/usr/share/perl5/Encode/Mapper.pm is in libencode-arabic-perl 1.9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 | # ############################################################################ Otakar Smrz, 2003/01/23
#
# Mapper Engine Class ##################################################################### 2003/06/19
# $Id: Mapper.pm 663 2008-08-11 14:21:54Z smrz $
package Encode::Mapper;
use 5.008;
use strict;
use warnings;
use Carp;
our $VERSION = '1.6' || do { q $Revision: 663 $ =~ /(\d+)/; sprintf "%4.2f", $1 / 100 };
use bytes; # ensures splitting into one-byte tokens .. lexically scoped
our %options; # records of options per package .. global register
our %option; # options of the caller package .. used with local
sub import { # enforces setting of options
my $cls = shift @_;
$cls->options(@_) if @_;
}
sub whisper ($) { # module's internal function
carp shift unless $option{'silent'};
}
sub verify_rule ($$) { # module's internal function
unless (defined $_[0] and $_[0] ne '') {
whisper "Rule's LHS is empty, rule ignored";
return;
}
unless (defined $_[1]) {
whisper "Rule's RHS is undefined, rule ignored";
return;
}
if (UNIVERSAL::isa($_[1], 'ARRAY')) {
unless (defined $_[1]->[0]) {
whisper "Rule's RHS is undefined, rule ignored";
return;
}
unless (ref \$_[1]->[0] eq 'SCALAR' or UNIVERSAL::isa($_[1]->[0], 'CODE')) {
whisper "Rule's RHS is neither literal nor subroutine reference, rule ignored";
return;
}
unless (defined $_[1]->[1] and length $_[1]->[1] < length $_[0]) {
whisper "Rule type '\$A => [\$X, \$Y], length \$A > length \$Y' misused, considering it '\$A => \$X'";
$_[1] = $_[1]->[0];
}
}
elsif (ref \$_[1] ne 'SCALAR' and not UNIVERSAL::isa($_[1], 'CODE')) {
whisper "Rule's RHS is neither literal nor subroutine reference, rule ignored";
return;
}
return 1;
}
sub options ($%) { # options for general compilation of Mappers
my $cls = shift @_;
my ($i, $opt, %opt);
my $caller = caller 0; $caller = caller 1 if $caller eq __PACKAGE__;
my @returns = exists $options{$caller} ? %{$options{$caller}} : ();
while (@_) {
$opt = lc shift @_;
if ($opt =~ /^\:/) {
$opt eq ':others' and $opt{'others'} = sub { shift } and next;
$opt eq ':silent' and $opt{'silent'} = 1 and next;
$opt eq ':join' and $opt{'join'} = '';
}
else {
$opt =~ /^\-*(.*)$/;
$opt{$1} = shift @_;
}
}
{
local $option{'silent'} = exists $opt{'silent'} ? $opt{'silent'} : $options{$caller}{'silent'};
if (defined $opt{'complement'} and UNIVERSAL::isa($opt{'complement'}, 'ARRAY')) {
for ($i = 0; $i < @{$opt{'complement'}}; $i += 2) {
verify_rule $opt{'complement'}->[$i], $opt{'complement'}->[$i + 1];
}
}
if (defined $opt{'override'} and UNIVERSAL::isa($opt{'override'}, 'ARRAY')) {
for ($i = 0; $i < @{$opt{'override'}}; $i += 2) {
verify_rule $opt{'override'}->[$i], $opt{'override'}->[$i + 1];
}
}
if (defined $opt{'others'} and not $option{'silent'}) { # see whisper
if (UNIVERSAL::isa($opt{'others'}, 'CODE')) {
carp "The subroutine will be called with the 'other' LHS parameter to get the rule's RHS";
}
else {
carp "The scalar value will become the RHS of each 'other' LHS";
}
}
}
return %opt unless defined $cls;
$options{$caller}{$_} = $opt{$_} foreach keys %opt;
return @returns;
}
*new = *compile{'CODE'}; # provides the 'new' constructor .. the 'compile' method
# *new = \&compile; # might be known at compile-time
sub compile ($@) { # returns Mapper .. modified Aho-Corasick and Boyer-Moore search engine
my $cls = shift @_;
