This file is indexed.

/usr/include/gmm/gmm_def.h is in libgmm-dev 4.0.0-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
// -*- c++ -*- (enables emacs c++ mode)
//===========================================================================
//
// Copyright (C) 2002-2008 Yves Renard
//
// This file is a part of GETFEM++
//
// Getfem++  is  free software;  you  can  redistribute  it  and/or modify it
// under  the  terms  of the  GNU  Lesser General Public License as published
// by  the  Free Software Foundation;  either version 2.1 of the License,  or
// (at your option) any later version.
// This program  is  distributed  in  the  hope  that it will be useful,  but
// WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or  FITNESS  FOR  A PARTICULAR PURPOSE.  See the GNU Lesser General Public
// License for more details.
// You  should  have received a copy of the GNU Lesser General Public License
// along  with  this program;  if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, you  may use  this file  as it is a part of a free
// software  library  without  restriction.  Specifically,  if   other  files
// instantiate  templates  or  use macros or inline functions from this file,
// or  you compile this  file  and  link  it  with other files  to produce an
// executable, this file  does  not  by itself cause the resulting executable
// to be covered  by the GNU Lesser General Public License.  This   exception
// does not  however  invalidate  any  other  reasons why the executable file
// might be covered by the GNU Lesser General Public License.
//
//===========================================================================

/**@file gmm_def.h
   @author  Yves Renard <Yves.Renard@insa-lyon.fr>
   @date October 13, 2002.
   @brief Basic definitions and tools of GMM.
*/
#ifndef GMM_DEF_H__
#define GMM_DEF_H__

#include "gmm_ref.h"
#include <complex>

#ifndef M_PI
# define	M_E		2.7182818284590452354       /* e          */
# define	M_LOG2E		1.4426950408889634074       /* 1/ln(2)    */
# define	M_LOG10E	0.43429448190325182765      /* 1/ln(10)   */
# define	M_LN2		0.69314718055994530942      /* ln(2)      */
# define	M_LN10		2.30258509299404568402      /* ln(10)     */
# define	M_PI		3.14159265358979323846      /* pi         */
# define	M_PI_2		1.57079632679489661923      /* pi/2       */
# define	M_PI_4		0.78539816339744830962      /* pi/4       */
# define	M_1_PI		0.31830988618379067154      /* 1/pi       */
# define	M_2_PI		0.63661977236758134308      /* 2/pi       */
# define	M_2_SQRTPI	1.12837916709551257390      /* 2/sqrt(pi) */
# define	M_SQRT2		1.41421356237309504880      /* sqrt(2)    */
# define	M_SQRT1_2	0.70710678118654752440      /* sqrt(2)/2  */
#endif 

#ifndef M_PIl
# define M_PIl       3.1415926535897932384626433832795029L  /* pi         */
# define M_PI_2l     1.5707963267948966192313216916397514L  /* pi/2       */
# define M_PI_4l     0.7853981633974483096156608458198757L  /* pi/4       */
# define M_1_PIl     0.3183098861837906715377675267450287L  /* 1/pi       */
# define M_2_PIl     0.6366197723675813430755350534900574L  /* 2/pi       */
# define M_2_SQRTPIl 1.1283791670955125738961589031215452L  /* 2/sqrt(pi) */
#endif

namespace gmm {

  typedef size_t size_type;

  /* ******************************************************************** */
  /*		Specifier types                             		  */
  /* ******************************************************************** */
  /* not perfectly null, required by aCC 3.33                             */
  struct abstract_null_type { 
    abstract_null_type(int=0) {}
    template <typename A,typename B,typename C> void operator()(A,B,C) {}
  }; // specify an information lake.

  struct linalg_true {};
  struct linalg_false {};

  template <typename V, typename W> struct linalg_and
  { typedef linalg_false bool_type; };
  template <> struct linalg_and<linalg_true, linalg_true>
  { typedef linalg_true bool_type; };
  template <typename V, typename W> struct linalg_or
  { typedef linalg_true bool_type; };
  template <> struct linalg_and<linalg_false, linalg_false>
  { typedef linalg_false bool_type; };

  struct linalg_const {};       // A reference is either linalg_const,
  struct linalg_modifiable {};  //  linalg_modifiable or linalg_false.

  struct abstract_vector {};    // The object is a vector
  struct abstract_matrix {};    // The object is a matrix
  
  struct abstract_sparse {};    // sparse matrix or vector
  struct abstract_skyline {};   // 'sky-line' matrix or vector
  struct abstract_dense {};     // dense matrix or vector
  struct abstract_indirect {};  // matrix given by the product with a vector

  struct row_major {};          // matrix with a row access.
  struct col_major {};          // matrix with a column access
  struct row_and_col {};        // both accesses but row preference
  struct col_and_row {};        // both accesses but column preference

  template <typename T> struct transposed_type;
  template<> struct transposed_type<row_major>   {typedef col_major   t_type;};
  template<> struct transposed_type<col_major>   {typedef row_major   t_type;};
  template<> struct transposed_type<row_and_col> {typedef col_and_row t_type;};
  template<> struct transposed_type<col_and_row> {typedef row_and_col t_type;};

  template <typename T> struct principal_orientation_type
  { typedef abstract_null_type potype; };
  template<> struct principal_orientation_type<row_major>
  { typedef row_major potype; };
  template<> struct principal_orientation_type<col_major>
  { typedef col_major potype; };
  template<> struct principal_orientation_type<row_and_col>
  { typedef row_major potype; };
  template<> struct principal_orientation_type<col_and_row>
  { typedef col_major potype; };

