This file is indexed.

/usr/share/hol88-2.02.19940316/contrib/SECD/when.ml is in hol88-contrib-source 2.02.19940316-14.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
%------------------------------------------------------------------------
| FILE		: when.ml
| 
| DESCRIPTION	: Defines the predicates `Next`, `Inf`, `IsTimeOf`
|		  and `TimeOf` and derives several major theorems
|		  which provide a basis for temporal abstraction.
|
|		  These predicates and theorems are taken from
|		  T.Melham's paper, "Abstraction Mechanisms for
|		  Hardware Verification", Hardware Verification
|		  Workshop, University of Calgary, January 1987.
|
| Modified:
| 06.08.91 - BtG - updated to HOL2                                
------------------------------------------------------------------------%

new_theory `when`;;

let Next = new_definition
  (`Next`, 
   "Next t1 t2 f  =  (t1<t2)  /\
                     ( f t2)  /\
                 !t. (t1<t )  /\  (t<t2)  ==>  ~f t"
  );;

let IsTimeOf = new_prim_rec_definition
  (`IsTimeOf`,
  "(IsTimeOf      0  f t  =  f t  /\  !t'.  (t'<t) ==> ~f t') /\
   (IsTimeOf (SUC n) f t  =  ?t'.  IsTimeOf n f t' /\
                                   Next t' t f              )"
  );;

let TimeOf = new_definition
  (`TimeOf`,
   "TimeOf f n  =  @t. IsTimeOf n f t"
  );;

let when = new_infix_definition
  (`when`,
   "when (s:num->*) (p:num->bool)  =  \n. s (TimeOf p n)"
  );;

let Inf = new_definition
  (`Inf`,
   "Inf f =  !t. ?t'.  (t<t') /\ (f t')"
  );;

%------------------------------------------------------------------------
| Define "LEAST P" to represent that P has a smallest element.
------------------------------------------------------------------------%
let LEAST = new_definition
  (`LEAST`,
   "LEAST P  =  ?x. P x  /\  (!y. y<x ==> ~P y)"
 );;

close_theory();;
timer true;;
%------------------------------------------------------------------------
|  The first assumption which matches the term  tm  is undischarged
|  (c) ISD--Aug.1989.
------------------------------------------------------------------------%
let MATCH_UNDISCH_TAC tm =
  (FIRST_ASSUM \th. UNDISCH_TAC (if  (can (match tm) (concl th))
                                then (concl th)
                                else fail
                               ) ? NO_TAC
  )
  ORELSE FAIL_TAC `MATCH_UNDISCH_TAC`;;

%------------------------------------------------------------------------
|   wop = |- !P.  (?n. P n)  ==>  LEAST P
------------------------------------------------------------------------%
let wop = prove_thm
  (`wop`,
   "!P. (?n. P n)  ==>  LEAST P",
   REWRITE_TAC [WOP; LEAST]
  );;

%------------------------------------------------------------------------
|   Inf_EXISTS = |- !f.  Inf f  ==>  ?n.  f n
------------------------------------------------------------------------%
let Inf_EXISTS = prove_thm
  (`Inf_EXISTS`,
   "!f.  Inf f  ==>  ?n.  f n",
   PURE_REWRITE_TAC [Inf]
   THEN REPEAT STRIP_TAC
   THEN FIRST_ASSUM (STRIP_ASSUME_TAC  o (SPEC "t:num"))
   THEN EXISTS_TAC "t':num"
   THEN FIRST_ASSUM ACCEPT_TAC
  );;

%------------------------------------------------------------------------
|   Inf_LEAST = |- !f.  Inf f  ==>  LEAST f
------------------------------------------------------------------------%
let Inf_LEAST = prove_thm
  (`Inf_LEAST`,
   "!f.  Inf f  ==>  LEAST f",
   REPEAT STRIP_TAC
   THEN IMP_RES_TAC Inf_EXISTS
   THEN IMP_RES_TAC wop
  );;