my (@tree, @bell, @skip, @queue, %redef);
my ($q, $r, $s, $t, $i, $token, $trick);
my ($null_list, $null_hash) = ([], {}); # references to empties need not consume unique memory
my ($no_code, $no_list) = (1, 1); # optimization indicators
local %option = exists $options{caller 0} ? %{$options{caller 0}} : ();
# options be local due to verify_rule and whisper
if (UNIVERSAL::isa($_[0], 'ARRAY')) {
%option = (%option, options undef, @{shift @_});
}
elsif (UNIVERSAL::isa($_[0], 'HASH')) {
%option = (%option, options undef, %{shift @_});
}
$skip[0] = undef; # never ever used .. fix the number of list elements equal
$bell[0] = $null_list; # important .. depth-wise inheritation of the lists
if (defined $option{'complement'}) {
for ($i = 0; $i < @{$option{'complement'}}; $i += 2) {
$q = 0;
foreach $token (split //, $option{'complement'}->[$i]) {
$tree[$q]->{$token} = ++$r unless defined $tree[$q]->{$token}; # increment $r ^^
$q = $tree[$q]->{$token};
}
$tree[$q] = {} unless defined $tree[$q]; # define trees correctly, economize below
whisper "Redefining the mapping for '" . $option{'complement'}->[$i] . "'" if defined $bell[$q];
$bell[$q] = [ $option{'complement'}->[$i + 1] ];
}
}
for ($i = 0; $i < @_; $i += 2) { # generate $tree[$q] transition function and initial $bell[$q]
next unless verify_rule $_[$i], $_[$i + 1];
$q = 0;
foreach $token (split //, $_[$i]) {
$tree[$q]->{$token} = ++$r unless defined $tree[$q]->{$token}; # increment $r ^^
$q = $tree[$q]->{$token};
}
$tree[$q] = {} unless defined $tree[$q]; # define trees correctly, economize below
whisper "Redefining the mapping for '$_[$i]'" if $redef{$q}++;
$bell[$q] = [ $_[$i + 1] ];
}
if (defined $option{'override'}) {
for ($i = 0; $i < @{$option{'override'}}; $i += 2) {
$q = 0;
foreach $token (split //, $option{'override'}->[$i]) {
$tree[$q]->{$token} = ++$r unless defined $tree[$q]->{$token}; # increment $r ^^
$q = $tree[$q]->{$token};
}
$tree[$q] = {} unless defined $tree[$q]; # define trees correctly, economize below
whisper "Redefining the mapping for '" . $option{'override'}->[$i] . "'" if $redef{$q}++;
$bell[$q] = [ $option{'override'}->[$i + 1] ];
}
}
foreach $token (map { chr } 0x00..0xFF) {
unless (defined $tree[0]->{$token}) {
unless (defined $option{'others'}) {
$tree[0]->{$token} = 0;
}
else {
$tree[0]->{$token} = ++$r; # increment $r ^^
$tree[$r] = {}; # define trees correctly
}
}
$q = $tree[0]->{$token}; # including existing prefixes
unless ($q == 0) {
unless (defined $bell[$q]) {
if (not defined $option{'others'}) {
$bell[$q] = $bell[0];
}
elsif (UNIVERSAL::isa($option{'others'}, 'CODE')) {
$bell[$q] = [ $option{'others'}->($token) ];
}
else {
$bell[$q] = [ $option{'others'} ];
}
}
$skip[$q] = 0;
push @queue, $q;
}
}
while (@queue) { # generate $skip[$q] backward function and complete $bell[$q]
$q = shift @queue;
foreach $token (keys %{$tree[$q]}) {
$t = $tree[$q]->{$token};
push @queue, $t;
if (defined $bell[$t]) {
$skip[$t] = 0;
if (UNIVERSAL::isa($bell[$t]->[0], 'ARRAY')) { # shortening property of the rules
$s = $skip[$t];
foreach $trick (split //, $bell[$t]->[0]->[1]) {
until (defined $tree[$s]->{$trick}) { # loops only if not in the root ^^
push @{$bell[$t]}, @{$bell[$s]};
$s = $skip[$s];
}
$s = $tree[$s]->{$trick};
}
$skip[$t] = $s;
$bell[$t]->[0] = $bell[$t]->[0]->[0];
}
}
else {
$s = $skip[$q];
$bell[$t] = [ @{$bell[$q]} ]; # unique reference quite important ^^
until (defined $tree[$s]->{$token}) { # extremely tricky ...
