/usr/share/hol88-2.02.19940316/contrib/Tarski/recbool.ml is in hol88-contrib-source 2.02.19940316-14.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | %----- -*- Emacs Mode: fundamental -*- -------------------------------
File: recbool.ml
Authors: (c) Flemming Andersen & Kim Dam Petersen
Date: 26/7-1991.
Last Updated: 29/10-1992.
Description:
Defines operations for constructing recursive predicates.
Dependicies:
tarski
Usage:
loadt`recbool`;;
---------------------------------------------------------------------%
loadt`curry`;;
loadt`tarski`;;
let FORALL_PAIR_EQ = TAC_PROOF(([],
"(!P. (!p. P p) = (!(x:*) (y:**). P (x,y)))"),
GEN_TAC THEN
EQ_TAC THEN REPEAT STRIP_TAC THENL
[ ASM_REWRITE_TAC[]
; POP_ASSUM(\thm.
ACCEPT_TAC (ONCE_REWRITE_RULE[PAIR]
(SPECL["FST(p:*#**)";"SND(p:*#**)"]thm)))
]);;
%<
FORALL_PAIR_CONV "(x1:*,..,xn:*n)" "!(p:*#...#*n). P p" -->
|- (!(p:*#...#*n). P p) = (!(x1:*) ... (xn:*n). P(x1,...,xn))
>%
let FORALL_PAIR_CONV xp tm =
let
(p,Pp) = dest_forall tm and
xv = strip_pair xp
in letrec pairs xp =
if is_pair xp then
((\p. "FST ^p") .
(map (\fn p. fn "SND ^p") (pairs (snd(dest_pair xp)))))
else
[\p. p]
in let
thm1 = DISCH_ALL(GENL xv (SPEC xp (ASSUME tm)))
in let
thm2 = DISCH_ALL (PURE_REWRITE_RULE[PAIR](GEN p (SPECL
(map (\fn. fn p) (pairs xp))
(ASSUME (list_mk_forall (xv, (subst[(xp,p)]Pp)))))))
in
if is_pair xp then
IMP_ANTISYM_RULE thm1 thm2
else
failwith `FORALL_PAIR_CONV`;;
%<
EquationToAbstraction "!x1 ... xn. f (x1,...,xn) = t"
--> "\f (x1,...,xn). t"
>%
let EquationToAbstraction =
set_fail_prefix `EquationToAbstraction`
(\tm.
let
(fxv, t) = dest_eq (snd(strip_forall tm))
in let
(f,xv) = strip_comb fxv
in
mk_abs (f, list_mk_uncurry_abs (xv,t)));;
%<
PURE_CONV conv tm --> if conv tm = |- tm = tm then fail
>%
let PURE_CONV conv =
set_fail_prefix `PURE_CONV`
(\tm.
let thm = conv tm
in
if aconv tm (concl thm) then fail`identity conversion`
else thm);;
%<
MonoThmToTactic mono_thm --> Initial tactic
>%
let MonoThmToTactic eqn =
let
xp = snd(dest_comb(fst(dest_eq(eqn))))
in
(REWRITE_TAC[IsMono;Leq] THEN
BETA_TAC THEN
CONV_TAC(DEPTH_CONV (FORALL_PAIR_CONV xp)) THEN
UNCURRY_BETA_TAC);;
%<
CurryEquationToAbstraction "!x1 ... xn. f x1 ... xn = t"
--> "\f'. (\f (x1,...,xn). t)(\x1 ... xn. g(x1,...,xn))"
>%
let CurryEquationToAbstraction =
set_fail_prefix `NewEquationToAbstraction`
(\tm.
let (fxv, t) = dest_eq (snd(strip_forall tm))
in let (f,xv) = strip_comb fxv
in let tpg = type_of(list_mk_pair xv)
in let g = variant (frees t)
(mk_var(fst(dest_var f),
mk_type(`fun`,[tpg;":bool"])))
in let fabs = mk_abs(f, mk_uncurry_abs (list_mk_pair xv,t)) and
gabs = list_mk_abs(xv, mk_comb(g,list_mk_pair xv))
in
mk_abs (g, mk_comb(fabs, gabs)));;
%<
set_monotonic_goal "f (x1,...,xn) = Body[f,x1,...,xn]" -->
set_goal([],"IsMono (\f. \(x1,...,xn). Body[f,x1,...,xn])")
>%
let set_monotonic_goal =
set_fail_prefix `set_monotonic_goal`
(\tm.
let
tm' = "IsMono ^(EquationToAbstraction tm)"
in
(set_goal([],tm');
e(MonoThmToTactic tm)));;
%< e(REWRITE_TAC[IsMono;Leq])));; >%
%<
curry_set_monotonic_goal "f (x1,...,xn) = Body[f,x1,...,xn]" -->
curry_set_goal([],"IsMono (\f. \(x1,...,xn). Body[f,x1,...,xn])")
>%
let curry_set_monotonic_goal =
set_fail_prefix `curry_set_monotonic_goal`
(\tm.