%------------------------------------------------------------------------
|   Inf_Next = |- !f. Inf f ==> !t. f t ==> ?t'. Next t t' f
------------------------------------------------------------------------%
let Inf_Next = prove_thm
  (`Inf_Next`,
   "!f. Inf f ==> !t. f t ==> ?t'. Next t t' f",
   PURE_REWRITE_TAC [Inf; Next]
   THEN GEN_TAC
   THEN DISCH_THEN (\th0. X_GEN_TAC "v:num"
                          THEN STRIP_TAC
                          THEN X_CHOOSE_THEN "n:num" STRIP_ASSUME_TAC
                                   (MATCH_MP wop' (SPEC "v:num" th0)))
   THEN EXISTS_TAC "n:num"
   THEN ASM_REWRITE_TAC []
   THEN REPEAT STRIP_TAC
   THEN RES_THEN (STRIP_ASSUME_TAC o (REWRITE_RULE[DE_MORGAN_THM]))
   THEN RES_TAC
  )
where wop' =
 CONV_RULE (DEPTH_CONV BETA_CONV) (SPEC (( mk_abs
                                         o dest_exists
                                         o snd
                                         o dest_forall
                                         o rhs
                                         o concl
                                         o SPEC_ALL
                                         ) Inf)
                                        WOP
                                  );;

%------------------------------------------------------------------------
|   Next_ADD1 = |- !f t.  f (t+1)  ==>  Next t (t+1) f
------------------------------------------------------------------------%
let Next_ADD1 = prove_thm
  (`Next_ADD1`,
   "!f t.  f (t+1)  ==>  Next t (t+1) f",
   REWRITE_TAC [ Next
               ; SYM (SPEC_ALL ADD1)
               ; LESS_SUC_REFL
               ]
   THEN REPEAT STRIP_TAC
   THENL [ FIRST_ASSUM ACCEPT_TAC
         ; IMP_RES_THEN
             (STRIP_ASSUME_TAC o (CONV_RULE (ONCE_DEPTH_CONV SYM_CONV)))
             LESS_NOT_EQ
          THEN IMP_RES_TAC LESS_SUC_IMP
          THEN IMP_RES_TAC LESS_ANTISYM
         ]
  );;

%------------------------------------------------------------------------
|   Next_INCREAST = |- !f t1 t2.   ~f(t1+1)       ==>
|                               Next (t1+1) t2 f  ==>  Next t1 t2 f
------------------------------------------------------------------------%
let Next_INCREASE = prove_thm
  (`Next_INCREASE`,
   "!f t1 t2.   ~f(t1+1)       ==>
             Next (t1+1) t2 f  ==>  Next t1 t2 f",
   PURE_REWRITE_TAC [Next; SYM (SPEC_ALL ADD1)]
   THEN REPEAT STRIP_TAC
   THENL [ IMP_RES_TAC SUC_LESS
         ; FIRST_ASSUM ACCEPT_TAC
         ; MATCH_UNDISCH_TAC "~^(genvar":bool")"
           THEN IMP_RES_TAC (PURE_REWRITE_RULE [LESS_OR_EQ] LESS_OR)
           THEN RES_TAC
           THEN ASM_REWRITE_TAC []
        ]
  );;

%------------------------------------------------------------------------
|   Next_IDENTITY = |- !t1 t2 f.   Next t1 t2 f  ==>
|                           !t3.   Next t1 t3 f  ==>  (t2 = t3)
------------------------------------------------------------------------%
let Next_IDENTITY = prove_thm
  (`Next_IDENTITY`,
   "!t1 t2 f.   Next t1 t2 f  ==>
          !t3.  Next t1 t3 f  ==>  (t2 = t3)",
   PURE_REWRITE_TAC [Next]
   THEN REPEAT STRIP_TAC
   THEN PURE_ONCE_REWRITE_TAC
          [(SYM o SPEC_ALL o hd o CONJUNCTS) NOT_CLAUSES]
   THEN DISCH_TAC
   THEN STRIP_ASSUME_TAC
          (SPECL ["t2:num"; "t3:num"]
                 (REWRITE_RULE [DE_MORGAN_THM] LESS_ANTISYM))
   THENL [ ALL_TAC
         ; RULE_ASSUM_TAC (CONV_RULE (ONCE_DEPTH_CONV SYM_CONV))
         ]
   THEN IMP_RES_TAC LESS_CASES_IMP
   THEN RES_TAC
  );;

