/usr/share/hol88-2.02.19940316/contrib/rule-induction/opsem.ml is in hol88-contrib-source 2.02.19940316-14.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | % ===================================================================== %
% FILE : opsem.ml %
% DESCRIPTION : Creates a theory of the syntax and operational %
% semantics of a very simple imperative programming %
% language. Illustrates the inductive definitions %
% package with proofs that the evaluation relation for %
% the given semantics is deterministic and that the %
% Hoare-logic rule for while loops follows from a %
% suitable definition of partial correctness. %
% %
% AUTHORS : Tom Melham and Juanito Camilleri %
% DATE : 91.10.09 %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Open a new theory and load the required libraries. %
% --------------------------------------------------------------------- %
new_theory `opsem`;;
load_library `string`;;
load_library `ind_defs`;;
% ===================================================================== %
% Syntax of the programming language. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Program variables will be represented by strings, and states will be %
% modelled by functions from program variables to natural numbers. %
% --------------------------------------------------------------------- %
new_type_abbrev (`state`, ":string->num");;
% --------------------------------------------------------------------- %
% Natural number expressions and boolean expressions will just be %
% modelled by total functions from states to numbers and booleans %
% respectively. This simplification allows us to concentrate in this %
% example on defining the semantics of commands. %
% --------------------------------------------------------------------- %
new_type_abbrev(`nexp`, ":state->num");;
new_type_abbrev(`bexp`, ":state->bool");;
% --------------------------------------------------------------------- %
% We can now use the recursive types package to define the syntax of %
% commands (or `programs'). We have the following types of commands: %
% %
% C ::= skip (does nothing) %
% | V := E (assignment) %
% | C1 ; C2 (sequencing) %
% | if B then C1 else C2 (conditional) %
% | while B do C (repetition) %
% %
% where V ranges over program varibles, E ranges over natural number %
% expressions, B ranges over boolean expressions, and C, C1 and C2 %
% range over commands. %
% %
% In the logic, we represent this abstract syntax with a set of prefix %
% type constructors. So we have: %
% %
% V := E represented by "assign V E" %
% C1 ; C2 represented by "seq C1 C2" %
% if B then C1 else C2 represented by "if B C1 C2" %
% while B do C represented by "while B C" %
% %
% For notational clarity, we later introduce two constants := and ; as %
% infix abbreviations for assign and seq. This can't be done here just %
% because define_type doesn't suppport infix constructors. %
% --------------------------------------------------------------------- %
let comm =
define_type `comm`
`comm = skip
| assign string nexp
| seq comm comm
| if bexp comm comm
| while bexp comm`;;
% --------------------------------------------------------------------- %
% Define an infix function `:=' for assignment. %
% --------------------------------------------------------------------- %
let assign_def =
new_infix_definition
(`assign_def`,"$:= V E = assign V E");;
% --------------------------------------------------------------------- %
% Define infix function `;' for sequencing. %
% --------------------------------------------------------------------- %
let seq_def =
new_infix_definition
(`seq_def`,"$; C1 C2 = seq C1 C2");;
% --------------------------------------------------------------------- %
% Replace seq and assign by the infixes := and ;. %
% --------------------------------------------------------------------- %
let comm =
save_thm
(`comm_thm`,
PURE_ONCE_REWRITE_RULE
