This file is indexed.

/usr/include/deal.II/base/tensor_product_polynomials.h is in libdeal.ii-dev 6.3.1-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
//---------------------------------------------------------------------------
//    $Id: tensor_product_polynomials.h 20161 2009-11-24 22:54:51Z kanschat $
//    Version: $Name$
//
//    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2009 by the deal.II authors
//
//    This file is subject to QPL and may not be  distributed
//    without copyright and license information. Please refer
//    to the file deal.II/doc/license.html for the  text  and
//    further information on this license.
//
//---------------------------------------------------------------------------
#ifndef __deal2__tensor_product_polynomials_h
#define __deal2__tensor_product_polynomials_h


#include <base/config.h>
#include <base/exceptions.h>
#include <base/tensor.h>
#include <base/point.h>
#include <base/polynomial.h>

#include <vector>

DEAL_II_NAMESPACE_OPEN

/**
 * @addtogroup Polynomials
 * @{
 */

/**
 * Tensor product of given polynomials.
 *
 * Given a vector of <i>n</i> one-dimensional polynomials
 * <i>P<sub>1</sub></i> to <i>P<sub>n</sub></i>, this class generates
 * <i>n<sup>dim</sup></i> polynomials of the form
 * <i>Q<sub>ijk</sub>(x,y,z) =
 * P<sub>i</sub>(x)P<sub>j</sub>(y)P<sub>k</sub>(z)</i>. If the base
 * polynomials are mutually orthogonal on the interval [-1,1] or
 * [0,1], then the tensor product polynomials are orthogonal on
 * [-1,1]<sup>dim</sup> or [0,1]<sup>dim</sup>, respectively.
 *
 * Indexing is as follows: the order of dim-dimensional polynomials is
 * x-coordinates running fastest, then y-coordinate, etc. The first
 * few polynomials are thus <i>P<sub>1</sub>(x)P<sub>1</sub>(y),
 * P<sub>2</sub>(x)P<sub>1</sub>(y), P<sub>3</sub>(x)P<sub>1</sub>(y),
 * ..., P<sub>1</sub>(x)P<sub>2</sub>(y),
 * P<sub>2</sub>(x)P<sub>2</sub>(y), P<sub>3</sub>(x)P<sub>2</sub>(y),
 * ...</i> and likewise in 3d.
 *
 * The output_indices() function prints the ordering of the
 * dim-dimensional polynomials, i.e. for each polynomial in the
 * polynomial space it gives the indices i,j,k of the one-dimensional
 * polynomials in x,y and z direction. The ordering of the
 * dim-dimensional polynomials can be changed by using the
 * set_numbering() function. 
 * 
 * @author Ralf Hartmann, 2000, 2004, Guido Kanschat, 2000, Wolfgang Bangerth 2003
 */
template <int dim>
class TensorProductPolynomials
{
  public:
				     /**
				      * Access to the dimension of
				      * this object, for checking and
				      * automatic setting of dimension
				      * in other classes.
				      */
    static const unsigned int dimension = dim;
    
				     /**
				      * Constructor. <tt>pols</tt> is
				      * a vector of objects that
				      * should be derived or otherwise
				      * convertible to one-dimensional
				      * polynomial objects. It will be
				      * copied element by element into
				      * a private variable.
				      */
    template <class Pol>
    TensorProductPolynomials (const std::vector<Pol> &pols);
    
				     /**
				      * Prints the list of the indices
				      * to <tt>out</tt>.
				      */
    void output_indices(std::ostream &out) const;

				     /**
				      * Sets the ordering of the
				      * polynomials. Requires
				      * <tt>renumber.size()==n()</tt>.
				      * Stores a copy of
				      * <tt>renumber</tt>.
				      */
    void set_numbering(const std::vector<unsigned int> &renumber);

				     /**
				      * Gives read access to the
				      * renumber vector.
				      */
    const std::vector<unsigned int> &get_numbering() const;

				     /**
				      * Gives read access to the
				      * inverse renumber vector.
				      */
    const std::vector<unsigned int> &get_numbering_inverse() const;