%------------------------------------------------------------------------
|   IsTimeOf_TRUE = |- !n f t.  IsTimeOf n f t ==> f t
------------------------------------------------------------------------%
let IsTimeOf_TRUE = prove_thm
  (`IsTimeOf_TRUE`,
   "!n f t.  IsTimeOf n f t ==> f t",
   INDUCT_TAC
   THEN REWRITE_TAC [IsTimeOf; Next]
   THEN REPEAT STRIP_TAC
  );;

%------------------------------------------------------------------------
|   IsTimeOf_EXISTS = |- !f. Inf f ==> !n. ?t. IsTimeOf n f t
------------------------------------------------------------------------%
let IsTimeOf_EXISTS = prove_thm
  (`IsTimeOf_EXISTS`,
   "!f. Inf f ==> !n. ?t. IsTimeOf n f t",
   GEN_TAC
   THEN DISCH_TAC
   THEN INDUCT_TAC
   THENL [ IMP_RES_TAC Inf_EXISTS
           THEN IMP_RES_THEN
                  (ASSUME_TAC o (PURE_REWRITE_RULE [LEAST]))
                  Inf_LEAST
           THEN ASM_REWRITE_TAC [IsTimeOf]
         ; FIRST_ASSUM STRIP_ASSUME_TAC
           THEN IMP_RES_TAC IsTimeOf_TRUE
           THEN IMP_RES_TAC Inf_Next
           THEN FIRST_ASSUM STRIP_ASSUME_TAC
           THEN REWRITE_TAC [IsTimeOf]
           THEN EXISTS_TAC "t':num"
           THEN EXISTS_TAC "t:num"
           THEN ASM_REWRITE_TAC []
         ]
  );;

%------------------------------------------------------------------------
|   TimeOf_DEFINED = |- !f. Inf f ==> (!n. IsTimeOf n f (TimeOf f n))
------------------------------------------------------------------------%
let TimeOf_DEFINED = save_thm
  (`TimeOf_DEFINED`, ( GEN_ALL
                     o DISCH_ALL
                     o GEN_ALL
                     o (REWRITE_RULE [SYM(SPEC_ALL TimeOf)])
                     o CONV_RULE (DEPTH_CONV BETA_CONV)
                     o (REWRITE_RULE [EXISTS_DEF])
                     o SPEC_ALL
                     o UNDISCH_ALL
                     o SPEC_ALL
                     ) IsTimeOf_EXISTS
  );;

%------------------------------------------------------------------------
|   TimeOf_TRUE = |- !f. Inf f ==> (!n. f (TimeOf f n))
------------------------------------------------------------------------%
let TimeOf_TRUE = save_thm
  (`TimeOf_TRUE`, ( GEN_ALL
                  o DISCH_ALL
                  o GEN_ALL
                  o (MATCH_MP IsTimeOf_TRUE)
                  o SPEC_ALL
                  o UNDISCH_ALL
                  o SPEC_ALL
                  ) TimeOf_DEFINED
  );;

%------------------------------------------------------------------------
|   IsTimeOf_IDENTITY =
|   |- !n f t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)
------------------------------------------------------------------------%
let IsTimeOf_IDENTITY = prove_thm
  (`IsTimeOf_IDENTITY`,
   "!n f t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)",
   INDUCT_TAC
   THEN PURE_REWRITE_TAC [IsTimeOf; Next]
   THEN X_GEN_TAC "f:num->bool"
   THEN X_GEN_TAC "t1:num"
   THEN X_GEN_TAC "t2:num"
   THEN REPEAT STRIP_TAC
   THENL [ ALL_TAC
         ; RES_THEN (TRY o IMP_RES_THEN
             (\th. EVERY_ASSUM
                     (STRIP_ASSUME_TAC o (\thm. SUBS [th] thm? thm))))
         ]
   THEN STRIP_ASSUME_TAC
          (SPECL ["t2:num"; "t1:num"]
                 (REWRITE_RULE [LESS_OR_EQ] LESS_CASES))
   THEN RES_TAC
  );;

