/usr/share/gnu-smalltalk/kernel/LargeInt.st is in gnu-smalltalk-common 3.2.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 | "======================================================================
|
| LargeInteger hierarchy Method Definitions
|
|
======================================================================"
"======================================================================
|
| Copyright 1999, 2000, 2001, 2002, 2008, 2009 Free Software Foundation, Inc.
| Written by Paolo Bonzini.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
|
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
| General Public License for more details.
|
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.
|
======================================================================"
Integer subclass: LargeInteger [
<shape: #byte>
<category: 'Language-Data types'>
<comment: '
I represent a large integer, which has to be stored as a long sequence
of bytes. I have methods to do arithmetics and comparisons, but I need
some help from my children, LargePositiveInteger and LargeNegativeInteger,
to speed them up a bit.'>
Zero := nil.
One := nil.
ZeroBytes := nil.
OneBytes := nil.
LeadingZeros := nil.
TrailingZeros := nil.
LargeInteger class >> new [
<category: 'private'>
self shouldNotImplement
]
LargeInteger class >> initialize [
"Private - Initialize the receiver's class variables"
<category: 'private'>
ZeroBytes := #[0].
OneBytes := #[1].
Zero := LargeZeroInteger basicNew: 1.
One := (LargePositiveInteger basicNew: 1) setBytes: OneBytes.
"The leading zeros table is used in division and to compute
#highBit. It is obtained by:
LeadingZeros := ByteArray new: 255.
127 to: 1 by: -1 do: [ :i |
LeadingZeros at: i put: 1 + (LeadingZeros at: i + i).
]."
LeadingZeros := #[7 6 6 5 5 5 5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0].
"The trailing zeros table is used in the GCD algorithm. It is obtained by:
TrailingZeros := ByteArray new: 255.
2 to: 254 by: 2 do: [ :i |
TrailingZeros at: i put: 1 + (TrailingZeros at: i // 2).
]."
TrailingZeros := #[0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 6 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 7 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 6 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0]
]
LargeInteger class >> test: selector with: a with: b [
<category: 'private'>
| result |
result := a perform: selector with: b.
a printNl.
b printNl.
result printNl
]
LargeInteger class >> from: byteArray [
"Private - Answer an instance of a descendant of LargeInteger representing the
number whose base-256 representation is in byteArray (least significant
byte first).
The answered LargeInteger has the smallest possible representation
(i.e. there are no spurious leading bytes set to all zeros or all ones)
and already belongs to the correct class, either LargePositiveInteger,
LargeNegativeInteger or LargeZeroInteger"
<category: 'private'>
| class lastSignificant byte |
lastSignificant := byteArray size.
[byte := byteArray at: lastSignificant.
lastSignificant = 1
ifTrue:
[byte = 0 ifTrue: [^Zero].
false "Leave the while loop"]
ifFalse:
["Check if the current byte is spurious AND has the same
sign as the previous"
(byte = 0 or: [byte = 255])
and: [(byte bitXor: (byteArray at: lastSignificant - 1)) < 128]]]
whileTrue: [lastSignificant := lastSignificant - 1].
class := (byteArray at: lastSignificant) < 128
ifTrue: [LargePositiveInteger]
ifFalse: [LargeNegativeInteger].
^(class basicNew: lastSignificant) setBytes: byteArray
]
LargeInteger class >> fromInteger: anInteger [
"Private - Answer an instance of a descendant of LargeInteger representing
the (small) Integer contained in anInteger.
The answered LargeInteger has the smallest possible representation
(i.e. there are no spurious leading bytes set to all zeros or all ones)
and already belongs to the correct class, either LargePositiveInteger,
LargeNegativeInteger or LargeZeroInteger"
<category: 'private'>
| bytes int |
anInteger isInteger ifFalse: [^anInteger].
bytes := ByteArray new: CLongSize.
int := anInteger.
1 to: CLongSize
do:
[:i |
bytes at: i put: (int bitAnd: 255).
int := int bitShift: -8].
^self from: bytes
]
LargeInteger class >> resultFrom: byteArray [
"Private - Answer an instance of a descendant of Integer representing the
number whose base-256 representation is in byteArray (least significant
byte first).