[SYM (SPEC_ALL assign_def);SYM (SPEC_ALL seq_def)]
comm);;
% ===================================================================== %
% Standard syntactic theory, derived by the recursive types package. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% Structural induction theorem for commands. %
% --------------------------------------------------------------------- %
let induct =
save_thm (`induct`,prove_induction_thm comm);;
% --------------------------------------------------------------------- %
% Exhaustive case analysis theorem for commands. %
% --------------------------------------------------------------------- %
let cases =
save_thm (`cases`, prove_cases_thm induct);;
% --------------------------------------------------------------------- %
% Prove that the abstract syntax constructors are one-to-one. %
% --------------------------------------------------------------------- %
let const11 =
let [assign11;seq11;if11;while11] =
(CONJUNCTS (prove_constructors_one_one comm)) in
map save_thm
[(`assign11`,assign11);
(`seq11`,seq11);
(`if11`,if11);
(`while11`,while11)];;
% --------------------------------------------------------------------- %
% Prove that the constructors yield syntactically distinct values. Note %
% that one typically needs symmetric forms of the inequalities, so %
% these are constructed here and grouped togther into one theorem. %
% --------------------------------------------------------------------- %
let distinct =
let ths = CONJUNCTS (prove_constructors_distinct comm) in
let rths = map (GEN_ALL o NOT_EQ_SYM o SPEC_ALL) ths in
save_thm(`distinct`, LIST_CONJ (ths @ rths));;
% ===================================================================== %
% Definition of the operational semantics. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% The semantics of commands will be given by an evaluation relation %
% %
% EVAL : comm -> state -> state -> bool %
% %
% defined inductively such that %
% %
% EVAL C s1 s2 %
% %
% holds exactly when executing the command C in the initial state s1 %
% terminates in the final state s2. The evaluation relation is defined %
% inductively by the set of rules shown below. %
% --------------------------------------------------------------------- %
let rules,ind =
let EVAL = "EVAL : comm -> state -> state -> bool" in
new_inductive_definition false `trans`
("^EVAL C s1 s2", [])
[ [
% ------------------------------------------------- % ],
"^EVAL skip s s" ;
[
% ------------------------------------------------- % ],
"^EVAL (V := E) s (\v. (v=V) => E s | s v)" ;
[ "^EVAL C1 s1 s2"; "^EVAL C2 s2 s3"
% ------------------------------------------------- % ],
"^EVAL (C1;C2) s1 s3" ;
[ "^EVAL C1 s1 s2" ;
% ------------------------------------------------- % "(B:bexp) s1"],
"^EVAL (if B C1 C2) s1 s2" ;
[ "^EVAL C2 s1 s2" ;
% ------------------------------------------------- % "~((B:bexp) s1)"],
"^EVAL (if B C1 C2) s1 s2" ;
[
% ------------------------------------------------- % "~((B:bexp) s)"],
"^EVAL (while B C) s s" ;
[ "^EVAL C s1 s2"; "^EVAL (while B C) s2 s3" ;
% ------------------------------------------------- % "(B:bexp) s1"],
"^EVAL (while B C) s1 s3" ];;
% --------------------------------------------------------------------- %
% Stronger form of rule induction. %
% --------------------------------------------------------------------- %
let sind = derive_strong_induction(rules,ind);;
% --------------------------------------------------------------------- %
% Construct the standard rule induction tactic for EVAL. This uses %
% the `weaker' form of the rule induction theorem, and both premisses %
% and side conditions are simply assumed (in stripped form). This %
% served for many proofs, but when a more elaborate treatment of %
% premisses or side conditions is needed, or when the stronger form of %
% induction is required, a specialized rule induction tactic is %
% constructed on the fly. %
