_tol_for_qr \
    (gmm::default_tol(tol_type_for_qr()) *  tol_type_for_qr(3))

  // QR method for real or complex square matrices based on QR factorisation.
  // eigval has to be a complex vector if A has complex eigeinvalues.
  // Very slow method. Use implicit_qr_method instead.
  template <typename MAT1, typename VECT, typename MAT2>
    void rudimentary_qr_algorithm(const MAT1 &A, const VECT &eigval_,
				  const MAT2 &eigvect_,
				  tol_type_for_qr tol = default_tol_for_qr,
				  bool compvect = true) {
    VECT &eigval = const_cast<VECT &>(eigval_);
    MAT2 &eigvect = const_cast<MAT2 &>(eigvect_);

    typedef typename linalg_traits<MAT1>::value_type value_type;

    size_type n = mat_nrows(A), p, q = 0, ite = 0;
    dense_matrix<value_type> Q(n, n), R(n,n), A1(n,n); 
    gmm::copy(A, A1);

    Hessenberg_reduction(A1, eigvect, compvect);
    qr_stop_criterion(A1, p, q, tol);

    while (q < n) {
      qr_factor(A1, Q, R);
      gmm::mult(R, Q, A1);
      if (compvect) { gmm::mult(eigvect, Q, R); gmm::copy(R, eigvect); }
      
      qr_stop_criterion(A1, p, q, tol);
      ++ite;
      GMM_ASSERT1(ite < n*1000, "QR algorithm failed");
    }
    if (compvect) block2x2_reduction(A1, Q, tol);
    extract_eig(A1, eigval, tol); 
  }

  template <typename MAT1, typename VECT>
    void rudimentary_qr_algorithm(const MAT1 &a, VECT &eigval,
				  tol_type_for_qr tol = default_tol_for_qr) {
    dense_matrix<typename linalg_traits<MAT1>::value_type> m(0,0);
    rudimentary_qr_algorithm(a, eigval, m, tol, false); 
  }

  /* ********************************************************************* */
  /*    Francis QR step.                                                   */
  /* ********************************************************************* */

  template <typename MAT1, typename MAT2>
    void Francis_qr_step(const MAT1& HH, const MAT2 &QQ, bool compute_Q) {
    MAT1& H = const_cast<MAT1&>(HH); MAT2& Q = const_cast<MAT2&>(QQ);
    typedef typename linalg_traits<MAT1>::value_type value_type;
    size_type n = mat_nrows(H), nq = mat_nrows(Q); 
    
    std::vector<value_type> v(3), w(std::max(n, nq));

    value_type s = H(n-2, n-2) + H(n-1, n-1);
    value_type t = H(n-2, n-2) * H(n-1, n-1) - H(n-2, n-1) * H(n-1, n-2);
    value_type x = H(0, 0) * H(0, 0) + H(0,1) * H(1, 0) - s * H(0,0) + t;
    value_type y = H(1, 0) * (H(0,0) + H(1,1) - s);
    value_type z = H(1, 0) * H(2, 1);

    sub_interval SUBQ(0, nq);

    for (size_type k = 0; k < n - 2; ++k) {
      v[0] = x; v[1] = y; v[2] = z;
      house_vector(v);
      size_type r = std::min(k+4, n), q = (k==0) ? 0 : k-1;
      sub_interval SUBI(k, 3), SUBJ(0, r), SUBK(q, n-q);
      
      row_house_update(sub_matrix(H, SUBI, SUBK),  v, sub_vector(w, SUBK));
      col_house_update(sub_matrix(H, SUBJ, SUBI),  v, sub_vector(w, SUBJ));
      
      if (compute_Q)
       	col_house_update(sub_matrix(Q, SUBQ, SUBI),  v, sub_vector(w, SUBQ));

      x = H(k+1, k); y = H(k+2, k);
      if (k < n-3) z = H(k+3, k);
    }
    sub_interval SUBI(n-2,2), SUBJ(0, n), SUBK(n-3,3), SUBL(0, 3);
    v.resize(2);
    v[0] = x; v[1] = y;
    house_vector(v);
    row_house_update(sub_matrix(H, SUBI, SUBK), v, sub_vector(w, SUBL));
    col_house_update(sub_matrix(H, SUBJ, SUBI), v, sub_vector(w, SUBJ));
    if (compute_Q)
      col_house_update(sub_matrix(Q, SUBQ, SUBI), v, sub_vector(w, SUBQ));
  }