push @{$bell[$t]}, @{$bell[$s]};
$s = $skip[$s];
}
$skip[$t] = $tree[$s]->{$token};
}
}
$tree[$q] = $null_hash unless keys %{$tree[$q]}; # economize with memory
}
for ($q = 1; $q < @bell; $q++) { # optimize the bell function for $q > 0
if (grep { UNIVERSAL::isa($_, 'CODE') } @{$bell[$q]}) {
$no_code = 0;
}
elsif (defined $option{'join'}) {
$bell[$q] = join $option{'join'}, @{$bell[$q]};
next;
}
if (@{$bell[$q]} == 1) {
$bell[$q] = $bell[$q]->[0];
}
else {
$bell[$q] = $null_list if @{$bell[$q]} == 0;
$no_list = 0;
}
}
return bless {
'current' => 0,
'tree' => \@tree,
'bell' => \@bell,
'skip' => \@skip,
'null' => { 'list' => $null_list, 'hash' => $null_hash },
'join' => $option{'join'},
'no_code' => $no_code,
'no_list' => $no_list,
}, $cls;
}
sub process ($@) { # returns the list of search results performed by Mapper
my $obj = shift @_;
my (@returns, $phrase, $token, $q);
$q = $obj->{'current'};
if ($obj->{'no_list'}) {
foreach $phrase (@_) {
foreach $token (split //, $phrase) {
until (defined $obj->{'tree'}[$q]->{$token}) {
push @returns, $obj->{'bell'}[$q];
$q = $obj->{'skip'}[$q];
}
$q = $obj->{'tree'}[$q]->{$token};
}
}
}
else {
foreach $phrase (@_) {
foreach $token (split //, $phrase) {
until (defined $obj->{'tree'}[$q]->{$token}) {
push @returns, ref $obj->{'bell'}[$q] eq 'ARRAY' ?
@{$obj->{'bell'}[$q]} : $obj->{'bell'}[$q];
$q = $obj->{'skip'}[$q];
}
$q = $obj->{'tree'}[$q]->{$token};
}
}
}
$obj->{'current'} = $q;
return @returns;
}
sub recover ($;$$) { # returns the 'in-progress' search result and resets Mapper
my ($obj, $r, $q) = @_;
my (@returns);
$q = $obj->{'current'} unless defined $q;
if ($obj->{'no_list'}) {
until ($q == 0) {
push @returns, $obj->{'bell'}[$q];
$q = $obj->{'skip'}[$q];
}
}
else {
until ($q == 0) {
push @returns, ref $obj->{'bell'}[$q] eq 'ARRAY' ?
@{$obj->{'bell'}[$q]} : $obj->{'bell'}[$q];
$q = $obj->{'skip'}[$q];
}
}
$obj->{'current'} = defined $r ? $r : 0;
return @returns;
}
sub compute ($@) {
my $obj = shift @_;
my (@returns, $phrase, $token, $q);
$obj->recover();
foreach $phrase (@_) {
foreach $token (split //, $phrase) {
push @returns, [$token, $obj->{'current'}];
push @{$returns[-1]}, [$obj->process($token)];
$q = $obj->{'current'};
push @{$returns[-1]}, $q, $obj->{'bell'}[$q], $obj->{'skip'}[$q];
}
}
push @returns, ['recover', $obj->{'current'}];
push @{$returns[-1]}, [$obj->recover()];
$q = $obj->{'current'};
push @{$returns[-1]}, $q, $obj->{'bell'}[$q], ($q == 0 ? 'undef' : $obj->{'skip'}[$q]);
return @returns;
}
sub dumper ($;$) {
my ($obj, $ref) = @_;
$ref = ['L', 'H', 'mapper'] unless defined $ref;
require Data::Dumper;
return Data::Dumper->new([$obj->{'null'}{'list'}, $obj->{'null'}{'hash'}, $obj], $ref);
}
sub describe ($;$) {
my ($obj, $ref) = @_;
my ($q, $nodes, $edges, $skips, $bells, $paths, $lists);
$nodes = @{$obj->{'tree'}};
$edges = [];
$lists = [];
if ($obj->{'no_list'}) {
for ($q = 0; $q < @{$obj->{'tree'}}; $q++) {
$lists->[$q * 3] = scalar %{$obj->{'tree'}[$q]};
$lists->[$q * 3] =~ m{^([0-9]+)(?:/([0-9]+))?$};
$edges->[0] += scalar keys %{$obj->{'tree'}[$q]};
$lists->[$q * 3] .= " " . keys %{$obj->{'tree'}[$q]};
if (defined $2) {
$edges->[1] += $1;
$edges->[2] += $2;
}
else {
$paths++ unless $1;
}
$lists->[$q * 3 + 1] = $obj->{'bell'}[$q] eq "" ? 0 : 1;
$bells += $lists->[$q * 3 + 1];
next if $q == 0;
$lists->[$obj->{'skip'}[$q] * 3 + 2]++;
$skips++ unless $obj->{'skip'}[$q] == 0;