% --------------------------------------------------------------------- %
let RULE_INDUCT_TAC =
RULE_INDUCT_THEN ind STRIP_ASSUME_TAC STRIP_ASSUME_TAC;;
% --------------------------------------------------------------------- %
% Prove the case analysis theorem for the evaluation rules. %
% --------------------------------------------------------------------- %
let ecases = derive_cases_thm (rules,ind);;
% ===================================================================== %
% Derivation of backwards case analysis theorems for each rule. %
% %
% These theorems are consequences of the general case analysis theorem %
% proved above. They are used to justify formal reasoning in which the %
% rules are driven `backwards', inferring premisses from conclusions. %
% One infers from the assertion that: %
% %
% 1: EVAL C s1 s2 %
% %
% for a specific command C (e.g. for C = "skip") that the corresponding %
% instance of the premisses of the rule(s) for C must also hold, since %
% (1) can hold only by virtue of being derivable by the rule for C. %
% This kind of reasoning occurs frequently in proofs about operational %
% semantics. Formally, one must use the fact that the logical %
% representations of syntactically different commands are distinct, a %
% fact automatically proved by the recursive types package. %
% ===================================================================== %
% --------------------------------------------------------------------- %
% The following rule is used to simplify special cases of the general %
% exhaustive case analysis theorem, which looks something like: %
% %
% |- !C s1 s2. %
% EVAL C s1 s2 = %
% (C = skip) ... \/ %
% (?V E. (C = V := E) ...) \/ %
% (?C1 C2 s2'. (C = C1 ; C2) ...) \/ %
% (?C1 B C2. (C = if B C1 C2) /\ B s1 ...) \/ %
% (?C2 B C1. (C = if B C1 C2) /\ ~B s1 ...) \/ %
% (?B C'. (C = while B C') /\ ~B s1 ... ) \/ %
% (?C' B s2'. (C = while B C') /\ B s1 ...) %
% %
% If C is specialized to some particular syntactic form, for example %
% to "C1;C2", then most of the disjuncts in the conclusion become %
% just false because of the syntactic inequality of different commands. %
% These false can be simplified away by rewriting with the theorem %
% distinct. The disjuncts that match the command to which C is %
% specialized can also be simplified by rewriting with const11. This %
% changes equalities between similar commands, for example: %
% %
% (C1 ; C2) = (C1' ; C2') %
% %
% to equalities between their coresponding constitutents: %
% %
% C1 = C1' /\ C2 = C2' %
% %
% These can then generally be used for substitution. %
% --------------------------------------------------------------------- %
let SIMPLIFY = REWRITE_RULE (distinct . const11);;
% --------------------------------------------------------------------- %
% CASE_TAC : this is applicable to goals of the form: %
% %
% TRANS C s1 s2 ==> P %
% %
% When applied to such a goal, the antecedant is matched to the general %
% case analysis theorem and a corresponding instance of its conclusion %
% is obtained. This is simplified using the SIMPLIFY rule described %
% above and the result is assumed in stripped form. Given this tactic, %
% the sequence of theorems given below are simple to prove. The proofs %
% are fairly uniform; with a careful analysis of the regularities, one %
% should be able to devise an automatic proof procedure for deriving %
% sets of theorems of this type. %
% --------------------------------------------------------------------- %
let CASE_TAC = DISCH_THEN
(STRIP_ASSUME_TAC o SIMPLIFY o ONCE_REWRITE_RULE[ecases]);;
% --------------------------------------------------------------------- %
% SKIP_THM : EVAL skip s1 s2 is provable only by the skip rule, which %
% requires that s1 and s2 be the same state. %
% --------------------------------------------------------------------- %
let SKIP_THM =
prove_thm
(`SKIP_THM`,