  /* ********************************************************************* */
  /*    Wilkinson Double shift QR step (from Lapack).                      */
  /* ********************************************************************* */

  template <typename MAT1, typename MAT2, typename Ttol>
  void Wilkinson_double_shift_qr_step(const MAT1& HH, const MAT2 &QQ,
				      Ttol tol, bool exc, bool compute_Q) {
    MAT1& H = const_cast<MAT1&>(HH); MAT2& Q = const_cast<MAT2&>(QQ);
    typedef typename linalg_traits<MAT1>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;

    size_type n = mat_nrows(H), nq = mat_nrows(Q), m;
    std::vector<T> v(3), w(std::max(n, nq));
    const R dat1(0.75), dat2(-0.4375);
    T h33, h44, h43h34, v1(0), v2(0), v3(0);
    
    if (exc) {                    /* Exceptional shift.                    */
      R s = gmm::abs(H(n-1, n-2)) + gmm::abs(H(n-2, n-3));
      h33 = h44 = dat1 * s;
      h43h34 = dat2*s*s;
    }
    else {                        /* Wilkinson double shift.               */
      h44 = H(n-1,n-1); h33 = H(n-2, n-2);
      h43h34 = H(n-1, n-2) * H(n-2, n-1);
    }

    /* Look for two consecutive small subdiagonal elements.                */
    /* Determine the effect of starting the double-shift QR iteration at   */
    /* row m, and see if this would make H(m-1, m-2) negligible.           */
    for (m = n-2; m != 0; --m) {
      T h11  = H(m-1, m-1), h22  = H(m, m);
      T h21  = H(m, m-1),   h12  = H(m-1, m);
      T h44s = h44 - h11,   h33s = h33 - h11;
      v1 = (h33s*h44s-h43h34) / h21 + h12;
      v2 = h22 - h11 - h33s - h44s;
      v3 = H(m+1, m);
      R s = gmm::abs(v1) + gmm::abs(v2) + gmm::abs(v3);
      v1 /= s; v2 /= s; v3 /= s;
      if (m == 1) break;
      T h00 = H(m-2, m-2);
      T h10 = H(m-1, m-2);
      R tst1 = gmm::abs(v1)*(gmm::abs(h00)+gmm::abs(h11)+gmm::abs(h22));
      if (gmm::abs(h10)*(gmm::abs(v2)+gmm::abs(v3)) <= tol * tst1) break;
    }

    /* Double shift QR step.                                               */
    sub_interval SUBQ(0, nq);
    for (size_type k = (m == 0) ? 0 : m-1; k < n-2; ++k) {
      v[0] = v1; v[1] = v2; v[2] = v3;
      house_vector(v);
      size_type r = std::min(k+4, n), q = (k==0) ? 0 : k-1;
      sub_interval SUBI(k, 3), SUBJ(0, r), SUBK(q, n-q);
      
      row_house_update(sub_matrix(H, SUBI, SUBK),  v, sub_vector(w, SUBK));
      col_house_update(sub_matrix(H, SUBJ, SUBI),  v, sub_vector(w, SUBJ));
      if (k > m-1) { H(k+1, k-1) = T(0); if (k < n-3) H(k+2, k-1) = T(0); }
      
      if (compute_Q)
       	col_house_update(sub_matrix(Q, SUBQ, SUBI),  v, sub_vector(w, SUBQ));

      v1 = H(k+1, k); v2 = H(k+2, k);
      if (k < n-3) v3 = H(k+3, k);
    }
    sub_interval SUBI(n-2,2), SUBJ(0, n), SUBK(n-3,3), SUBL(0, 3);
    v.resize(2); v[0] = v1; v[1] = v2;
    house_vector(v);
    row_house_update(sub_matrix(H, SUBI, SUBK), v, sub_vector(w, SUBL));
    col_house_update(sub_matrix(H, SUBJ, SUBI), v, sub_vector(w, SUBJ));
    if (compute_Q)
      col_house_update(sub_matrix(Q, SUBQ, SUBI), v, sub_vector(w, SUBQ));
  }