}
}
else {
for ($q = 0; $q < @{$obj->{'tree'}}; $q++) {
$lists->[$q * 3] = scalar %{$obj->{'tree'}[$q]};
$lists->[$q * 3] =~ m{^([0-9]+)(?:/([0-9]+))?$};
$edges->[0] += scalar keys %{$obj->{'tree'}[$q]};
$lists->[$q * 3] .= " " . keys %{$obj->{'tree'}[$q]};
if (defined $2) {
$edges->[1] += $1;
$edges->[2] += $2;
}
else {
$paths++ unless $1;
}
$lists->[$q * 3 + 1] = ref $obj->{'bell'}[$q] eq 'ARRAY' ? scalar @{$obj->{'bell'}[$q]} : 1;
$bells += $lists->[$q * 3 + 1];
next if $q == 0;
$lists->[$obj->{'skip'}[$q] * 3 + 2]++;
$skips++ unless $obj->{'skip'}[$q] == 0;
}
}
my $return = {'nodes' => $nodes, 'edges' => $edges->[0], 'slots' => $edges->[1] . "/" . $edges->[2],
'skips' => $skips, 'bells' => $bells, 'paths' => $paths, 'lists' => $lists};
if (defined $ref) {
$ref = *STDERR if ref $ref ne 'GLOB';
print $ref ( join ", ", map { ( defined $return->{$_} ? $return->{$_} : 'undef' ) . " " . $_ }
grep { $_ ne 'lists' } keys %{$return} ) . "\n";
}
return $return;
}
sub encode ($$$;$) {
my ($cls, $text, $encoder, $enc) = @_;
my ($mapper, $join);
local %option = exists $options{caller 0} ? %{$options{caller 0}} : ();
# options be local due to whisper
require Encode;
unless (Encode::is_utf8($text)) {
whisper "The input text is not in Perl's internal utf8 .. note only, might be fine";
}
if ($enc) {
unless (Encode::resolve_alias($enc)) {
carp "Cannot resolve the proposed '$enc' encoding";
return undef;
}
$text = Encode::encode($enc, $text);
}
if (not UNIVERSAL::isa($encoder, 'ARRAY') or grep { defined $_ and not $_->isa($cls) } @{$encoder}) {
carp "Expecting a reference to an array of '$cls' objects";
return undef;
}
foreach $mapper (@{$encoder}) {
last unless defined $mapper;
$join = defined $mapper->{'join'} ? $mapper->{'join'} :
defined $option{'join'} ? $option{'join'} : "";
if ($mapper->{'no_code'}) {
$text = join $join, $mapper->process($text), $mapper->recover();
}
else {
$text = join $join, map {
UNIVERSAL::isa($_, 'CODE') ? $_->() : $_
} $mapper->process($text), $mapper->recover();
}
}
return $text;
}
sub decode ($$$;$) {
my ($cls, $text, $decoder, $enc) = @_;
my ($mapper, $join);
local %option = exists $options{caller 0} ? %{$options{caller 0}} : ();
# options be local due to tradition ^^
require Encode;
$enc = 'utf8' unless $enc;
unless (Encode::resolve_alias($enc)) {
carp "Cannot resolve the proposed '$enc' encoding";
return undef;
}
if (not UNIVERSAL::isa($decoder, 'ARRAY') or grep { defined $_ and not $_->isa($cls) } @{$decoder}) {
carp "Expecting a reference to an array of $cls objects";
return undef;
}
foreach $mapper (@{$decoder}) {
last unless defined $mapper;
$join = defined $mapper->{'join'} ? $mapper->{'join'} :
defined $option{'join'} ? $option{'join'} : "";
if ($mapper->{'no_code'}) {
$text = join $join, $mapper->process($text), $mapper->recover();
}
else {
$text = join $join, map {
UNIVERSAL::isa($_, 'CODE') ? $_->() : $_
} $mapper->process($text), $mapper->recover();
}
}
return Encode::is_utf8($text) ? $text : Encode::decode($enc, $text);
}
1;
__END__
=head1 NAME
Encode::Mapper - Intuitive, yet efficient mappings for Encode
=head1 REVISION
$Revision: 663 $ $Date: 2008-08-11 16:21:54 +0200 (Mon, 11 Aug 2008) $
=head1 SYNOPSIS
use Encode::Mapper; ############################################# Enjoy the ride ^^
use Encode::Mapper ':others', ':silent'; # syntactic sugar for compiler options ..