  //  template <typename V> struct linalg_traits;
  template <typename V> struct linalg_traits {    
    typedef abstract_null_type this_type;
    typedef abstract_null_type linalg_type;
    typedef abstract_null_type value_type;
    typedef abstract_null_type is_reference;
    typedef abstract_null_type& reference;
    typedef abstract_null_type* iterator;
    typedef const abstract_null_type* const_iterator;
    typedef abstract_null_type index_sorted;
    typedef abstract_null_type storage_type;
    typedef abstract_null_type origin_type;
    typedef abstract_null_type const_sub_row_type;
    typedef abstract_null_type sub_row_type;
    typedef abstract_null_type const_row_iterator;
    typedef abstract_null_type row_iterator;
    typedef abstract_null_type const_sub_col_type;
    typedef abstract_null_type sub_col_type;
    typedef abstract_null_type const_col_iterator;
    typedef abstract_null_type col_iterator;
    typedef abstract_null_type sub_orientation;    
  };

  template <typename PT, typename V> struct vect_ref_type;
  template <typename P, typename V> struct vect_ref_type<P *, V> {
    typedef typename linalg_traits<V>::reference access_type;
    typedef typename linalg_traits<V>::iterator iterator;
  };
  template <typename P, typename V> struct vect_ref_type<const P *, V> {
    typedef typename linalg_traits<V>::value_type access_type;
    typedef typename linalg_traits<V>::const_iterator iterator;
  };
  
  template <typename PT> struct const_pointer;
  template <typename P> struct const_pointer<P *>
  { typedef const P* pointer; };
  template <typename P> struct const_pointer<const P *>
  { typedef const P* pointer; };

  template <typename PT> struct modifiable_pointer;
  template <typename P> struct modifiable_pointer<P *>
  { typedef P* pointer; };
  template <typename P> struct modifiable_pointer<const P *>
  { typedef P* pointer; };

  template <typename R> struct const_reference;
  template <typename R> struct const_reference<R &>
  { typedef const R &reference; };
  template <typename R> struct const_reference<const R &>
  { typedef const R  &reference; };


  inline bool is_sparse(abstract_sparse)   { return true;  }
  inline bool is_sparse(abstract_dense)    { return false; }
  inline bool is_sparse(abstract_skyline)  { return true;  }
  inline bool is_sparse(abstract_indirect) { return false; }

  template <typename L> inline bool is_sparse(const L &) 
  { return is_sparse(typename linalg_traits<L>::storage_type()); }

  inline bool is_row_matrix_(row_major)     { return true;  }
  inline bool is_row_matrix_(col_major)     { return false; }
  inline bool is_row_matrix_(row_and_col)   { return true;  }
  inline bool is_row_matrix_(col_and_row)   { return true;  }

  template <typename L> inline bool is_row_matrix(const L &) 
  { return is_row_matrix_(typename linalg_traits<L>::sub_orientation()); }

  inline bool is_col_matrix_(row_major)     { return false; }
  inline bool is_col_matrix_(col_major)     { return true;  }
  inline bool is_col_matrix_(row_and_col)   { return true;  }
  inline bool is_col_matrix_(col_and_row)   { return true;  }

  template <typename L> inline bool is_col_matrix(const L &) 
  { return is_col_matrix_(typename linalg_traits<L>::sub_orientation()); }

  inline bool is_col_matrix(row_major) { return false; }
  inline bool is_col_matrix(col_major) { return true; }
  inline bool is_row_matrix(row_major) { return true; }
  inline bool is_row_matrix(col_major) { return false; }

  template <typename L> inline bool is_const_reference(L) { return false; }
  inline bool is_const_reference(linalg_const) { return true; }  


  template <typename T> struct is_gmm_interfaced_ {
    typedef linalg_true result;
  };
  
  template<> struct is_gmm_interfaced_<abstract_null_type> {
    typedef linalg_false result;
  };
  
  template <typename T> struct is_gmm_interfaced {
    typedef typename is_gmm_interfaced_<typename gmm::linalg_traits<T>::this_type >::result result;
  };

  /* ******************************************************************** */
  /*  types to deal with const object representing a modifiable reference */
  /* ******************************************************************** */
  
  template <typename PT, typename R> struct mref_type_ 
  { typedef abstract_null_type return_type; };
  template <typename L, typename R> struct mref_type_<L *, R>
  { typedef L & return_type; };
  template <typename L, typename R> struct mref_type_<const L *, R>
  { typedef const L & return_type; };
  template <typename L> struct mref_type_<L *, linalg_const>
  { typedef const L & return_type; };
  template <typename L> struct mref_type_<const L *, linalg_const>
  { typedef const L & return_type; };
  template <typename L> struct mref_type_<const L *, linalg_modifiable>
  { typedef L & return_type; };
  template <typename L> struct mref_type_<L *, linalg_modifiable>
  { typedef L & return_type; };

  template <typename PT> struct mref_type {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename mref_type_<PT, 
      typename linalg_traits<L>::is_reference>::return_type return_type;
  };

  template <typename L> typename mref_type<const L *>::return_type 
  linalg_cast(const L &l)
  { return const_cast<typename mref_type<const L *>::return_type>(l); }

  template <typename L> typename mref_type<L *>::return_type linalg_cast(L &l)
  { return const_cast<typename mref_type<L *>::return_type>(l); }

  template <typename L, typename R> struct cref_type_
  { typedef abstract_null_type return_type; };
  template <typename L> struct cref_type_<L, linalg_modifiable>
  { typedef L & return_type; };
  template <typename L> struct cref_type {
    typedef typename cref_type_<L, 
      typename linalg_traits<L>::is_reference>::return_type return_type;
  };

  template <typename L> typename cref_type<L>::return_type 
  linalg_const_cast(const L &l)
  { return const_cast<typename cref_type<L>::return_type>(l); }