%-----------------------------------------------------------------------
|   TimeOf_INCREASING =
|   |- !f. Inf f  ==>  !n. (TimeOf f n) < (TimeOf f (n+1))
-----------------------------------------------------------------------%
let TimeOf_INCREASING = prove_thm
  (`TimeOf_INCREASING`,
   "!f. Inf f ==> (!n. (TimeOf f n) < (TimeOf f(n+1)))",
   GEN_TAC
   THEN DISCH_TAC
   THEN X_GEN_TAC "n:num"
   THEN IMP_RES_TAC Inf_Next
   THEN IMP_RES_THEN (STRIP_ASSUME_TAC o (SPEC "n:num")) TimeOf_DEFINED
   THEN IMP_RES_THEN
         ( CHOOSE_THEN ( STRIP_ASSUME_TAC
                       o (\thl. CONJ (el 1 thl) (el 2 thl))
                       o CONJUNCTS
                       )
         o (REWRITE_RULE [IsTimeOf; Next])
         o (SPEC "SUC n")
         ) TimeOf_DEFINED
   THEN MATCH_UNDISCH_TAC "x<y"
   THEN IMP_RES_TAC IsTimeOf_TRUE
   THEN IMP_RES_n_THEN 2
         (\th. ONCE_REWRITE_TAC[ADD1; th]) IsTimeOf_IDENTITY
  );;

%-----------------------------------------------------------------------
|   TimeOf_INTERVAL =
|   |- !f. Inf f ==> 
|      !n t. (TimeOf f n)<t  /\  t<(TimeOf f (n+1)) ==> ~f t
-----------------------------------------------------------------------%
let TimeOf_INTERVAL = prove_thm
  (`TimeOf_INTERVAL`,
   "!f. Inf f ==> 
    !n t. (TimeOf f n)<t  /\  t<(TimeOf f (n+1)) ==> ~f t",
   GEN_TAC
   THEN DISCH_TAC
   THEN X_GEN_TAC "n:num"
   THEN X_GEN_TAC "t:num"
   THEN IMP_RES_TAC Inf_Next
   THEN IMP_RES_THEN (STRIP_ASSUME_TAC o (SPEC "n:num")) TimeOf_DEFINED
   THEN IMP_RES_THEN
         ( CHOOSE_THEN ( STRIP_ASSUME_TAC
                       o (\thl.  CONJ (el 1 thl) (SPEC "t:num" (el 4 thl)))
                       o CONJUNCTS
                       )
         o (REWRITE_RULE [IsTimeOf; Next])
         o (SPEC "SUC n")
         ) TimeOf_DEFINED
   THEN FIRST_ASSUM (UNDISCH_TAC o concl)
   THEN IMP_RES_TAC IsTimeOf_TRUE
   THEN IMP_RES_n_THEN 2  (\th. ONCE_REWRITE_TAC[ADD1; th])  IsTimeOf_IDENTITY
  );;

%-----------------------------------------------------------------------
|   TimeOf_Next = |- !f. Inf f ==> !n. Next (TimeOf f n) (TimeOf f (n+1)) f
-----------------------------------------------------------------------%
let TimeOf_Next = prove_thm
  (`TimeOf_Next`,
   "!f. Inf f ==> !n. Next (TimeOf f n) (TimeOf f (n+1)) f",
   PURE_REWRITE_TAC [Next]
   THEN REPEAT STRIP_TAC
   THENL [ IMP_RES_THEN (\th. REWRITE_TAC [th]) TimeOf_INCREASING
         ; IMP_RES_THEN (\th. REWRITE_TAC [th]) TimeOf_TRUE
         ; IMP_RES_TAC TimeOf_INTERVAL THEN RES_TAC
         ]
  );;