If a kind of LargeInteger is answered, it has the smallest possible
representation (i.e. there are no spurious leading bytes set to all zeros
or all ones); however it is possible that this method answers an Integer."
<category: 'private'>
| result accum size |
result := self from: byteArray.
size := result size.
size > CLongSize ifTrue: [^result].
size = CLongSize
ifTrue: [((result at: size) between: 64 and: 191) ifTrue: [^result]].
accum := result negative ifTrue: [-1] ifFalse: [0].
result size to: 1
by: -1
do: [:i | accum := (accum bitShift: 8) bitOr: (result at: i)].
^accum
]
hash [
"Answer an hash value for the receiver"
<category: 'built-ins'>
<primitive: VMpr_String_hash>
^0
]
size [
"Answer the number of indexed instance variable in the receiver"
<category: 'built-ins'>
<primitive: VMpr_Object_basicSize>
]
digitLength [
"Answer the number of base-256 digits in the receiver"
<category: 'built-ins'>
<primitive: VMpr_Object_basicSize>
]
at: anIndex [
"Answer the anIndex-th byte in the receiver's representation"
<category: 'built-ins'>
<primitive: VMpr_Object_basicAt>
^self mostSignificantByte
]
at: anIndex put: aNumber [
"Set the anIndex-th byte in the receiver's representation"
<category: 'built-ins'>
<primitive: VMpr_Object_basicAtPut>
self checkIndexableBounds: anIndex put: aNumber
]
primReplaceFrom: start to: stop with: replacementString startingAt: replaceStart [
"Private - Replace the characters from start to stop with new
characters contained in replacementString (which, actually, can be
any variable byte class), starting at the replaceStart location of
replacementString"
<category: 'built-ins'>
<primitive: VMpr_ArrayedCollection_replaceFromToWithStartingAt>
^self primitiveFailed
]
digitAt: anIndex [
"Answer the index-th base-256 digit of the receiver (byte), expressed
in two's complement"
<category: 'built-ins'>
<primitive: VMpr_Object_basicAt>
^self mostSignificantByte
]
digitAt: anIndex put: aNumber [
"Set the anIndex-th base-256 digit in the receiver's representation"
<category: 'built-ins'>
<primitive: VMpr_Object_basicAtPut>
self checkIndexableBounds: anIndex put: aNumber
]
asCNumber [
"Convert the receiver to a kind of number that is understood by
the C call-out mechanism."
<category: 'coercion'>
^self
]
asObject [
"This method always fails. The number of OOPs is far less than
the minimum number represented with a LargeInteger."
<category: 'disabled'>
self primitiveFailed
]
asObjectNoFail [
<category: 'disabled'>
^nil
]
= aNumber [
"Answer whether the receiver and aNumber identify the same number."
<category: 'testing'>
<primitive: VMpr_LargeInteger_eq>
(aNumber isKindOf: Number) ifFalse: [^false].
aNumber generality = self generality
ifFalse: [^self retryEqualityCoercing: aNumber].
self sign = aNumber sign ifFalse: [^false].
self size = aNumber size ifFalse: [^false].
self size to: 1
by: -1
do: [:index | (self at: index) = (aNumber at: index) ifFalse: [^false]].
^true
]
~= aNumber [
"Answer whether the receiver and aNumber identify different numbers."
<category: 'testing'>
<primitive: VMpr_LargeInteger_ne>
(aNumber isKindOf: Number) ifFalse: [^true].
aNumber generality = self generality
ifFalse: [^self retryInequalityCoercing: aNumber].
self sign = aNumber sign ifFalse: [^true].
self size = aNumber size ifFalse: [^true].
self size to: 1
by: -1
do: [:index | (self at: index) = (aNumber at: index) ifFalse: [^true]].