  // To be used to select between a reference or a const refercence for
  // the return type of a function
  // select_return<C1, C2, L *> return C1 if L is a const reference,
  //                                   C2 otherwise.
  // select_return<C1, C2, const L *> return C2 if L is a modifiable reference
  //                                         C1 otherwise. 
  template <typename C1, typename C2, typename REF> struct select_return_ {
    typedef abstract_null_type return_type;
  };
  template <typename C1, typename C2, typename L>
  struct select_return_<C1, C2, const L &> { typedef C1 return_type; };
  template <typename C1, typename C2, typename L>
  struct select_return_<C1, C2, L &> { typedef C2 return_type; };
  template <typename C1, typename C2, typename PT> struct select_return {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename select_return_<C1, C2, 
      typename mref_type<PT>::return_type>::return_type return_type;
  };

  
  // To be used to select between a reference or a const refercence inside
  // a structure or a linagl_traits
  // select_ref<C1, C2, L *> return C1 if L is a const reference,
  //                                C2 otherwise.
  // select_ref<C1, C2, const L *> return C2 in any case. 
  template <typename C1, typename C2, typename REF> struct select_ref_
  { typedef abstract_null_type ref_type; };
  template <typename C1, typename C2, typename L>
  struct select_ref_<C1, C2, const L &> { typedef C1 ref_type; };
  template <typename C1, typename C2, typename L>
  struct select_ref_<C1, C2, L &> { typedef C2 ref_type; };
  template <typename C1, typename C2, typename PT> struct select_ref {
    typedef typename std::iterator_traits<PT>::value_type L;
    typedef typename select_ref_<C1, C2, 
      typename mref_type<PT>::return_type>::ref_type ref_type;
  };
  template <typename C1, typename C2, typename L>
  struct select_ref<C1, C2, const L *>
  { typedef C1 ref_type; };


  template<typename R> struct is_a_reference_
  { typedef linalg_true reference; };
  template<> struct is_a_reference_<linalg_false>
  { typedef linalg_false reference; };

  template<typename L> struct is_a_reference {
    typedef typename is_a_reference_<typename linalg_traits<L>::is_reference>
      ::reference reference;
  };


  template <typename L> inline bool is_original_linalg(const L &) 
  { return is_original_linalg(typename is_a_reference<L>::reference()); }
  inline bool is_original_linalg(linalg_false) { return true; }
  inline bool is_original_linalg(linalg_true) { return false; }


  template <typename PT> struct which_reference 
  { typedef abstract_null_type is_reference; };
  template <typename PT> struct which_reference<PT *>
  { typedef linalg_modifiable is_reference; };
  template <typename PT> struct which_reference<const PT *>
  { typedef linalg_const is_reference; };


  template <typename C1, typename C2, typename R> struct select_orientation_
  { typedef abstract_null_type return_type; };
  template <typename C1, typename C2>
  struct select_orientation_<C1, C2, row_major>
  { typedef C1 return_type; };
  template <typename C1, typename C2>
  struct select_orientation_<C1, C2, col_major>
  { typedef C2 return_type; };
  template <typename C1, typename C2, typename L> struct select_orientation {
    typedef typename select_orientation_<C1, C2,
      typename principal_orientation_type<typename
      linalg_traits<L>::sub_orientation>::potype>::return_type return_type;
  };
  
  /* ******************************************************************** */
  /*		Operations on scalars                         		  */
  /* ******************************************************************** */

  template <typename T> inline T sqr(T a) { return T(a * a); }
  template <typename T> inline T abs(T a) { return (a < T(0)) ? T(-a) : a; }
  template <typename T> inline T abs(std::complex<T> a)
  { T x = a.real(), y = a.imag(); return T(::sqrt(x*x+y*y)); }
  template <typename T> inline T abs_sqr(T a) { return T(a*a); }
  template <typename T> inline T abs_sqr(std::complex<T> a)
  { return gmm::sqr(a.real()) + gmm::sqr(a.imag()); }
  template <typename T> inline T pos(T a) { return (a < T(0)) ? T(0) : a; }
  template <typename T> inline T neg(T a) { return (a < T(0)) ? T(-a) : T(0); }
  template <typename T> inline T sgn(T a) { return (a < T(0)) ? T(-1) : T(1); }
  inline double random() { return double(rand())/(RAND_MAX+0.5); }
  template <typename T> inline T random(T)
  { return T(rand()*2.0)/(T(RAND_MAX)+T(1)/T(2)) - T(1); }
  template <typename T> inline std::complex<T> random(std::complex<T>)
  { return std::complex<T>(gmm::random(T()), gmm::random(T())); }
  template <typename T> inline T irandom(T max)
  { return T(gmm::random() * double(max)); }
  template <typename T> inline T conj(T a) { return a; }
  template <typename T> inline std::complex<T> conj(std::complex<T> a)
  { return std::conj(a); }
  template <typename T> inline T real(T a) { return a; }
  template <typename T> inline T real(std::complex<T> a) { return a.real(); }
  template <typename T> inline T imag(T ) { return T(0); }
  template <typename T> inline T imag(std::complex<T> a) { return a.imag(); }  
  template <typename T> inline T sqrt(T a) { return T(::sqrt(a)); }
  template <typename T> inline std::complex<T> sqrt(std::complex<T> a) {
    T x = a.real(), y = a.imag();
    if (x == T(0)) {
      T t = T(::sqrt(gmm::abs(y) / T(2)));
      return std::complex<T>(t, y < T(0) ? -t : t);
    }
    T t = T(::sqrt(T(2) * (gmm::abs(a) + gmm::abs(x)))), u = t / T(2);
    return x > T(0) ? std::complex<T>(u, y / t)
      : std::complex<T>(gmm::abs(y) / t, y < T(0) ? -u : u);
  }
  using std::swap;


  template <typename T> struct number_traits {
    typedef T magnitude_type;
  };
 
  template <typename T> struct number_traits<std::complex<T> > {
    typedef T magnitude_type;
  };

  template <typename T> inline T conj_product(T a, T b) { return a * b; }
  template <typename T> inline
  std::complex<T> conj_product(std::complex<T> a, std::complex<T> b)
  { return std::conj(a) * b; } // to be optimized ?