				     /**
				      * Computes the value and the
				      * first and second derivatives
				      * of each tensor product
				      * polynomial at <tt>unit_point</tt>.
				      *
				      * The size of the vectors must
				      * either be equal 0 or equal
				      * n(). In the first case, the
				      * function will not compute
				      * these values.
				      *
				      * If you need values or
				      * derivatives of all tensor
				      * product polynomials then use
				      * this function, rather than
				      * using any of the
				      * compute_value(),
				      * compute_grad() or
				      * compute_grad_grad()
				      * functions, see below, in a
				      * loop over all tensor product
				      * polynomials.
				      */
    void compute (const Point<dim>            &unit_point,
                  std::vector<double>         &values,
                  std::vector<Tensor<1,dim> > &grads,
                  std::vector<Tensor<2,dim> > &grad_grads) const;
    
				     /**
				      * Computes the value of the
				      * <tt>i</tt>th tensor product
				      * polynomial at
				      * <tt>unit_point</tt>. Here <tt>i</tt> is
				      * given in tensor product
				      * numbering.
				      *
				      * Note, that using this function
				      * within a loop over all tensor
				      * product polynomials is not
				      * efficient, because then each
				      * point value of the underlying
				      * (one-dimensional) polynomials
				      * is (unnecessarily) computed
				      * several times.  Instead use
				      * the compute() function with
				      * <tt>values.size()==</tt>n()
				      * to get the point values of all
				      * tensor polynomials all at once
				      * and in a much more efficient
				      * way.
				      */
    double compute_value (const unsigned int i,
			  const Point<dim> &p) const;

				     /**
				      * Computes the grad of the
				      * <tt>i</tt>th tensor product
				      * polynomial at
				      * <tt>unit_point</tt>. Here <tt>i</tt> is
				      * given in tensor product
				      * numbering.
				      *
				      * Note, that using this function
				      * within a loop over all tensor
				      * product polynomials is not
				      * efficient, because then each
				      * derivative value of the
				      * underlying (one-dimensional)
				      * polynomials is (unnecessarily)
				      * computed several times.
				      * Instead use the compute()
				      * function, see above, with
				      * <tt>grads.size()==</tt>n()
				      * to get the point value of all
				      * tensor polynomials all at once
				      * and in a much more efficient
				      * way.
				      */
    Tensor<1,dim> compute_grad (const unsigned int i,
				const Point<dim> &p) const;

				     /**
				      * Computes the second
				      * derivative (grad_grad) of the
				      * <tt>i</tt>th tensor product
				      * polynomial at
				      * <tt>unit_point</tt>. Here <tt>i</tt> is
				      * given in tensor product
				      * numbering.
				      *
				      * Note, that using this function
				      * within a loop over all tensor
				      * product polynomials is not
				      * efficient, because then each
				      * derivative value of the
				      * underlying (one-dimensional)
				      * polynomials is (unnecessarily)
				      * computed several times.
				      * Instead use the compute()
				      * function, see above, with
				      * <tt>grad_grads.size()==</tt>n()
				      * to get the point value of all
				      * tensor polynomials all at once
				      * and in a much more efficient
				      * way.
				      */
    Tensor<2,dim> compute_grad_grad (const unsigned int i,
                                     const Point<dim> &p) const;

				     /**
				      * Returns the number of tensor
				      * product polynomials. For <i>n</i>
				      * 1d polynomials this is <i>n<sup>dim</sup></i>.
				      */
    unsigned int n () const;

	    
  private:
				     /**
				      * Copy of the vector <tt>pols</tt> of
				      * polynomials given to the
				      * constructor.
				      */
    std::vector<Polynomials::Polynomial<double> > polynomials;

				     /**
				      * Number of tensor product
				      * polynomials. See n().
				      */
    unsigned int n_tensor_pols;

				     /**
				      * Index map for reordering the
				      * polynomials.
				      */
    std::vector<unsigned int> index_map;

				     /**
				      * Index map for reordering the
				      * polynomials.
				      */
    std::vector<unsigned int> index_map_inverse;

                                     /**
                                      * Each tensor product polynomial
                                      * <i>i</i> is a product of
                                      * one-dimensional polynomials in
                                      * each space direction. Compute
                                      * the indices of these
                                      * one-dimensional polynomials
                                      * for each space direction,
                                      * given the index <i>i</i>.
                                      */
    void compute_index (const unsigned int i,
                        unsigned int       (&indices)[dim]) const;
    
				     /**
				      * Computes
				      * <i>x<sup>dim</sup></i> for
				      * unsigned int <i>x</i>. Used in
				      * the constructor.
				      */
    static
    unsigned int x_to_the_dim (const unsigned int x);
};