% ================================================================= %
% by BtG:                                                           %
%    a useful form of lemma once the definition of Next is          %
%    proven satisfied by the lower level definition.                %
% ================================================================= %
let TimeOf_Next_lemma = prove_thm
(`TimeOf_Next_lemma`,
 "Inf f ==>
    (!t. (Next (TimeOf f t) ((TimeOf f t) + x) f) ==>
         (TimeOf f (SUC t) = ((TimeOf f t) + x)))",
 STRIP_TAC
 THEN GEN_TAC
 THEN IMP_RES_THEN (ASSUME_TAC o (SPEC "t:num")) TimeOf_Next
 THEN STRIP_TAC
 THEN IMP_RES_TAC Next_IDENTITY
 THEN PURE_ONCE_REWRITE_TAC[ADD1]
 THEN FIRST_ASSUM ACCEPT_TAC
 );;

timer false;;
print_theory `when`;;
%<----------------------------------------------------------------------
The Theory when
Parents --  HOL     wop     
Constants --
  Next ":num -> (num -> ((num -> bool) -> bool))"
  IsTimeOf ":num -> ((num -> bool) -> (num -> bool))"
  TimeOf ":(num -> bool) -> (num -> num)"
  Inf ":(num -> bool) -> bool"     
Curried Infixes --
  when ":(num -> *) -> ((num -> bool) -> (num -> *))"     
Definitions --
  Next
    |- !t1 t2 f.
        Next t1 t2 f =
        t1 < t2 /\ f t2 /\ (!t. t1 < t /\ t < t2 ==> ~f t)
  IsTimeOf_DEF
    |- IsTimeOf =
       PRIM_REC
       (\f t. f t /\ (!t'. t' < t ==> ~f t'))
       (\g00004 n f t. ?t'. g00004 f t' /\ Next t' t f)
  TimeOf  |- !f n. TimeOf f n = (@t. IsTimeOf n f t)
  when    |- !s p. s when p = (\n. s(TimeOf p n))
  Inf     |- !f. Inf f = (!t. ?t'. t < t' /\ f t')
Theorems --
  IsTimeOf
    |- (!  f t. IsTimeOf 0 f t = f t /\ (!t'. t' < t ==> ~f t')) /\
       (!n f t. IsTimeOf(SUC n)f t = (?t'. IsTimeOf n f t' /\ Next t' t f))
  Inf_EXISTS  |- !f. Inf f ==> (?n. f n)
  Inf_LEAST   |- !f. Inf f ==> LEAST f
  Inf_Next    |- !f. Inf f ==> (!t. f t ==> (?t'. Next t t' f))
  Next_ADD1   |- !f t. f(t + 1) ==> Next t(t + 1)f
  Next_INCREASE
    |- !f t1 t2. ~f(t1 + 1) ==> Next(t1 + 1)t2 f ==> Next t1 t2 f
  Next_IDENTITY
    |- !t1 t2 f. Next t1 t2 f ==> (!t3. Next t1 t3 f ==> (t2 = t3))
  IsTimeOf_TRUE    |- !n f t. IsTimeOf n f t ==> f t
  IsTimeOf_EXISTS  |- !f. Inf f ==> (!n. ?t. IsTimeOf n f t)
  TimeOf_DEFINED   |- !f. Inf f ==> (!n. IsTimeOf n f(TimeOf f n))
  TimeOf_TRUE      |- !f. Inf f ==> (!n. f(TimeOf f n))
  IsTimeOf_IDENTITY
    |- !n f t1 t2. IsTimeOf n f t1 /\ IsTimeOf n f t2 ==> (t1 = t2)
  TimeOf_INCREASING
    |- !f. Inf f ==> (!n. (TimeOf f n) < (TimeOf f(n + 1)))
  TimeOf_INTERVAL
    |- !f. Inf f ==>
        (!n t. (TimeOf f n) < t /\ t < (TimeOf f(n + 1)) ==> ~f t)
  TimeOf_Next  |- !f. Inf f ==> (!n. Next(TimeOf f n)(TimeOf f(n + 1))f)
*************************************--------------------------------->%