  template <typename T> inline bool is_complex(T) { return false; }
  template <typename T> inline bool is_complex(std::complex<T> )
  { return true; }

# define magnitude_of_linalg(M) typename number_traits<typename \
                    linalg_traits<M>::value_type>::magnitude_type
  
  template<typename T> inline std::complex<T> operator*(const std::complex<T>& a, int b) {
    return a*T(b);
  }
  template<typename T> inline std::complex<T> operator*(int b, const std::complex<T>& a) {
    return a*T(b);
  }

  /* ******************************************************************** */
  /*  types promotion                                                     */
  /* ******************************************************************** */

  /* should be completed for more specific cases <unsigned int, float> etc */
  template <typename T1, typename T2, bool c>
  struct strongest_numeric_type_aux {
    typedef T1 T;
  };
  template <typename T1, typename T2>
  struct strongest_numeric_type_aux<T1,T2,false> {
    typedef T2 T;
  };

  template <typename T1, typename T2>
  struct strongest_numeric_type {
    typedef typename
    strongest_numeric_type_aux<T1,T2,(sizeof(T1)>sizeof(T2))>::T T;
  };
  template <typename T1, typename T2>
  struct strongest_numeric_type<T1,std::complex<T2> > {
    typedef typename number_traits<T1>::magnitude_type R1;
    typedef std::complex<typename strongest_numeric_type<R1,T2>::T > T;
  };
  template <typename T1, typename T2>
  struct strongest_numeric_type<std::complex<T1>,T2 > {
    typedef typename number_traits<T2>::magnitude_type R2;
    typedef std::complex<typename strongest_numeric_type<T1,R2>::T > T;
  };
  template <typename T1, typename T2> 
  struct strongest_numeric_type<std::complex<T1>,std::complex<T2> > {
    typedef std::complex<typename strongest_numeric_type<T1,T2>::T > T;
  };

  template<> struct strongest_numeric_type<int,float>   { typedef float T;  };
  template<> struct strongest_numeric_type<float,int>   { typedef float T;  };
  template<> struct strongest_numeric_type<long,float>  { typedef float T;  };
  template<> struct strongest_numeric_type<float,long>  { typedef float T;  };
  template<> struct strongest_numeric_type<long,double> { typedef double T; };
  template<> struct strongest_numeric_type<double,long> { typedef double T; };

  template <typename V1, typename V2>
  struct strongest_value_type {
    typedef typename
    strongest_numeric_type<typename linalg_traits<V1>::value_type,
			   typename linalg_traits<V2>::value_type>::T
    value_type;
  };
  template <typename V1, typename V2, typename V3>
  struct strongest_value_type3 {
    typedef typename
    strongest_value_type<V1, typename
			 strongest_value_type<V2,V3>::value_type>::value_type
    value_type;
  };

  

  /* ******************************************************************** */
  /*		Basic vectors used                         		  */
  /* ******************************************************************** */
  
  template<typename T> struct dense_vector_type 
  { typedef std::vector<T> vector_type; };

  template <typename T> class wsvector;
  template <typename T> class rsvector;
  template<typename T> struct sparse_vector_type 
  { typedef wsvector<T> vector_type; };

  template <typename T> class slvector;
  template <typename T> class dense_matrix;
  template <typename VECT> class row_matrix;
  template <typename VECT> class col_matrix;
  

  /* ******************************************************************** */
  /*   Selects a temporary vector type                                    */
  /*   V if V is a valid vector type,                                     */
  /*   wsvector if V is a reference on a sparse vector,                   */
  /*   std::vector if V is a reference on a dense vector.                 */
  /* ******************************************************************** */

  
  template <typename R, typename S, typename L, typename V>
  struct temporary_vector_ {
    typedef abstract_null_type vector_type;
  };
  template <typename V, typename L>
  struct temporary_vector_<linalg_true, abstract_sparse, L, V>
  { typedef wsvector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V, typename L>
  struct temporary_vector_<linalg_true, abstract_skyline, L, V>
  { typedef slvector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V, typename L>
  struct temporary_vector_<linalg_true, abstract_dense, L, V>
  { typedef std::vector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename S, typename V>
  struct temporary_vector_<linalg_false, S, abstract_vector, V>
  { typedef V vector_type; };
  template <typename V>
  struct temporary_vector_<linalg_false, abstract_dense, abstract_matrix, V>
  { typedef std::vector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_vector_<linalg_false, abstract_sparse, abstract_matrix, V>
  { typedef wsvector<typename linalg_traits<V>::value_type> vector_type; };

  template <typename V> struct temporary_vector {
    typedef typename temporary_vector_<typename is_a_reference<V>::reference,
				       typename linalg_traits<V>::storage_type,
				       typename linalg_traits<V>::linalg_type,
				       V>::vector_type vector_type;
  };