  /* ********************************************************************* */
  /*    Implicit QR algorithm.                                             */
  /* ********************************************************************* */

  // QR method for real or complex square matrices based on an
  // implicit QR factorisation. eigval has to be a complex vector
  // if A has complex eigeinvalues. complexity about 10n^3, 25n^3 if
  // eigenvectors are computed
  template <typename MAT1, typename VECT, typename MAT2>
    void implicit_qr_algorithm(const MAT1 &A, const VECT &eigval_,
			       const MAT2 &Q_, 
			       tol_type_for_qr tol = default_tol_for_qr,
			       bool compvect = true) {
    VECT &eigval = const_cast<VECT &>(eigval_);
    MAT2 &Q = const_cast<MAT2 &>(Q_);
    typedef typename linalg_traits<MAT1>::value_type value_type;

    size_type n(mat_nrows(A)), q(0), q_old, p(0), ite(0), its(0);
    dense_matrix<value_type> H(n,n);
    sub_interval SUBK(0,0);

    gmm::copy(A, H);
    Hessenberg_reduction(H, Q, compvect);
    qr_stop_criterion(H, p, q, tol);
    
    while (q < n) {
      sub_interval SUBI(p, n-p-q), SUBJ(0, mat_ncols(Q));
      if (compvect) SUBK = SUBI;
//       Francis_qr_step(sub_matrix(H, SUBI),
// 		      sub_matrix(Q, SUBJ, SUBK), compvect);
      Wilkinson_double_shift_qr_step(sub_matrix(H, SUBI), 
				     sub_matrix(Q, SUBJ, SUBK),
				     tol, (its == 10 || its == 20), compvect);
      q_old = q;
      qr_stop_criterion(H, p, q, tol*2);
      if (q != q_old) its = 0;
      ++its; ++ite;
      GMM_ASSERT1(ite < n*100, "QR algorithm failed");
    }
    if (compvect) block2x2_reduction(H, Q, tol);
    extract_eig(H, eigval, tol);
  }


  template <typename MAT1, typename VECT>
    void implicit_qr_algorithm(const MAT1 &a, VECT &eigval,
			       tol_type_for_qr tol = default_tol_for_qr) {
    dense_matrix<typename linalg_traits<MAT1>::value_type> m(1,1);
    implicit_qr_algorithm(a, eigval, m, tol, false); 
  }

  /* ********************************************************************* */
  /*    Implicit symmetric QR step with Wilkinson Shift.                   */
  /* ********************************************************************* */

  template <typename MAT1, typename MAT2> 
    void symmetric_Wilkinson_qr_step(const MAT1& MM, const MAT2 &ZZ,
				     bool compute_z) {
    MAT1& M = const_cast<MAT1&>(MM); MAT2& Z = const_cast<MAT2&>(ZZ);
    typedef typename linalg_traits<MAT1>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;
    size_type n = mat_nrows(M);

    for (size_type i = 0; i < n; ++i) {
      M(i, i) = T(gmm::real(M(i, i)));
      if (i > 0) {
	T a = (M(i, i-1) + gmm::conj(M(i-1, i)))/R(2);
	M(i, i-1) = a; M(i-1, i) = gmm::conj(a);
      }
    }