Encode::Mapper->options ( # .. equivalent, see more in the text
'others' => sub { shift },
'silent' => 1,
);
Encode::Mapper->options ( # .. resetting, but not to use 'use' !!!
'others' => undef,
'silent' => 0
);
## Types of rules for mapping the data and controlling the engine's configuration #####
@rules = (
'x', 'y', # single 'x' be 'y', unless greediness prefers ..
'xx', 'Y', # .. double 'x' be 'Y' or other rules
'uc(x)x', sub { 'sorry ;)' }, # if 'x' follows 'uc(x)', be sorry, else ..
'uc(x)', [ '', 'X' ], # .. alias this *engine-initial* string
'xuc(x)', [ '', 'xX' ], # likewise, alias for the 'x' prefix
'Xxx', [ sub { $i++; '' }, 'X' ], # count the still married 'x'
);
## Constructors of the engine, i.e. one Encode::Mapper instance #######################
$mapper = Encode::Mapper->compile( @rules ); # engine constructor
$mapper = Encode::Mapper->new( @rules ); # equivalent alias
## Elementary performance of the engine ###############################################
@source = ( 'x', 'xx', 'xxuc(x)', 'xxx', '', 'xx' ); # distribution of the data ..
$source = join '', @source; # .. is ignored in this sense
@result = ($mapper->process(@source), $mapper->recover()); # the mapping procedure
@result = ($mapper->process($source), $mapper->recover()); # completely equivalent
$result = join '', map { ref $_ eq 'CODE' ? $_->() : $_ } @result;
# maps 'xxxxxuc(x)xxxxx' into ( 'Y', 'Y', '', 'y', CODE(...), CODE(...), 'y' ), ..
# .. then converts it into 'YYyy', setting $i == 2
@follow = $mapper->compute(@source); # follow the engine's computation over @source
$dumper = $mapper->dumper(); # returns the engine as a Data::Dumper object
## Module's higher API implemented for convenience ####################################
$encoder = [ $mapper, Encode::Mapper->compile( ... ), ... ]; # reference to mappers
$result = Encode::Mapper->encode($source, $encoder, 'utf8'); # encode down to 'utf8'
$decoder = [ $mapper, Encode::Mapper->compile( ... ), ... ]; # reference to mappers
$result = Encode::Mapper->decode($source, $decoder, 'utf8'); # decode up from 'utf8'
=head1 ABSTRACT
Encode::Mapper serves for intuitive, yet efficient construction of mappings for Encode.
The module finds direct application in Encode::Arabic. It provides an object-oriented
programming interface to convert data consistently, follow the engine's computation,
dump the engine using Data::Dumper, etc.
=head1 DESCRIPTION
It looks like the author of the extension ... ;) preferred giving formal and terse examples to
writing English. Please, see L<Encode::Arabic|Encode::Arabic> where L<Encode::Mapper|Encode::Mapper>
is used for solving complex real-world problems.