  /* ******************************************************************** */
  /*   Selects a temporary matrix type                                    */
  /*   M if M is a valid matrix type,                                     */
  /*   row_matrix<wsvector> if M is a reference on a sparse matrix,       */
  /*   dense_matrix if M is a reference on a dense matrix.                */
  /* ******************************************************************** */

  
  template <typename R, typename S, typename L, typename V>
  struct temporary_matrix_ { typedef abstract_null_type matrix_type; };
  template <typename V, typename L>
  struct temporary_matrix_<linalg_true, abstract_sparse, L, V> {
    typedef typename linalg_traits<V>::value_type T;
    typedef row_matrix<wsvector<T> > matrix_type;
  };
  template <typename V, typename L>
  struct temporary_matrix_<linalg_true, abstract_skyline, L, V> {
    typedef typename linalg_traits<V>::value_type T;
    typedef row_matrix<slvector<T> > matrix_type;
  };
  template <typename V, typename L>
  struct temporary_matrix_<linalg_true, abstract_dense, L, V>
  { typedef dense_matrix<typename linalg_traits<V>::value_type> matrix_type; };
  template <typename S, typename V>
  struct temporary_matrix_<linalg_false, S, abstract_matrix, V>
  { typedef V matrix_type; };

  template <typename V> struct temporary_matrix {
    typedef typename temporary_matrix_<typename is_a_reference<V>::reference,
				       typename linalg_traits<V>::storage_type,
				       typename linalg_traits<V>::linalg_type,
				       V>::matrix_type matrix_type;
  };

  
  template <typename S, typename L, typename V>
  struct temporary_col_matrix_ { typedef abstract_null_type matrix_type; };
  template <typename V, typename L>
  struct temporary_col_matrix_<abstract_sparse, L, V> {
    typedef typename linalg_traits<V>::value_type T;
    typedef col_matrix<wsvector<T> > matrix_type;
  };
  template <typename V, typename L>
  struct temporary_col_matrix_<abstract_skyline, L, V> {
    typedef typename linalg_traits<V>::value_type T;
    typedef col_matrix<slvector<T> > matrix_type;
  };
  template <typename V, typename L>
  struct temporary_col_matrix_<abstract_dense, L, V>
  { typedef dense_matrix<typename linalg_traits<V>::value_type> matrix_type; };

  template <typename V> struct temporary_col_matrix {
    typedef typename temporary_col_matrix_<
      typename linalg_traits<V>::storage_type,
      typename linalg_traits<V>::linalg_type,
      V>::matrix_type matrix_type;
  };




  template <typename S, typename L, typename V>
  struct temporary_row_matrix_ { typedef abstract_null_type matrix_type; };
  template <typename V, typename L>
  struct temporary_row_matrix_<abstract_sparse, L, V> {
    typedef typename linalg_traits<V>::value_type T;
    typedef row_matrix<wsvector<T> > matrix_type;
  };
  template <typename V, typename L>
  struct temporary_row_matrix_<abstract_skyline, L, V> {
    typedef typename linalg_traits<V>::value_type T;
    typedef row_matrix<slvector<T> > matrix_type;
  };
  template <typename V, typename L>
  struct temporary_row_matrix_<abstract_dense, L, V>
  { typedef dense_matrix<typename linalg_traits<V>::value_type> matrix_type; };

  template <typename V> struct temporary_row_matrix {
    typedef typename temporary_row_matrix_<
      typename linalg_traits<V>::storage_type,
      typename linalg_traits<V>::linalg_type,
      V>::matrix_type matrix_type;
  };



  /* ******************************************************************** */
  /*   Selects a temporary dense vector type                              */
  /*   V if V is a valid dense vector type,                               */
  /*   std::vector if V is a reference or another type of vector          */
  /* ******************************************************************** */

  template <typename R, typename S, typename V>
  struct temporary_dense_vector_ { typedef abstract_null_type vector_type; };
  template <typename S, typename V>
  struct temporary_dense_vector_<linalg_true, S, V>
  { typedef std::vector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_dense_vector_<linalg_false, abstract_sparse, V>
  { typedef std::vector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_dense_vector_<linalg_false, abstract_skyline, V>
  { typedef std::vector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_dense_vector_<linalg_false, abstract_dense, V>
  { typedef V vector_type; };

  template <typename V> struct temporary_dense_vector {
    typedef typename temporary_dense_vector_<typename
    is_a_reference<V>::reference,
    typename linalg_traits<V>::storage_type, V>::vector_type vector_type;
  };

  /* ******************************************************************** */
  /*   Selects a temporary sparse vector type                             */
  /*   V if V is a valid sparse vector type,                              */
  /*   wsvector if V is a reference or another type of vector             */
  /* ******************************************************************** */

  template <typename R, typename S, typename V>
  struct temporary_sparse_vector_ { typedef abstract_null_type vector_type; };
  template <typename S, typename V>
  struct temporary_sparse_vector_<linalg_true, S, V>
  { typedef wsvector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_sparse_vector_<linalg_false, abstract_sparse, V>
  { typedef V vector_type; };
  template <typename V>
  struct temporary_sparse_vector_<linalg_false, abstract_dense, V>
  { typedef wsvector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_sparse_vector_<linalg_false, abstract_skyline, V>
  { typedef wsvector<typename linalg_traits<V>::value_type> vector_type; };

  template <typename V> struct temporary_sparse_vector {
    typedef typename temporary_sparse_vector_<typename
    is_a_reference<V>::reference,
    typename linalg_traits<V>::storage_type, V>::vector_type vector_type;
  };