    R d = gmm::real(M(n-2, n-2) - M(n-1, n-1)) / R(2);
    R e = gmm::abs_sqr(M(n-1, n-2));
    R nu = d + gmm::sgn(d)*gmm::sqrt(d*d+e);
    if (nu == R(0)) { M(n-1, n-2) = T(0); return; }
    R mu = gmm::real(M(n-1, n-1)) - e / nu;
    T x = M(0,0) - T(mu), z = M(1, 0), c, s;

    for (size_type k = 1; k < n; ++k) {
      Givens_rotation(x, z, c, s);

      if (k > 1) Apply_Givens_rotation_left(M(k-1,k-2), M(k,k-2), c, s);
      Apply_Givens_rotation_left(M(k-1,k-1), M(k,k-1), c, s);
      Apply_Givens_rotation_left(M(k-1,k  ), M(k,k  ), c, s);
      if (k < n-1) Apply_Givens_rotation_left(M(k-1,k+1), M(k,k+1), c, s);
      if (k > 1) Apply_Givens_rotation_right(M(k-2,k-1), M(k-2,k), c, s);
      Apply_Givens_rotation_right(M(k-1,k-1), M(k-1,k), c, s);
      Apply_Givens_rotation_right(M(k  ,k-1), M(k,k)  , c, s);
      if (k < n-1) Apply_Givens_rotation_right(M(k+1,k-1), M(k+1,k), c, s);

      if (compute_z) col_rot(Z, c, s, k-1, k);
      if (k < n-1) { x = M(k, k-1); z = M(k+1, k-1); }
    }

  }

  template <typename VECT1, typename VECT2, typename MAT> 
  void symmetric_Wilkinson_qr_step(const VECT1& diag_, const VECT2& sdiag_,
				   const MAT &ZZ, bool compute_z) {
    VECT1& diag = const_cast<VECT1&>(diag_);
    VECT2& sdiag = const_cast<VECT2&>(sdiag_);
    MAT& Z = const_cast<MAT&>(ZZ);
    typedef typename linalg_traits<VECT2>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;

    size_type n = vect_size(diag);
    R d = (diag[n-2] - diag[n-1]) / R(2);
    R e = gmm::abs_sqr(sdiag[n-2]);
    R nu = d + gmm::sgn(d)*gmm::sqrt(d*d+e);
    if (nu == R(0)) { sdiag[n-2] = T(0); return; }
    R mu = diag[n-1] - e / nu;
    T x = diag[0] - T(mu), z = sdiag[0], c, s;

    T a01(0), a02(0);
    T a10(0), a11(diag[0]), a12(gmm::conj(sdiag[0])), a13(0);
    T a20(0), a21(sdiag[0]), a22(diag[1]), a23(gmm::conj(sdiag[1]));
    T a31(0), a32(sdiag[1]);

    for (size_type k = 1; k < n; ++k) {
      Givens_rotation(x, z, c, s);

      if (k > 1) Apply_Givens_rotation_left(a10, a20, c, s);
      Apply_Givens_rotation_left(a11, a21, c, s);
      Apply_Givens_rotation_left(a12, a22, c, s);
      if (k < n-1) Apply_Givens_rotation_left(a13, a23, c, s);

      if (k > 1) Apply_Givens_rotation_right(a01, a02, c, s);
      Apply_Givens_rotation_right(a11, a12, c, s);
      Apply_Givens_rotation_right(a21, a22, c, s);
      if (k < n-1) Apply_Givens_rotation_right(a31, a32, c, s);

      if (compute_z) col_rot(Z, c, s, k-1, k);

      diag[k-1] = gmm::real(a11);
      diag[k] = gmm::real(a22);
      if (k > 1) sdiag[k-2] = (gmm::conj(a01) + a10) / R(2);
      sdiag[k-1] = (gmm::conj(a12) + a21) / R(2);

      x = sdiag[k-1]; z = (gmm::conj(a13) + a31) / R(2);

      a01 = a12; a02 = a13;
      a10 = a21; a11 = a22; a12 = a23; a13 = T(0);
      a20 = a31; a21 = a32; a31 = T(0);

      if (k < n-1) {
	sdiag[k] = (gmm::conj(a23) + a32) / R(2);
	a22 = T(diag[k+1]); a32 = sdiag[k+1]; a23 = gmm::conj(a32);
      }
    }
  }

  /* ********************************************************************* */
  /*    Implicit QR algorithm for symmetric or hermitian matrices.         */
  /* ********************************************************************* */