#ifndef DOXYGEN

template <int dim>
inline
const std::vector<unsigned int> &
TensorProductPolynomials<dim>::get_numbering() const
{
  return index_map;
}


template <int dim>
inline
const std::vector<unsigned int> &
TensorProductPolynomials<dim>::get_numbering_inverse() const
{
  return index_map_inverse;
}


#endif // DOXYGEN


/**
 * Anisotropic tensor product of given polynomials.
 *
 * Given one-dimensional polynomials <tt>Px1</tt>, <tt>Px2</tt>, ... in
 * x-direction, <tt>Py1</tt>, <tt>Py2</tt>, ... in y-direction, and so on, this
 * class generates polynomials of the form  <i>Q<sub>ijk</sub>(x,y,z) =
 * Pxi(x)Pyj(y)Pzk(z)</i>. If the base polynomials are mutually
 * orthogonal on the interval $[-1,1]$ or $[0,d]$, then the tensor
 * product polynomials are orthogonal on $[-1,1]^d$ or $[0,1]^d$,
 * respectively.
 *
 * Indexing is as follows: the order of dim-dimensional polynomials
 * is x-coordinates running fastest, then y-coordinate, etc. The first
 * few polynomials are thus <tt>Px1(x)Py1(y)</tt>, <tt>Px2(x)Py1(y)</tt>,
 * <tt>Px3(x)Py1(y)</tt>, ..., <tt>Px1(x)Py2(y)</tt>, <tt>Px2(x)Py2(y)</tt>,
 * <tt>Px3(x)Py2(y)</tt>, ..., and likewise in 3d.
 * 
 * @author Wolfgang Bangerth 2003
 */
template <int dim>
class AnisotropicPolynomials
{
  public:
				     /**
				      * Constructor. <tt>pols</tt> is a
				      * table of one-dimensional
				      * polynomials. The number of
				      * rows in this table should be
				      * equal to the space dimension,
				      * with the elements of each row
				      * giving the polynomials that
				      * shall be used in this
				      * particular coordinate
				      * direction. These polynomials
				      * may vary between coordinates,
				      * as well as their number.
				      */
    AnisotropicPolynomials (const std::vector<std::vector<Polynomials::Polynomial<double> > > &pols);

				     /**
				      * Computes the value and the
				      * first and second derivatives
				      * of each tensor product
				      * polynomial at <tt>unit_point</tt>.
				      *
				      * The size of the vectors must
				      * either be equal <tt>0</tt> or equal
				      * <tt>n_tensor_pols</tt>.  In the
				      * first case, the function will
				      * not compute these values.
				      *
				      * If you need values or
				      * derivatives of all tensor
				      * product polynomials then use
				      * this function, rather than
				      * using any of the
				      * <tt>compute_value</tt>,
				      * <tt>compute_grad</tt> or
				      * <tt>compute_grad_grad</tt>
				      * functions, see below, in a
				      * loop over all tensor product
				      * polynomials.
				      */
    void compute (const Point<dim>            &unit_point,
                  std::vector<double>         &values,
                  std::vector<Tensor<1,dim> > &grads,
                  std::vector<Tensor<2,dim> > &grad_grads) const;
    
				     /**
				      * Computes the value of the
				      * <tt>i</tt>th tensor product
				      * polynomial at
				      * <tt>unit_point</tt>. Here <tt>i</tt> is
				      * given in tensor product
				      * numbering.
				      *
				      * Note, that using this function
				      * within a loop over all tensor
				      * product polynomials is not
				      * efficient, because then each
				      * point value of the underlying
				      * (one-dimensional) polynomials
				      * is (unnecessarily) computed
				      * several times.  Instead use
				      * the <tt>compute</tt> function, see
				      * above, with
				      * <tt>values.size()==n_tensor_pols</tt>
				      * to get the point values of all
				      * tensor polynomials all at once
				      * and in a much more efficient
				      * way.
				      */
    double compute_value (const unsigned int i,
			  const Point<dim> &p) const;

				     /**
				      * Computes the grad of the
				      * <tt>i</tt>th tensor product
				      * polynomial at
				      * <tt>unit_point</tt>. Here <tt>i</tt> is
				      * given in tensor product
				      * numbering.
				      *
				      * Note, that using this function
				      * within a loop over all tensor
				      * product polynomials is not
				      * efficient, because then each
				      * derivative value of the
				      * underlying (one-dimensional)
				      * polynomials is (unnecessarily)
				      * computed several times.
				      * Instead use the <tt>compute</tt>
				      * function, see above, with
				      * <tt>grads.size()==n_tensor_pols</tt>
				      * to get the point value of all
				      * tensor polynomials all at once
				      * and in a much more efficient
				      * way.
				      */
    Tensor<1,dim> compute_grad (const unsigned int i,
				const Point<dim> &p) const;