  /* ******************************************************************** */
  /*   Selects a temporary sky-line vector type                           */
  /*   V if V is a valid sky-line vector type,                            */
  /*   slvector if V is a reference or another type of vector             */
  /* ******************************************************************** */

  template <typename R, typename S, typename V>
  struct temporary_skyline_vector_
  { typedef abstract_null_type vector_type; };
  template <typename S, typename V>
  struct temporary_skyline_vector_<linalg_true, S, V>
  { typedef slvector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_skyline_vector_<linalg_false, abstract_skyline, V>
  { typedef V vector_type; };
  template <typename V>
  struct temporary_skyline_vector_<linalg_false, abstract_dense, V>
  { typedef slvector<typename linalg_traits<V>::value_type> vector_type; };
  template <typename V>
  struct temporary_skyline_vector_<linalg_false, abstract_sparse, V>
  { typedef slvector<typename linalg_traits<V>::value_type> vector_type; };

  template <typename V> struct temporary_skylines_vector {
    typedef typename temporary_skyline_vector_<typename
    is_a_reference<V>::reference,
    typename linalg_traits<V>::storage_type, V>::vector_type vector_type;
  };

  /* ********************************************************************* */
  /*  Definition & Comparison of origins.                                  */
  /* ********************************************************************* */

  template <typename L> 
  typename select_return<const typename linalg_traits<L>::origin_type *,
			 typename linalg_traits<L>::origin_type *,
			 L *>::return_type
  linalg_origin(L &l)
  { return linalg_traits<L>::origin(linalg_cast(l)); }

  template <typename L> 
  typename select_return<const typename linalg_traits<L>::origin_type *,
			 typename linalg_traits<L>::origin_type *,
			 const L *>::return_type
  linalg_origin(const L &l)
  { return linalg_traits<L>::origin(linalg_cast(l)); }

  template <typename PT1, typename PT2>
  bool same_porigin(PT1, PT2) { return false; }

  template <typename PT>
  bool same_porigin(PT pt1, PT pt2) { return (pt1 == pt2); }

  template <typename L1, typename L2>
  bool same_origin(const L1 &l1, const L2 &l2)
  { return same_porigin(linalg_origin(l1), linalg_origin(l2)); }


  /* ******************************************************************** */
  /*		Miscellaneous                           		  */
  /* ******************************************************************** */

  template <typename V> inline size_type vect_size(const V &v)
  { return linalg_traits<V>::size(v); }

  template <typename MAT> inline size_type mat_nrows(const MAT &m)
  { return linalg_traits<MAT>::nrows(m); }

  template <typename MAT> inline size_type mat_ncols(const MAT &m)
  { return linalg_traits<MAT>::ncols(m); }


  template <typename V> inline
  typename select_return<typename linalg_traits<V>::const_iterator,
           typename linalg_traits<V>::iterator, V *>::return_type
  vect_begin(V &v)
  { return linalg_traits<V>::begin(linalg_cast(v)); }

  template <typename V> inline
  typename select_return<typename linalg_traits<V>::const_iterator,
	   typename linalg_traits<V>::iterator, const V *>::return_type
  vect_begin(const V &v)
  { return linalg_traits<V>::begin(linalg_cast(v)); }

  template <typename V> inline
  typename linalg_traits<V>::const_iterator
  vect_const_begin(const V &v)
  { return linalg_traits<V>::begin(v); }

  template <typename V> inline
  typename select_return<typename linalg_traits<V>::const_iterator,
    typename linalg_traits<V>::iterator, V *>::return_type
  vect_end(V &v)
  { return linalg_traits<V>::end(linalg_cast(v)); }

  template <typename V> inline
  typename select_return<typename linalg_traits<V>::const_iterator,
    typename linalg_traits<V>::iterator, const V *>::return_type
  vect_end(const V &v)
  { return linalg_traits<V>::end(linalg_cast(v)); }

  template <typename V> inline
  typename linalg_traits<V>::const_iterator
  vect_const_end(const V &v)
  { return linalg_traits<V>::end(v); }

  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_row_iterator,
    typename linalg_traits<M>::row_iterator, M *>::return_type
  mat_row_begin(M &m) { return linalg_traits<M>::row_begin(linalg_cast(m)); }
  
  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_row_iterator,
    typename linalg_traits<M>::row_iterator, const M *>::return_type
  mat_row_begin(const M &m)
  { return linalg_traits<M>::row_begin(linalg_cast(m)); }
  
  template <typename M> inline typename linalg_traits<M>::const_row_iterator
  mat_row_const_begin(const M &m)
  { return linalg_traits<M>::row_begin(m); }

  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_row_iterator,
    typename linalg_traits<M>::row_iterator, M *>::return_type
  mat_row_end(M &v) {
    return linalg_traits<M>::row_end(linalg_cast(v));
  }

  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_row_iterator,
    typename linalg_traits<M>::row_iterator, const M *>::return_type
  mat_row_end(const M &v) {
    return linalg_traits<M>::row_end(linalg_cast(v));
  }

  template <typename M> inline
  typename linalg_traits<M>::const_row_iterator
  mat_row_const_end(const M &v)
  { return linalg_traits<M>::row_end(v); }

  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_col_iterator,
    typename linalg_traits<M>::col_iterator, M *>::return_type
  mat_col_begin(M &v) {
    return linalg_traits<M>::col_begin(linalg_cast(v));
  }

  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_col_iterator,
    typename linalg_traits<M>::col_iterator, const M *>::return_type
  mat_col_begin(const M &v) {
    return linalg_traits<M>::col_begin(linalg_cast(v));
  }

  template <typename M> inline
  typename linalg_traits<M>::const_col_iterator
  mat_col_const_begin(const M &v)
  { return linalg_traits<M>::col_begin(v); }

  template <typename M> inline
  typename linalg_traits<M>::const_col_iterator
  mat_col_const_end(const M &v)
  { return linalg_traits<M>::col_end(v); }