=head2 INTRO AND RULE TYPES
The module's core is an algoritm which, from the rules given by the user, builds a finite-state
transducer, i.e. an engine performing greedy search in the input stream and producing output
data and side effects relevant to the results of the search. Transducers may be linked one with
another, thus forming multi-level devices suitable for nontrivial encoding/decoding tasks.
The rules declare which input sequences of L<bytes|bytes> to search for, and what to do upon their
occurence. If the left-hand side (LHS) of a rule is the longest left-most string out of those
applicable on the input, the righ-hand side (RHS) of the rule is evaluated. The RHS defines the
corresponding output string, and possibly controls the engine as if the extra text were prepended
before the rest of the input:
$A => $X # $A .. literal string
# $X .. literal string or subroutine reference
$A => [$X, $Y] # $Y .. literal string for which 'length $Y < length $A'
The order of the rules does not matter, except when several rules with the same LHS are stated.
In such a case, redefinition warning is usually issued before overriding the RHS.
=head2 LOW-LEVEL METHODS
=over
=item compile (I<$class,> @rules)
=item compile (I<$class,> $opts, @rules)
The constructor of an L<Encode::Mapper|Encode::Mapper> instance. The first argument is the name of the
class, the rest is the list of rules ... LHS odd elements, RHS even elements, unless the first element
is a reference to an array or a hash, which then becomes C<$opts>.
If C<$opts> is recognized, it is used to modify the compiler C<options> locally for the engine being
constructed. If an option is not overridden, its global setting holds.
The compilation algorithm, and the search algorithm itself, were inspired by Aho-Corasick and Boyer-Moore
algorithms, and by the studies of finite automata with the restart operation. The engine is implemented
in the classical sense, using hashes for the transition function for instance. We expect to improve this
to Perl code evaluation, if the speed-up is significant.
It is to explore the way Perl's regular expressions would cope with the task, i.e. verify our initial
doubts which prevented us from trying. Since L<Encode::Mapper|Encode::Mapper>'s functionality is much
richer than pure search, simulating it completely might be resource-expensive and non-elegant. Therefore,
experiment reports are welcome.
=item new (I<$class,> @list)
Name alias to the C<compile> constructor.
=item process (I<$obj,> @list)
Process the input list with the engine. There is no resetting within the call of the method. Internally,
the text in the list is C<split> into L<bytes|bytes>, and there is just no need for the user to C<join>
his/hers strings or lines of data. Note the unveiled properties of the L<Encode::Mapper|Encode::Mapper>
class as well:
sub process ($@) { # returns the list of search results performed by Mapper
my $obj = shift @_;
my (@returns, $phrase, $token, $q);
use bytes; # ensures splitting into one-byte tokens
$q = $obj->{'current'};
foreach $phrase (@_) {
foreach $token (split //, $phrase) {
until (defined $obj->{'tree'}[$q]->{$token}) {
push @returns, @{$obj->{'bell'}[$q]};
$q = $obj->{'skip'}[$q];
}
$q = $obj->{'tree'}[$q]->{$token};
}
}
$obj->{'current'} = $q;
return @returns;
}
=item recover (I<$obj,> $r, $q)
Since the search algorithm is greedy and the engine does not know when the end of the data comes,
there must be a method to tell. Normally, C<recover> is called on the object without the other two
optional parameters setting the initial and the final state, respectively.
sub recover ($;$$) { # returns the 'in-progress' search result and resets Mapper
my ($obj, $r, $q) = @_;
my (@returns);
$q = $obj->{'current'} unless defined $q;
until ($q == 0) {
push @returns, @{$obj->{'bell'}[$q]};
$q = $obj->{'skip'}[$q];
}
$obj->{'current'} = defined $r ? $r : 0;
return @returns;
}
=item compute (I<$obj,> @list)
Tracks down the computation over the list of data, resetting the engine before and after to its
initial state. Developers might like this ;)
local $\ = "\n"; local $, = ":\t"; # just define the display
foreach $result ($mapper->compute($source)) { # follow the computation
print "Token" , $result->[0];
print "Source" , $result->[1];
print "Output" , join " + ", @{$result->[2]};
print "Target" , $result->[3];
print "Bell" , join ", ", @{$result->[4]};
print "Skip" , $result->[5];
}
=item dumper (I<$obj,> $ref)
The individual instances of L<Encode::Mapper|Encode::Mapper> can be stored as revertible data
structures. For minimalistic reasons, dumping needs to include explicit short-identifier
references to the empty array and the empty hash of the engine. For details, see
L<Data::Dumper|Data::Dumper>.