"!s1 s2. EVAL skip s1 s2 = (s1 = s2)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[CASE_TAC THEN ASM_REWRITE_TAC [];
DISCH_THEN SUBST1_TAC THEN MAP_FIRST RULE_TAC rules]);;
% --------------------------------------------------------------------- %
% ASSIGN_THM : EVAL (V := E) s1 s2 is provable only by the assignment %
% rule, which requires that s2 be the state s1 with V updated to E. %
% --------------------------------------------------------------------- %
let ASSIGN_THM =
prove_thm
(`ASSIGN_THM`,
"!s1 s2 V E. EVAL (V := E) s1 s2 = ((\v. ((v=V) => E s1 | s1 v)) = s2)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[CASE_TAC THEN ASM_REWRITE_TAC [];
DISCH_THEN (SUBST1_TAC o SYM) THEN MAP_FIRST RULE_TAC rules]);;
% --------------------------------------------------------------------- %
% SEQ_THM : EVAL (C1;C2) s1 s2 is provable only by the sequencing rule, %
% which requires that some intermediate state s3 exists such that C1 %
% in state s1 terminates in s3 and C3 in s3 terminates in s2. %
% --------------------------------------------------------------------- %
let SEQ_THM =
prove_thm
(`SEQ_THM`,
"!s1 s2 C1 C2.EVAL (C1;C2) s1 s2 = (?s3. EVAL C1 s1 s3 /\ EVAL C2 s3 s2)",
REPEAT GEN_TAC THEN EQ_TAC THENL
[CASE_TAC THEN EXISTS_TAC "s2':state" THEN ASM_REWRITE_TAC [];
DISCH_THEN \th. MAP_FIRST RULE_TAC rules THEN MATCH_ACCEPT_TAC th]);;
% --------------------------------------------------------------------- %
% IF_T_THM : if B(s1) is true, then EVAL (if B C2 C2) s1 s2 is provable %
% only by the first conditional rule, which requires that C1 when %
% evaluated in s1 terminates in s2. %
% --------------------------------------------------------------------- %
let IF_T_THM =
prove_thm
(`IF_T_THM`,
"!s1 s2 B C1 C2. B s1 ==> (EVAL (if B C1 C2) s1 s2 = EVAL C1 s1 s2)",
REPEAT STRIP_TAC THEN EQ_TAC THENL
[CASE_TAC THEN EVERY_ASSUM (TRY o SUBST_ALL_TAC) THENL
[FIRST_ASSUM ACCEPT_TAC; RES_TAC];
DISCH_TAC THEN MAP_FIRST RULE_TAC rules THEN FIRST_ASSUM ACCEPT_TAC]);;
% --------------------------------------------------------------------- %
% IF_F_THM : if B(s1) is false, then EVAL (if B C1 C2) s1 s2 is %
% provable only by the second conditional rule, which requires that C2 %
% when evaluated in s1 terminates in s2. %
% --------------------------------------------------------------------- %
let IF_F_THM =
prove_thm
(`IF_F_THM`,
"!s1 s2 B C1 C2. ~B s1 ==> (EVAL (if B C1 C2) s1 s2 = EVAL C2 s1 s2)",
REPEAT STRIP_TAC THEN EQ_TAC THENL
[CASE_TAC THEN EVERY_ASSUM (TRY o SUBST_ALL_TAC) THENL
[RES_TAC; FIRST_ASSUM ACCEPT_TAC];
DISCH_TAC THEN MAP_FIRST RULE_TAC (rev rules) THEN
FIRST_ASSUM ACCEPT_TAC]);;
% --------------------------------------------------------------------- %
% WHILE_T_THM : if B(s1) is true, then EVAL (while B C) s1 s2 is %
% provable only by the corresponding while rule, which requires that %
% there is an intermediate state s3 such that C in state s1 terminates %
% in s3, and while B do C in state s3 terminates in s2. %
% --------------------------------------------------------------------- %
let WHILE_T_THM =
prove_thm
(`WHILE_T_THM`,
"!s1 s2 B C.
B s1 ==> (EVAL (while B C) s1 s2 =
(?s3. EVAL C s1 s3 /\ EVAL (while B C) s3 s2))",
REPEAT STRIP_TAC THEN EQ_TAC THENL
[CASE_TAC THEN EVERY_ASSUM (TRY o SUBST_ALL_TAC) THENL
[RES_TAC;
EXISTS_TAC "s2':state" THEN CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC];
STRIP_TAC THEN MAP_FIRST RULE_TAC (rev rules) THEN
EXISTS_TAC "s3:state" THEN
REPEAT CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC]);;
% --------------------------------------------------------------------- %
% WHILE_F_THM : if B(s1) is false, then EVAL (while B C) s1 s2 is %
% provable only by the corresponding while rule, which requires that %
% s2 equals the original state s1 %
% --------------------------------------------------------------------- %
let WHILE_F_THM =
prove_thm
(`WHILE_F_THM`,
"!s1 s2 B C. ~B s1 ==> (EVAL (while B C) s1 s2 = (s1 = s2))",
REPEAT STRIP_TAC THEN EQ_TAC THENL