  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_col_iterator,
                         typename linalg_traits<M>::col_iterator,
                         M *>::return_type
  mat_col_end(M &m)
  { return linalg_traits<M>::col_end(linalg_cast(m)); }

  template <typename M> inline
  typename select_return<typename linalg_traits<M>::const_col_iterator,
                         typename linalg_traits<M>::col_iterator,
                         const M *>::return_type
  mat_col_end(const M &m)
  { return linalg_traits<M>::col_end(linalg_cast(m)); }

  template <typename MAT> inline
  typename select_return<typename linalg_traits<MAT>::const_sub_row_type,
                         typename linalg_traits<MAT>::sub_row_type,
                         const MAT *>::return_type
  mat_row(const MAT &m, size_type i)
  { return linalg_traits<MAT>::row(mat_row_begin(m) + i); }

  template <typename MAT> inline
  typename select_return<typename linalg_traits<MAT>::const_sub_row_type,
                         typename linalg_traits<MAT>::sub_row_type,
                         MAT *>::return_type
  mat_row(MAT &m, size_type i)
  { return linalg_traits<MAT>::row(mat_row_begin(m) + i); }

  template <typename MAT> inline
  typename linalg_traits<MAT>::const_sub_row_type
  mat_const_row(const MAT &m, size_type i)
  { return linalg_traits<MAT>::row(mat_row_const_begin(m) + i); }

  template <typename MAT> inline
  typename select_return<typename linalg_traits<MAT>::const_sub_col_type,
                         typename linalg_traits<MAT>::sub_col_type,
                         const MAT *>::return_type
  mat_col(const MAT &m, size_type i)
  { return linalg_traits<MAT>::col(mat_col_begin(m) + i); }


  template <typename MAT> inline
  typename select_return<typename linalg_traits<MAT>::const_sub_col_type,
                         typename linalg_traits<MAT>::sub_col_type,
                         MAT *>::return_type
  mat_col(MAT &m, size_type i)
  { return linalg_traits<MAT>::col(mat_col_begin(m) + i); }
  
  template <typename MAT> inline
  typename linalg_traits<MAT>::const_sub_col_type
  mat_const_col(const MAT &m, size_type i)
  { return linalg_traits<MAT>::col(mat_col_const_begin(m) + i); }
  
  /* ********************************************************************* */
  /* Set to begin end set to end for iterators on non-const sparse vectors.*/
  /* ********************************************************************* */

  template <typename IT, typename ORG, typename VECT> inline
  void set_to_begin(IT &it, ORG o, VECT *, linalg_false)
  { it = vect_begin(*o); }

  template <typename IT, typename ORG, typename VECT> inline
  void set_to_begin(IT &it, ORG o, const VECT *, linalg_false) 
  { it = vect_const_begin(*o); }

  template <typename IT, typename ORG, typename VECT> inline
  void set_to_end(IT &it, ORG o, VECT *, linalg_false)
  { it = vect_end(*o); }
  
  template <typename IT, typename ORG, typename VECT> inline
  void set_to_end(IT &it, ORG o, const VECT *, linalg_false)
  { it = vect_const_end(*o); }


  template <typename IT, typename ORG, typename VECT> inline
  void set_to_begin(IT &, ORG, VECT *, linalg_const) { }

  template <typename IT, typename ORG, typename VECT> inline
  void set_to_begin(IT &, ORG, const VECT *, linalg_const) { }

  template <typename IT, typename ORG, typename VECT> inline
  void set_to_end(IT &, ORG, VECT *, linalg_const) { }
  
  template <typename IT, typename ORG, typename VECT> inline
  void set_to_end(IT &, ORG, const VECT *, linalg_const) { }


  template <typename IT, typename ORG, typename VECT> inline
  void set_to_begin(IT &, ORG, VECT *v, linalg_modifiable)
  { GMM_ASSERT3(!is_sparse(*v), "internal_error"); v = 0; }

  template <typename IT, typename ORG, typename VECT> inline
  void set_to_begin(IT &, ORG, const VECT *v, linalg_modifiable)
  { GMM_ASSERT3(!is_sparse(*v), "internal_error"); v = 0; }
 
  template <typename IT, typename ORG, typename VECT> inline
  void set_to_end(IT &, ORG, VECT *v, linalg_modifiable)
  { GMM_ASSERT3(!is_sparse(*v), "internal_error"); v = 0; }
  
  template <typename IT, typename ORG, typename VECT> inline
  void set_to_end(IT &, ORG, const VECT *v, linalg_modifiable)
  { GMM_ASSERT3(!is_sparse(*v), "internal_error"); v = 0; }

  /* ******************************************************************** */
  /*		General index for certain algorithms.         		  */
  /* ******************************************************************** */

  template<class IT> 
  size_type index_of_it(const IT &it, size_type, abstract_sparse)
  { return it.index(); }
  template<class IT> 
  size_type index_of_it(const IT &it, size_type, abstract_skyline)
  { return it.index(); }
  template<class IT> 
  size_type index_of_it(const IT &, size_type k, abstract_dense)
  { return k; }