sub dumper ($;$) {
my ($obj, $ref) = @_;
$ref = ['L', 'H', 'mapper'] unless defined $ref;
require Data::Dumper;
return Data::Dumper->new([$obj->{'null'}{'list'}, $obj->{'null'}{'hash'}, $obj], $ref);
}
=item describe (I<$obj,> $ref)
Describes the L<Encode::Mapper|Encode::Mapper> object and returns a hash of the characteristics.
If C<$ref> is defined, the information is also C<print>ed into the C<$ref>erenced stream, or to
C<STDERR> if C<$ref> is not a filehandle.
=back
=head2 HIGH-LEVEL METHODS
In the L<Encode|Encode> world, one can work with different encodings and is also provided a function
for telling if the data are in Perl's internal utf8 format or not. In the
L<Encode::Mapper|Encode::Mapper> business, one is encouraged to compile different mappers and stack
them on top of each other, getting an easy-to-work-with filtering device.
In combination, this module offers the following C<encode> and C<decode> methods. In their prototypes,
C<$encoder>/C<$decoder> represent merely a reference to an array of mappers, although mathematics might
do more than that in future implementations ;)
Currently, the mappers involved are not reset with C<recover> before the computation. See the C<--join>
option for more comments on the code:
foreach $mapper (@{$_[2]}) { # either $encoder or $decoder
$join = defined $mapper->{'join'} ? $mapper->{'join'} :
defined $option{'join'} ? $option{'join'} : "";
$text = join $join, map {
UNIVERSAL::isa($_, 'CODE') ? $_->() : $_
} $mapper->process($text), $mapper->recover();
}
=over
=item encode (I<$class,> $text, $encoder, $enc)
If C<$enc> is defined, the C<$text> is encoded into that encoding, using L<Encode|Encode>. Then, the
C<$encoder>'s engines are applied in series on the data. The returned text should have the utf8
flag off.
=item decode (I<$class,> $text, $decoder, $enc)
The C<$text> is run through the sequence of engines in C<$decoder>. If the result does not have the
utf8 flag on, decoding from C<$enc> is further performed by L<Encode|Encode>. If C<$enc> is not defined,
utf8 is assumed.
=back
=head2 OPTIONS AND EXPORT
The language the L<Encode::Mapper|Encode::Mapper> engine works on is not given exclusively by the rules
passed as parameters to the C<compile> or C<new> constructor methods. The nature of the compilation is
influenced by the current setting of the following options:
=over
=item --complement
This option accepts a reference to an array declaring rules which are to complement the rules of
the constructor. Redefinition warnings are issued only if you redefine within the option's list,
not when a rule happens to be overridden during compilation.
=item --override
Overrides the rules of the constructor. Redefinition warnings are issued, though. You might, for
example, want to preserve all XML markup in the data you are going to process through your
encoders/decoders:
'override' => [ # override rules of these LHS .. there's no other tricks ^^
( # combinations of '<' and '>' with the other bytes
map {
my $x = chr $_;
"<" . $x, [ "<" . $x, ">" ], # propagate the '>' sign implying ..
">" . $x, [ $x, ">" ], # .. preservation of the bytes
} 0x00..0x3B, 0x3D, 0x3F..0xFF
),
">>", ">", # stop the whole process ..
"<>", "<>", # .. do not even start it
"><", [ "<", ">" ], # rather than nested '<' and '>', ..
"<<", [ "<<", ">" ],
">\\<", [ "<", ">" ], # .. prefer these escape sequences
">\\\\", [ "\\", ">" ],
">\\>", [ ">", ">" ],
">", ">", # singular symbols may migrate right ..
"<", "<", # .. or preserve the rest of the data
]
=item --others
If defined, this option controls how to deal with 'others', i.e. bytes of input for which there is no
rule, by defining rules for them. In case this option gets a code reference, the referenced subroutine
will be called with the 'other' LHS parameter to get the rule's RHS. Otherwise, a defined scalar value
will become the RHS of each 'other' LHS.