[CASE_TAC THENL
[CONV_TAC SYM_CONV THEN FIRST_ASSUM ACCEPT_TAC;
EVERY_ASSUM (TRY o SUBST_ALL_TAC) THEN RES_TAC];
DISCH_THEN (SUBST1_TAC o SYM) THEN MAP_FIRST RULE_TAC rules THEN
FIRST_ASSUM ACCEPT_TAC]);;
% ===================================================================== %
% THEOREM: the operational semantics is deterministic. %
% %
% Given the suite of theorems proved above, this proof is relatively %
% strightforward. The standard proof is by structural induction on C, %
% but the proof by rule induction given below gives rise to a slightly %
% easier analysis in each case of the induction. There are, however, %
% more cases---one per rule, rather than one per constructor. %
% ===================================================================== %
let DETERMINISTIC =
prove_thm
(`DETERMINISTIC`,
"!C st1 st2. EVAL C st1 st2 ==> !st3. EVAL C st1 st3 ==> (st2 = st3)",
RULE_INDUCT_TAC THEN REPEAT GEN_TAC THENL
[REWRITE_TAC [SKIP_THM];
REWRITE_TAC [ASSIGN_THM];
PURE_ONCE_REWRITE_TAC [SEQ_THM] THEN STRIP_TAC THEN
FIRST_ASSUM MATCH_MP_TAC THEN RES_TAC THEN ASM_REWRITE_TAC [];
IMP_RES_TAC IF_T_THM THEN ASM_REWRITE_TAC [];
IMP_RES_TAC IF_F_THM THEN ASM_REWRITE_TAC [];
IMP_RES_TAC WHILE_F_THM THEN ASM_REWRITE_TAC [];
IMP_RES_THEN (\th. PURE_ONCE_REWRITE_TAC [th]) WHILE_T_THM THEN
STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC []]);;
% ===================================================================== %
% Definition of partial correctness and derivation of proof rules. %
% ===================================================================== %
let SPEC_DEF =
new_definition
(`SPEC_DEF`,
"SPEC P C Q = !s1 s2. (P s1 /\ EVAL C s1 s2) ==> Q s2");;
% --------------------------------------------------------------------- %
% Proof of the while rule in Hoare logic. %
% --------------------------------------------------------------------- %
% --------------------------------------------------------------------- %
% In the following proofs, theorems of the form: %
% %
% |- !y1...yn. (C x1 ... xn = C y1 ... yn) ==> tm[y1,...,yn] %
% %
% frequently arise, where C is one of the constructors of the data type %
% of commands. The following theorem-tactic simplifies such theorems %
% by specializing yi to xi and then removing the resulting trivially %
% true antecedent. The result is: %
% %
% |- tm[x1,...,xn/y1,...,yn] %
% %
% which is passed to the theorem continuation function. The tactic just %
% discards theorems not of the form shown above. For the while proof %
% given below, this has the effect of thinning out useless induction %
% hypotheses of the form: %
% %
% |- !B' C'. (C = while B' C') ==> tm[B',C'] %
% %
% These are just discarded. %
% --------------------------------------------------------------------- %
let REFL_MP_THEN ttac th =
(let tm = lhs(fst(dest_imp(snd(strip_forall(concl th))))) in
ttac (MATCH_MP th (REFL tm))) ? ALL_TAC;;
% --------------------------------------------------------------------- %
% The following lemma states that the condition B in while B C must be %
% false upon termination of a while loop. The proof is by a rule %
% induction specialized to the while rule cases. We show that the set %
% %
% {(while B C,s1,s2) | ~(B s2)} U {(C,s1,s2) | ~(C = while B' C')} %
% %
% is closed under the rules for the evaluation relation. Note that this %
% formulation illustrates a general way of proving a property of some %
% specific class of commands by rule induction. One takes the union of %
% the set containing triples with the desired property and the set of %
% all other triples whose command component is NOT an element of the %
% class of commands of interest. %
% %
% The proof is trivial for all but the two while rules, since this set %
% contains all triples (C,s1,s2) for which C is not a while command. %
% The subgoals corresponding to these cases are vacuously true, since %
% they are implications with antecedents of the form (C = while B' C'), %