let
tm' = "IsMono ^(CurryEquationToAbstraction tm)" and
xp = list_mk_pair(snd(strip_comb(fst(dest_eq (snd(strip_forall tm))))))
in
(set_goal([],tm');
e(REWRITE_TAC[IsMono;Leq] THEN
BETA_TAC THEN
BETA_TAC THEN
CONV_TAC (DEPTH_CONV UNCURRY_BETA_CONV) THEN
CONV_TAC (DEPTH_CONV (FORALL_PAIR_CONV xp)) THEN
CONV_TAC (DEPTH_CONV UNCURRY_BETA_CONV) )));;
%<
prove_monotonic_thm "f (x1,...,xn) = Body[f,x1,...,xn]" tactic -->
|- IsMono (\f. \(x1,...,xn). Body[f,x1,...,xn])
>%
let prove_monotonic_thm =
set_fail_prefix `prove_monotonic_thm`
(\ (str,tm,tactic).
let
tm' = "IsMono ^(EquationToAbstraction tm)"
in
(prove_thm(str, tm', (MonoThmToTactic tm THEN tactic))));;
%<
new_min_recursive_relation_definition name
|- IsMono (\f. \(x1,...,xn). Body[f,x1,...,xn]) -->
|- f = MinFix (\f. \(x1,...,xn). Body[f,x1,...,xn])
>%
let new_min_recursive_relation_definition =
set_fail_prefix `new_min_recursive_relation_definition`
(\(name,mono).
let
(r,a) = dest_abs(snd(dest_comb(snd(dest_thm mono))))
in let
b = mk_abs (r,a)
in
new_definition (name, "^r = MinFix ^b"));;
%<
new_max_recursive_relation_definition name
|- IsMono (\f. \(x1,...,xn). Body[f,x1,...,xn]) -->
|- f = MaxFix (\f. \(x1,...,xn). Body[f,x1,...,xn])
>%
let new_max_recursive_relation_definition =
set_fail_prefix `new_max_recursive_relation_definition`
(\(name,mono).
let
(r,a) = dest_abs(snd(dest_comb(snd(dest_thm mono))))
in let
b = mk_abs (r,a)
in
new_definition (name, "^r = MaxFix ^b"));;
%<
prove_fix_thm
fail_str
FixEQThm
name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_fix_thm fail_str FixEQThm =
set_fail_prefix fail_str
(\ (name,def,mono).
let
thm= BETA_RULE(ONCE_REWRITE_RULE[SYM def](MATCH_MP FixEQThm mono))
in let
x = fst(dest_uncurry_abs(fst(dest_eq(snd(dest_thm thm)))))
in let
thm = AP_THM thm x
in letrec
curry_beta_rule (x,thm) =
if is_pair x then
curry_beta_rule
(snd(dest_pair x),
BETA_RULE(PURE_ONCE_REWRITE_RULE[UNCURRY_DEF]thm))
else
BETA_RULE(PURE_ONCE_REWRITE_RULE[UNCURRY_DEF]thm)
in
save_thm(name, GEN_ALL(SYM(curry_beta_rule(x,thm)))));;
%<
prove_min_fix_thm
name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_min_fix_thm =
prove_fix_thm `prove_min_fix_thm` MinFixEQThm;;
%<
prove_max_fix_thm
name
(|- f = MaxFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_max_fix_thm =
prove_fix_thm `prove_max_fix_thm` MaxFixEQThm;;
%<
prove_min_min_thm name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !R. ((\ (x1,...,xn). Body[R]) = R) ==>
(!x1 ... xn. f (x1,...,xn) = R(x1,...,xn))
>%
let prove_min_min_thm =
set_fail_prefix `prove_min_min_thm`
(\ (name,def,mono).
let Fn = el 1 (snd (strip_comb (concl mono))) in
let
thm1 = BETA_RULE(ONCE_REWRITE_RULE[SYM def]
(ISPEC Fn Min_MinFixThm))
in let
thm2 = ONCE_REWRITE_RULE[Leq]thm1
in let
x = el 2 (fst(strip_uncurry_abs
(snd(dest_comb(snd(dest_eq(snd(dest_thm def))))))))
in letrec rule (x,thm) =
if is_pair x then
rule(snd(dest_pair x),
BETA_RULE(ONCE_REWRITE_RULE[UNCURRY_DEF]
(CONV_RULE (DEPTH_CONV (FORALL_PAIR_CONV x)) thm)))
else
thm
in
save_thm(name, rule(x,thm2)));;
%<
prove_max_max_thm name
(|- f = MaxFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !R. ((\ (x1,...,xn). Body[R]) = R) ==>
(!x1 ... xn. f (x1,...,xn) = R(x1,...,xn))
>%
let prove_max_max_thm =
set_fail_prefix `prove_max_max_thm`
(\ (name,def,mono).