To preserve the 'other' bytes, you can use
'others' => sub { shift } # preserve every non-treated byte
the effect of which is similar to including the C<map> to the C<--complement> rules:
'complement' => [ ( map { ( chr $_ ) x 2 } 0x00..0xFF ), ... ] # ... is your rules
You may of course wish to return undefined values if there are any non-treated bytes in the input. In
order for the C<undef> to be a correct RHS, you have to protect it once more by the C<sub> like this:
'others' => sub { sub { undef } }
=item --silent
Setting it to a true value will prevent any warnings issued during the engine's compilation, mostly
reflecting an incorrect or dubious use of a rule.
=item --join
This option enables less memory-requiring representation of the engines. If this option is defined when
the constructor is called, the setting is stored in the instance internally. Any lists of literal RHS
which are to be emitted simultaneously from the engine are joined into a string with the option's value,
empty lists turn into empty strings. If an engine was compiled with this option defined, the value will
be used to join output of C<encode> and C<decode>, too. If not, either the current value of the option
or the empty string will help instead.
=back
The keywords of options can be in mixed case and/or start with any number of dashes, and the next element
in the list is taken as the option's value. There are special keywords, however, beginning with a colon
and not gulping down the next element:
=over
=item :others
Equivalent to the code C<< 'others' => sub { shift } >> explained above.
=item :silent
Equivalent to C<< 'silent' => 1 >>, or rather to the maximum silence if more degrees of it are introduced
in the future.
=item :join
Equivalent to C<< 'join' => '' >>. Use this option if you are going to dump and load the new engine often,
and if you do not miss the list-supporting uniformity of C<process> and C<recover>.
=back
Compiler options are associated with package names in the C<%Encode::Mapper::options> variable, and confined
to them. While C<options> and C<import> perform the setting with respect to the caller package, accessing
the hash directly is neither recommended, nor restricted.
There is a nice compile-time invocation of C<import> with the C<use>C< Encode::Mapper LIST> idiom, which you
might prefer to explicit method calls. Local modification of the package's global setting that applies just
to the engine being constructed is done by supplying the options as an extra parameter to C<compile>.
use Data::Dump 'dump'; # pretty data printing is below
$Encode::Mapper::options{'ByForce'} = { qw ':others - silent errors' };
package ByMethod; # import called at compile time
# no warnings, 'silent' is true
Encode::Mapper->options('complement' => [ 'X', 'Y' ], 'others' => 'X');
use Encode::Mapper 'silent' => 299_792_458;
package main; # import called at compile time
# 'non-existent' may exist once
print dump %Encode::Mapper::options;
use Encode::Mapper ':others', ':silent', 'non-existent', 'one';
# (
# "ByMethod",
# { complement => ["X", "Y"], others => "X", silent => 299_792_458 },
# "ByForce",
# { ":others" => "-", silent => "errors" },
# "main",
# { "non-existent" => "one", others => sub { "???" }, silent => 1 },
# )
=over
=item options (I<$class,> @list)
If C<$class> is defined, enforces the options in the list globally for the calling package. The return value
of this method is the state of the options before the proposed changes were set. If C<$class> is undefined,
nothing is set, only the canonized forms of the declared keywords and their values are returned.
=item import (I<$class,> @list)
This module does not export any symbols. This method just calls C<options>, provided there are some
elements in the list.
=back
=head1 SEE ALSO
There are related theoretical studies which the implementation may have touched.
You might be interested in Aho-Corasick and Boyer-Moore algorithms as well as in
finite automata with the restart operation.
L<Encode|Encode>, L<Encode::Arabic|Encode::Arabic>, L<Data::Dumper|Data::Dumper>
Encode Arabic: Exercise in Functional Parsing
L<http://ufal.mff.cuni.cz/padt/online/2006/06/encode-arabic.html>
=head1 AUTHOR
Otakar Smrz, L<http://ufal.mff.cuni.cz/~smrz/>
eval { 'E<lt>' . ( join '.', qw 'otakar smrz' ) . "\x40" . ( join '.', qw 'mff cuni cz' ) . 'E<gt>' }
Perl is also designed to make the easy jobs not that easy ;)
=head1 COPYRIGHT AND LICENSE
Copyright 2003-2007 by Otakar Smrz
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
=cut
|