  // implicit QR method for real square symmetric matrices or complex
  // hermitian matrices.
  // eigval has to be a complex vector if A has complex eigeinvalues.
  // complexity about 4n^3/3, 9n^3 if eigenvectors are computed
  template <typename MAT1, typename VECT, typename MAT2>
  void symmetric_qr_algorithm_old(const MAT1 &A, const VECT &eigval_,
			      const MAT2 &eigvect_,
			      tol_type_for_qr tol = default_tol_for_qr,
			      bool compvect = true) {
    VECT &eigval = const_cast<VECT &>(eigval_);
    MAT2 &eigvect = const_cast<MAT2 &>(eigvect_);
    typedef typename linalg_traits<MAT1>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;

    if (compvect) gmm::copy(identity_matrix(), eigvect);
    size_type n = mat_nrows(A), q = 0, p, ite = 0;
    dense_matrix<T> Tri(n, n);
    gmm::copy(A, Tri);

    Householder_tridiagonalization(Tri, eigvect, compvect);
    
    symmetric_qr_stop_criterion(Tri, p, q, tol);
    
    while (q < n) {

      sub_interval SUBI(p, n-p-q), SUBJ(0, mat_ncols(eigvect)), SUBK(p, n-p-q);
      if (!compvect) SUBK = sub_interval(0,0);
      symmetric_Wilkinson_qr_step(sub_matrix(Tri, SUBI), 
				  sub_matrix(eigvect, SUBJ, SUBK), compvect);
      
      symmetric_qr_stop_criterion(Tri, p, q, tol*R(2));
      ++ite;
      GMM_ASSERT1(ite < n*100, "QR algorithm failed. Probably, your matrix"
		  " is not real symmetric or complex hermitian");
    }
    
    extract_eig(Tri, eigval, tol);
  }

  template <typename MAT1, typename VECT, typename MAT2>
  void symmetric_qr_algorithm(const MAT1 &A, const VECT &eigval_,
			      const MAT2 &eigvect_,
			      tol_type_for_qr tol = default_tol_for_qr,
			      bool compvect = true) {
    VECT &eigval = const_cast<VECT &>(eigval_);
    MAT2 &eigvect = const_cast<MAT2 &>(eigvect_);
    typedef typename linalg_traits<MAT1>::value_type T;
    typedef typename number_traits<T>::magnitude_type R;

    size_type n = mat_nrows(A), q = 0, p, ite = 0;
    if (compvect) gmm::copy(identity_matrix(), eigvect);
    if (n == 0) return;
    if (n == 1) { eigval[0]=gmm::real(A(0,0)); return; }
    dense_matrix<T> Tri(n, n);
    gmm::copy(A, Tri);

    Householder_tridiagonalization(Tri, eigvect, compvect);

    std::vector<R> diag(n);
    std::vector<T> sdiag(n);
    for (size_type i = 0; i < n; ++i)
      { diag[i] = gmm::real(Tri(i, i)); if (i+1 < n) sdiag[i] = Tri(i+1, i); }
    
    symmetric_qr_stop_criterion(diag, sdiag, p, q, tol);
    
    while (q < n) {
      sub_interval SUBI(p, n-p-q), SUBJ(0, mat_ncols(eigvect)), SUBK(p, n-p-q);
      if (!compvect) SUBK = sub_interval(0,0);
      
      symmetric_Wilkinson_qr_step(sub_vector(diag, SUBI),
				  sub_vector(sdiag, SUBI),
				  sub_matrix(eigvect, SUBJ, SUBK), compvect);

      symmetric_qr_stop_criterion(diag, sdiag, p, q, tol*R(3));
      ++ite;
      GMM_ASSERT1(ite < n*100, "QR algorithm failed.");
    }
    
    gmm::copy(diag, eigval);
  }


  template <typename MAT1, typename VECT>
    void symmetric_qr_algorithm(const MAT1 &a, VECT &eigval,
				tol_type_for_qr tol = default_tol_for_qr) {
    dense_matrix<typename linalg_traits<MAT1>::value_type> m(0,0);
    symmetric_qr_algorithm(a, eigval, m, tol, false);
  }


}

#endif