let Fn = el 1 (snd (strip_comb (concl mono))) in
let
thm1 = BETA_RULE(ONCE_REWRITE_RULE[SYM def]
(ISPEC Fn Max_MaxFixThm))
in let
thm2 = ONCE_REWRITE_RULE[Leq]thm1
in let
x = el 2 (fst(strip_uncurry_abs
(snd(dest_comb(snd(dest_eq(snd(dest_thm def))))))))
in letrec rule (x,thm) =
if is_pair x then
rule(snd(dest_pair x),
BETA_RULE(ONCE_REWRITE_RULE[UNCURRY_DEF]
(CONV_RULE (DEPTH_CONV (FORALL_PAIR_CONV x)) thm)))
else
thm
in
save_thm(name, rule(x,thm2)));;
let OR_IMP = TAC_PROOF(([],
"!t1 t2 t. ((t1 \/ t2) ==> t) = ((t1 ==> t) /\ (t2 ==> t))"),
REPEAT GEN_TAC THEN
EQ_TAC THEN REPEAT STRIP_TAC THEN
RES_TAC);;
%<
FORALL_CONJ_CONV "!x1 ... xn. P1 /\ ... /\ Pm" -->
|- (!x1...xn. P1 /\ ... /\ Pm) =
(!x1...xk1. P1) /\ ... /\ (!x1...xkm. Pm)
, where x1...xki = intersect [x1...xn] (frees Pi)
>%
let FORALL_CONJ_CONV tm =
letrec
conjs tm =
if can dest_conj tm then
(let (x,tm') = dest_conj tm in (x.(conjs tm')))
else
[tm]
in let
(xv,PC) = strip_forall tm
in let
Pv = conjs PC
in if (length Pv) < 2 or (length xv) < 1 then
failwith `FORALL_CONJ_CONV` else
let
fPv = map (\tm. intersect xv (frees tm)) Pv
in let
thm1 = LIST_CONJ (map
(\ (fv,thm). GENL fv thm)
(combine (fPv,
(CONJ_LIST (length Pv) (SPECL xv (ASSUME tm)))))) and
thm2 = GENL xv (LIST_CONJ(map (\ (fv,thm). SPECL fv thm)
(combine (fPv,
(CONJ_LIST (length Pv) (ASSUME (list_mk_conj
(map (\ (fv,tm). list_mk_forall(fv,tm)) (combine (fPv,Pv))))))))))
in
IMP_ANTISYM_RULE (DISCH_ALL thm1) (DISCH_ALL thm2);;
%<
prove_intro_thm
fail_str
IntroThm
name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_intro_thm fail_str IntroThm =
set_fail_prefix fail_str
(\ (name,def,mono).
let Fn = el 1 (snd (strip_comb (concl mono))) in
let
thm1 = ONCE_REWRITE_RULE [mono] (BETA_RULE(ONCE_REWRITE_RULE[SYM def]
(ISPEC Fn IntroThm)))
in let
thm2 = REWRITE_RULE[Leq]thm1
in let
x = el 2 (fst(strip_uncurry_abs
(snd(dest_comb(snd(dest_eq(snd(dest_thm def))))))))
in letrec rule (x,thm) =
if is_pair x then
rule(snd(dest_pair x),
BETA_RULE(ONCE_REWRITE_RULE[UNCURRY_DEF]
(CONV_RULE (DEPTH_CONV (FORALL_PAIR_CONV x)) thm)))
else
thm
in let
thm3 = PURE_REWRITE_RULE[OR_IMP](rule(x,thm2))
in let
thm4 = CONV_RULE (DEPTH_CONV FORALL_CONJ_CONV) thm3
in let
thm5 = BETA_RULE (REWRITE_RULE[And;Or]thm4)
in
save_thm(name, thm5));;
%<
prove_min_intro_thm
name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_min_intro_thm =
prove_intro_thm `prove_min_intro_thm` MinFixIntroductThm;;
%<
prove_extended_min_intro_thm
name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_extended_min_intro_thm =
prove_intro_thm `prove_extended_min_intro_thm` ExtMinFixIntroductThm;;
%<
prove_max_intro_thm
name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_max_intro_thm =
prove_intro_thm `prove_max_intro_thm` MaxFixIntroductThm;;
%<
prove_extended_max_intro_thm
name
(|- f = MinFix (\f. \ (x1,...,xn). Body[f,x1,...,xn]))
(|- IsMono (\f...))
|- !x1 ... xn. f (x1,...,xn) = Body[f,x1,...,xn]
>%
let prove_extended_max_intro_thm =
prove_intro_thm `prove_extended_max_intro_thm` ExtMaxFixIntroductThm;;
|