^false
]
< aNumber [
"Answer whether the receiver is smaller than aNumber"
<category: 'testing'>
<primitive: VMpr_LargeInteger_lt>
aNumber generality = self generality
ifFalse: [^self retryRelationalOp: #< coercing: aNumber].
self sign < aNumber sign ifTrue: [^true].
self sign > aNumber sign ifTrue: [^false].
self size > aNumber size ifTrue: [^self sign = -1].
aNumber size to: 1
by: -1
do:
[:index |
(self at: index) < (aNumber at: index) ifTrue: [^true].
(self at: index) > (aNumber at: index) ifTrue: [^false]].
^false
]
<= aNumber [
"Answer whether the receiver is smaller than aNumber or equal to it"
<category: 'testing'>
<primitive: VMpr_LargeInteger_le>
aNumber generality = self generality
ifFalse: [^self retryRelationalOp: #<= coercing: aNumber].
self sign < aNumber sign ifTrue: [^true].
self sign > aNumber sign ifTrue: [^false].
self size > aNumber size ifTrue: [^self sign = -1].
aNumber size to: 1
by: -1
do:
[:index |
(self at: index) < (aNumber at: index) ifTrue: [^true].
(self at: index) > (aNumber at: index) ifTrue: [^false]].
^true
]
> aNumber [
"Answer whether the receiver is greater than aNumber"
<category: 'testing'>
<primitive: VMpr_LargeInteger_gt>
aNumber generality = self generality
ifFalse: [^self retryRelationalOp: #> coercing: aNumber].
aNumber sign < self sign ifTrue: [^true].
aNumber sign > self sign ifTrue: [^false].
aNumber size > self size ifTrue: [^self sign = -1].
self size to: 1
by: -1
do:
[:index |
(aNumber at: index) < (self at: index) ifTrue: [^true].
(aNumber at: index) > (self at: index) ifTrue: [^false]].
^false
]
>= aNumber [
"Answer whether the receiver is greater than aNumber or equal to it"
<category: 'testing'>
<primitive: VMpr_LargeInteger_ge>
aNumber generality = self generality
ifFalse: [^self retryRelationalOp: #>= coercing: aNumber].
aNumber sign < self sign ifTrue: [^true].
aNumber sign > self sign ifTrue: [^false].
aNumber size > self size ifTrue: [^self sign = -1].
self size to: 1
by: -1
do:
[:index |
(aNumber at: index) < (self at: index) ifTrue: [^true].
(aNumber at: index) > (self at: index) ifTrue: [^false]].
^true
]
+ aNumber [
"Sum the receiver and aNumber, answer the result"
<category: 'arithmetic'>
self subclassResponsibility
]
- aNumber [
"Subtract aNumber from the receiver, answer the result"
<category: 'arithmetic'>
self subclassResponsibility
]
* aNumber [
"Multiply aNumber and the receiver, answer the result"
<category: 'arithmetic'>
| result |
<primitive: VMpr_LargeInteger_times>
aNumber sign = 0 ifTrue: [^0].
aNumber generality = self generality
ifFalse: [^self retryMultiplicationCoercing: aNumber].
result := self abs multiply: aNumber abs.
^self sign = aNumber sign ifTrue: [result] ifFalse: [result negated]
]
/ aNumber [
"Divide aNumber and the receiver, answer the result (an Integer or
Fraction)"
<category: 'arithmetic'>
| gcd |
aNumber sign = 0 ifTrue: [^self zeroDivide].
self sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retryDivisionCoercing: aNumber].
gcd := self gcd: aNumber.
gcd = self
ifTrue: [^Fraction numerator: 1 denominator: (aNumber divExact: gcd)].
gcd = aNumber ifTrue: [^self divExact: gcd].
^Fraction numerator: (self divExact: gcd)
denominator: (aNumber divExact: gcd)
]
// aNumber [
"Divide aNumber and the receiver, answer the result truncated towards
-infinity"
<category: 'arithmetic'>
<primitive: VMpr_LargeInteger_intDiv>
aNumber sign = 0 ifTrue: [^self zeroDivide].
self sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retry: #// coercing: aNumber].
self sign = aNumber sign
ifFalse: [^self - aNumber + aNumber sign quo: aNumber].