				     /**
				      * Computes the second
				      * derivative (grad_grad) of the
				      * <tt>i</tt>th tensor product
				      * polynomial at
				      * <tt>unit_point</tt>. Here <tt>i</tt> is
				      * given in tensor product
				      * numbering.
				      *
				      * Note, that using this function
				      * within a loop over all tensor
				      * product polynomials is not
				      * efficient, because then each
				      * derivative value of the
				      * underlying (one-dimensional)
				      * polynomials is (unnecessarily)
				      * computed several times.
				      * Instead use the <tt>compute</tt>
				      * function, see above, with
				      * <tt>grad_grads.size()==n_tensor_pols</tt>
				      * to get the point value of all
				      * tensor polynomials all at once
				      * and in a much more efficient
				      * way.
				      */
    Tensor<2,dim> compute_grad_grad (const unsigned int i,
                                     const Point<dim> &p) const;

				     /**
				      * Returns the number of tensor
				      * product polynomials. It is the
				      * product of the number of
				      * polynomials in each coordinate
				      * direction.
				      */
    unsigned int n () const;

  private:
				     /**
				      * Copy of the vector <tt>pols</tt> of
				      * polynomials given to the
				      * constructor.
				      */
    std::vector<std::vector<Polynomials::Polynomial<double> > > polynomials;

				     /**
				      * Number of tensor product
				      * polynomials. This is
				      * <tt>Nx*Ny*Nz</tt>, or with terms
				      * dropped if the number of space
				      * dimensions is less than 3.
				      */
    unsigned int n_tensor_pols;

                                     /**
                                      * Each tensor product polynomial
                                      * @รพ{i} is a product of
                                      * one-dimensional polynomials in
                                      * each space direction. Compute
                                      * the indices of these
                                      * one-dimensional polynomials
                                      * for each space direction,
                                      * given the index <tt>i</tt>.
                                      */
    void compute_index (const unsigned int i,
                        unsigned int       (&indices)[dim]) const;
    
				     /**
				      * Given the input to the
				      * constructor, compute
				      * <tt>n_tensor_pols</tt>.
				      */
    static
    unsigned int
    get_n_tensor_pols (const std::vector<std::vector<Polynomials::Polynomial<double> > > &pols);
};

/** @} */

#ifndef DOXYGEN

/* -------------- declaration of explicit specializations --- */

template <>
void
TensorProductPolynomials<1>::compute_index(const unsigned int n,
                                           unsigned int      (&index)[1]) const;
template <>
void
TensorProductPolynomials<2>::compute_index(const unsigned int n,
                                           unsigned int      (&index)[2]) const;
template <>
void
TensorProductPolynomials<3>::compute_index(const unsigned int n,
                                           unsigned int      (&index)[3]) const;


/* ---------------- template and inline functions ---------- */

template <int dim>
inline
unsigned int
TensorProductPolynomials<dim>::
x_to_the_dim (const unsigned int x)
{
  unsigned int y = 1;
  for (unsigned int d=0; d<dim; ++d)
    y *= x;
  return y;
}



template <int dim>
template <class Pol>
TensorProductPolynomials<dim>::
TensorProductPolynomials(const std::vector<Pol> &pols)
		:
		polynomials (pols.begin(), pols.end()),
		n_tensor_pols(x_to_the_dim(pols.size())),
		index_map(n_tensor_pols),
		index_map_inverse(n_tensor_pols)
{
				   // per default set this index map
				   // to identity. This map can be
				   // changed by the user through the
				   // set_numbering() function
  for (unsigned int i=0; i<n_tensor_pols; ++i)
    {
      index_map[i]=i;
      index_map_inverse[i]=i;
    }  
}



template <>
void
AnisotropicPolynomials<1>::compute_index(const unsigned int n,
                                         unsigned int      (&index)[1]) const;
template <>
void
AnisotropicPolynomials<2>::compute_index(const unsigned int n,
                                         unsigned int      (&index)[2]) const;
template <>
void
AnisotropicPolynomials<3>::compute_index(const unsigned int n,
                                         unsigned int      (&index)[3]) const;

#endif // DOXYGEN
DEAL_II_NAMESPACE_CLOSE

#endif