  /* ********************************************************************* */
  /* Numeric limits.                                                       */
  /* ********************************************************************* */
  
  template<typename T> inline T default_tol(T) {
    using namespace std;
    static T tol(10);
    if (tol == T(10)) {
      if (numeric_limits<T>::is_specialized)
	tol = numeric_limits<T>::epsilon();
      else {
	int i=sizeof(T)/4; while(i-- > 0) tol*=T(1E-8); 
	GMM_WARNING1("The numeric type " << typeid(T).name()
		    << " has no numeric_limits defined !!\n"
		    << "Taking " << tol << " as default tolerance");
      }
    }
    return tol;
  }
  template<typename T> inline T default_tol(std::complex<T>)
  { return default_tol(T()); }

  template<typename T> inline T default_min(T) {
    using namespace std;
    static T mi(10);
    if (mi == T(10)) {
      if (numeric_limits<T>::is_specialized)
	mi = std::numeric_limits<T>::min();
      else {
	mi = T(0);
	GMM_WARNING1("The numeric type " << typeid(T).name()
		    << " has no numeric_limits defined !!\n"
		    << "Taking 0 as default minimum");
      }
    }
    return mi;
  }
  template<typename T> inline T default_min(std::complex<T>)
  { return default_min(T()); }

  template<typename T> inline T default_max(T) {
    using namespace std;
    static T mi(10);
    if (mi == T(10)) {
      if (numeric_limits<T>::is_specialized)
	mi = std::numeric_limits<T>::max();
      else {
	mi = T(1);
	GMM_WARNING1("The numeric type " << typeid(T).name()
		    << " has no numeric_limits defined !!\n"
		    << "Taking 1 as default maximum !");
      }
    }
    return mi;
  }
  template<typename T> inline T default_max(std::complex<T>)
  { return default_max(T()); }

  
  /*
    use safe_divide to avoid NaNs when dividing very small complex
    numbers, for example
    std::complex<float>(1e-23,1e-30)/std::complex<float>(1e-23,1e-30)
  */
  template<typename T> inline T safe_divide(T a, T b) { return a/b; }
  template<typename T> inline std::complex<T>
  safe_divide(std::complex<T> a, std::complex<T> b) {
    T m = std::max(gmm::abs(b.real()), gmm::abs(b.imag()));
    a = std::complex<T>(a.real()/m, a.imag()/m);
    b = std::complex<T>(b.real()/m, b.imag()/m);
    return a / b;
  }


  /* ******************************************************************** */
  /*		Write                                   		  */
  /* ******************************************************************** */

  template <typename T> struct cast_char_type { typedef T return_type; };
  template <> struct cast_char_type<signed char> { typedef int return_type; };
  template <> struct cast_char_type<unsigned char>
  { typedef unsigned int return_type; };
  template <typename T> inline typename cast_char_type<T>::return_type
  cast_char(const T &c) { return typename cast_char_type<T>::return_type(c); }


  template <typename L> inline void write(std::ostream &o, const L &l)
  { write(o, l, typename linalg_traits<L>::linalg_type()); }

  template <typename L> void write(std::ostream &o, const L &l,
				       abstract_vector) {
    o << "vector(" << vect_size(l) << ") [";
    write(o, l, typename linalg_traits<L>::storage_type());
    o << " ]";
  }

  template <typename L> void write(std::ostream &o, const L &l,
				       abstract_sparse) {
    typename linalg_traits<L>::const_iterator it = vect_const_begin(l),
      ite = vect_const_end(l);
    for (; it != ite; ++it) 
      o << " (r" << it.index() << "," << cast_char(*it) << ")";
  }

  template <typename L> void write(std::ostream &o, const L &l,
				       abstract_dense) {
    typename linalg_traits<L>::const_iterator it = vect_const_begin(l),
      ite = vect_const_end(l);
    if (it != ite) o << " " << cast_char(*it++);
    for (; it != ite; ++it) o << ", " << cast_char(*it);
  }

  template <typename L> void write(std::ostream &o, const L &l,
				       abstract_skyline) {
    typedef typename linalg_traits<L>::const_iterator const_iterator;
    const_iterator it = vect_const_begin(l), ite = vect_const_end(l);
    if (it != ite) {
      o << "<r+" << it.index() << ">";
      if (it != ite) o << " " << cast_char(*it++);
      for (; it != ite; ++it) { o << ", " << cast_char(*it); }
    }
  }

  template <typename L> inline void write(std::ostream &o, const L &l,
				       abstract_matrix) {
    write(o, l, typename linalg_traits<L>::sub_orientation());
  }


  template <typename L> void write(std::ostream &o, const L &l,
				       row_major) {
    o << "matrix(" << mat_nrows(l) << ", " << mat_ncols(l) << ")" << endl;
    for (size_type i = 0; i < mat_nrows(l); ++i) {
      o << "(";
      write(o, mat_const_row(l, i), typename linalg_traits<L>::storage_type());
      o << " )\n";
    }
  }

  template <typename L> inline
  void write(std::ostream &o, const L &l, row_and_col) 
  { write(o, l, row_major()); }

  template <typename L> inline
  void write(std::ostream &o, const L &l, col_and_row)
  { write(o, l, row_major()); }

  template <typename L> void write(std::ostream &o, const L &l, col_major) {
    o << "matrix(" << mat_nrows(l) << ", " << mat_ncols(l) << ")" << endl;
    for (size_type i = 0; i < mat_nrows(l); ++i) {
      o << "(";
      if (is_sparse(l)) { // not optimized ...
	for (size_type j = 0; j < mat_ncols(l); ++j)
	  if (l(i,j) != typename linalg_traits<L>::value_type(0)) 
	    o << " (r" << j << ", " << l(i,j) << ")";
      }
      else {
	if (mat_ncols(l) != 0) o << ' ' << l(i, 0);
	for (size_type j = 1; j < mat_ncols(l); ++j) o << ", " << l(i, j); 
      }
      o << " )\n";
    }
  }

}

#endif //  GMM_DEF_H__