% where C is a command syntactically distinct from any while command. %
% %
% Showing that the above set is closed under the two while rules is %
% likewise trivial. For the while axiom, we get ~(B s2) immediately %
% from the side condition. For the other while rule, the statement to %
% prove is just one of the induction hypotheses; since RULE_INDUCT_TAC %
% uses STRIP_ASSUME_TAC on this hypothesis, this subgoal is solved %
% immediately. %
% --------------------------------------------------------------------- %
let WHILE_LEMMA1 =
TAC_PROOF
(([], "!C s1 s2. EVAL C s1 s2 ==> !B' C'. (C = while B' C') ==> ~(B' s2)"),
RULE_INDUCT_TAC THEN REWRITE_TAC (distinct . const11) THEN
REPEAT GEN_TAC THEN DISCH_THEN (STRIP_THM_THEN SUBST_ALL_TAC) THEN
FIRST_ASSUM ACCEPT_TAC);;
% --------------------------------------------------------------------- %
% The second lemma deals with the invariant part of the Hoare proof %
% rule for while commands. We show that if P is an invariant of C, %
% then it is also an invariant of while B C. The proof is essentially %
% an induction on the number of applications of the evaluation rule for %
% while commands. This is expressed as a rule induction, which %
% establishes that the set: %
% %
% {(while B C,s1,s2) | P invariant of C ==> (P s1 ==> P s2)} %
% %
% is closed under the transition rules. As in lemma 1, the rules for %
% other kinds of commands are dealt with by taking the union of this %
% set with %
% %
% {(C,s1,s2) | ~(C = while B' C')} %
% %
% Closure under evaluation rules other than the two rules for while is %
% therefore trivial, as outlined in the comments to lemma 1 above. %
% %
% The proof in fact proceeds by strong rule induction. With ordinary %
% rule induction, one obtains hypotheses that are too weak to imply the %
% desired conclusion in the step case of the while rule. To see why, %
% try replacing strong by weak induction in the tactic proof below. %
% %
% Note that REFL_MP_THEN is used to simplify the induction hypotheses %
% before adding them to the assumption list. This avoids having the %
% assumptions in an awkward form (try using ASSUME_TAC instead). Note %
% also that in the case of the while axiom, the states s1 and s2 are %
% identical, so the corresponding subgoal is trivial and is solved by %
% the rewriting step. %
% --------------------------------------------------------------------- %
let WHILE_LEMMA2 =
TAC_PROOF
(([], "!C s1 s2. EVAL C s1 s2
==>
!B' C'. (C = while B' C') ==>
(!s1 s2. P s1 /\ B' s1 /\ EVAL C' s1 s2 ==> P s2) ==>
(P s1 ==> P s2)"),
RULE_INDUCT_THEN sind (REFL_MP_THEN ASSUME_TAC) ASSUME_TAC THEN
REWRITE_TAC (distinct . const11) THEN REPEAT GEN_TAC THEN
DISCH_THEN (STRIP_THM_THEN SUBST_ALL_TAC) THEN
REPEAT STRIP_TAC THEN RES_TAC);;
% --------------------------------------------------------------------- %
% The proof rule for while commands in Hoare logic is: %
% %
% |- {P /\ B} C {P} %
% ---------------------- %
% |- {P} C {P /\ ~B} %
% %
% Given the two lemmas proved above, it is trivial to prove this rule. %
% The antecedent of the rule is just the assumption of invariance of P %
% for C which occurs in lemma 2. Note that REFL_MP_THEN is used to %
% simplify the conclusions of the lemmas after one resolution step. %
% --------------------------------------------------------------------- %
let WHILE =
prove_thm
(`WHILE`,
"!P C. SPEC (\s. P s /\ (B s)) C P ==>
SPEC P (while B C) (\s. P s /\ ~B s)",
PURE_ONCE_REWRITE_TAC [SPEC_DEF] THEN
CONV_TAC (ONCE_DEPTH_CONV BETA_CONV) THEN
PURE_ONCE_REWRITE_TAC [SYM(SPEC_ALL CONJ_ASSOC)] THEN
REPEAT STRIP_TAC THENL
[IMP_RES_THEN (REFL_MP_THEN IMP_RES_TAC) WHILE_LEMMA2;
IMP_RES_THEN (REFL_MP_THEN IMP_RES_TAC) WHILE_LEMMA1]);;
% --------------------------------------------------------------------- %
% End of example. %
% --------------------------------------------------------------------- %
close_theory();;
quit();;
|