^self abs divide: aNumber abs
using: [:quo :rem :remNotZero | self species resultFrom: quo]
]
rem: aNumber [
"Divide aNumber and the receiver, answer the remainder truncated
towards 0"
<category: 'arithmetic'>
| result |
<primitive: VMpr_LargeInteger_rem>
aNumber sign = 0 ifTrue: [^self zeroDivide].
self sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retry: #rem: coercing: aNumber].
^self abs divide: aNumber abs
using: [:quo :rem :remNotZero | self species resultFrom: rem]
]
quo: aNumber [
"Divide aNumber and the receiver, answer the result truncated
towards 0"
<category: 'arithmetic'>
| result |
<primitive: VMpr_LargeInteger_quo>
aNumber sign = 0 ifTrue: [^self zeroDivide].
self sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retry: #quo: coercing: aNumber].
result := self abs divide: aNumber abs
using: [:quo :rem :remNotZero | self species resultFrom: quo].
^self sign = aNumber sign ifTrue: [result] ifFalse: [result negated]
]
divExact: aNumber [
"Dividing receiver by arg assuming that the remainder is zero, and answer
the result"
<category: 'arithmetic'>
| result |
<primitive: VMpr_LargeInteger_divExact>
aNumber sign = 0
ifTrue:
["Same as quo:, not worthwhile to implement it in Smalltalk."
^self zeroDivide].
self sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retry: #divExact: coercing: aNumber].
result := self abs divide: aNumber abs
using: [:quo :rem :remNotZero | self species resultFrom: quo].
^self sign = aNumber sign ifTrue: [result] ifFalse: [result negated]
]
\\ aNumber [
"Divide aNumber and the receiver, answer the remainder truncated
towards -infinity"
<category: 'arithmetic'>
<primitive: VMpr_LargeInteger_modulo>
aNumber sign = 0 ifTrue: [^self zeroDivide].
self sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retry: #\\ coercing: aNumber].
aNumber sign < 0 ifTrue: [^(self negated \\ aNumber negated) negated].
^self abs divide: aNumber
using:
[:quo :rem :remNotZero |
"must be positive"
| remInteger |
remInteger := self species resultFrom: rem.
(remNotZero and: [self negative])
ifTrue: [aNumber - remInteger]
ifFalse: [remInteger]]
]
estimatedLog [
"Answer an estimate of (self abs floorLog: 10)"
<category: 'arithmetic'>
^(self size asFloatD * 8.0 / FloatD log10Base2) ceiling
]
negated [
"Answer the receiver's negated"
<category: 'arithmetic'>
| newBytes carry a |
<primitive: VMpr_LargeInteger_negated>
newBytes := ByteArray new: self size + 1.
carry := 256.
1 to: self size
do:
[:index |
a := carry - (self at: index).
a < 256
ifTrue: [carry := 255]
ifFalse:
[carry := 256.
a := a - 256].
newBytes at: index put: a].
newBytes at: newBytes size put: (self mostSignificantByte bitXor: 255).
^self species resultFrom: newBytes
]
lowBit [
"Return the index of the lowest order 1 bit of the receiver."
<category: 'bit operations'>
| each |
1 to: self size
do:
[:index |
(each := self digitAt: index) = 0
ifFalse: [^index * 8 - 7 + (TrailingZeros at: each)]].
^self highBit
]
bitAnd: aNumber [
"Answer the receiver ANDed with aNumber"
<category: 'bit operations'>
| newBytes |
<primitive: VMpr_LargeInteger_bitAnd>
aNumber isInteger
ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
aNumber generality = self generality
ifFalse: [^self retry: #bitAnd: coercing: aNumber].
newBytes := ByteArray new: (self size max: aNumber size).
1 to: newBytes size
do: [:index | newBytes at: index put: ((self at: index) bitAnd: (aNumber at: index))].
^self species resultFrom: newBytes
]
bitAt: aNumber [
"Answer the aNumber-th bit in the receiver, where the LSB is 1"
<category: 'bit operations'>
| bit |
bit := aNumber - 1.
^(self at: bit // 8 + 1) bitAt: bit \\ 8 + 1
]
bitInvert [
"Answer the receiver's 1's complement"
<category: 'bit operations'>
| bytes |
<primitive: VMpr_LargeInteger_bitInvert>
bytes := ByteArray new: self size + 1.
bytes at: bytes size put: (self mostSignificantByte bitXor: 255).
1 to: self size
do: [:index | bytes at: index put: ((self at: index) bitXor: 255)].
^self species resultFrom: bytes
]
bitOr: aNumber [
"Answer the receiver ORed with aNumber"
<category: 'bit operations'>
| newBytes |
<primitive: VMpr_LargeInteger_bitOr>
aNumber isInteger
ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
aNumber generality = self generality
ifFalse: [^self retry: #bitOr: coercing: aNumber].
newBytes := ByteArray new: (self size max: aNumber size).
1 to: newBytes size
do: [:index | newBytes at: index put: ((self at: index) bitOr: (aNumber at: index))].
^self species resultFrom: newBytes
]
bitXor: aNumber [
"Answer the receiver XORed with aNumber"
<category: 'bit operations'>
| newBytes |
<primitive: VMpr_LargeInteger_bitXor>
aNumber isInteger
ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
aNumber generality = self generality
ifFalse: [^self retry: #bitXor: coercing: aNumber].
newBytes := ByteArray new: (self size max: aNumber size).
1 to: newBytes size
do: [:index | newBytes at: index put: ((self at: index) bitXor: (aNumber at: index))].
^self species resultFrom: newBytes
]
bitShift: aNumber [
"Answer the receiver shifted by aNumber places"
<category: 'bit operations'>
<primitive: VMpr_LargeInteger_bitShift>
aNumber isInteger
ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
^aNumber > 0
ifTrue: [self basicLeftShift: aNumber]
ifFalse: [self basicRightShift: aNumber negated]
]
raisedToInteger: n [
"Return self raised to the anInteger-th power"
"For LargeIntegers only, it pays off to strip the rightmost
0 bits and put them back later with a left shift..."
<category: 'accessing'>
| nbit |
nbit := 1.
[(self bitAt: nbit) = 0] whileTrue: [nbit := nbit + 1].
nbit = 1 ifTrue: [^super raisedToInteger: n].
nbit := nbit - 1.
^((self bitShift: nbit negated) raisedToInteger: n) bitShift: nbit * n
]
basicLeftShift: totalShift [
"Private - Left shift the receiver by aNumber places"
<category: 'primitive operations'>
| newBytes byteShift carry shift a |
byteShift := totalShift // 8.
shift := totalShift bitAnd: 7.
newBytes := ByteArray new: (totalShift + 7) // 8 + self size.
"That `+ 1' in the #to:do: performs an extra iteration that stores the
last carry in the extra byte reserved in the previous statement"
carry := 0.
1 to: newBytes size - byteShift
do:
[:index |
a := ((self at: index) bitShift: shift) + carry.
carry := a bitShift: -8.
a := a bitAnd: 255.
newBytes at: index + byteShift put: a].
^self species resultFrom: newBytes
]
basicRightShift: totalShift [
"Private - Right shift the receiver by 'shift' places"
<category: 'primitive operations'>
| shift newBytes byteShift carryShift x a |
byteShift := totalShift // 8.
shift := (totalShift bitAnd: 7) negated.
carryShift := 8 + shift.
self size <= (byteShift - 1) ifTrue: [^0].
newBytes := ByteArray new: self size - byteShift + 1.
x := (self at: byteShift + 1) bitShift: shift.
byteShift + 1 to: self size
do:
[:j |
a := self at: j + 1.
newBytes at: j - byteShift put: ((a bitShift: carryShift) bitAnd: 255) + x.
x := a bitShift: shift].
newBytes at: newBytes size put: self mostSignificantByte.
^self species resultFrom: newBytes
]
largeNegated [
"Private - Same as negated, but always answer a LargeInteger"
<category: 'primitive operations'>
| newBytes carry a |
newBytes := ByteArray new: self size + 1.
carry := 256.
1 to: self size
do:
[:index |
a := carry - (self at: index).
a < 256
ifTrue: [carry := 255]
ifFalse:
[carry := 256.
a := a - 256].
newBytes at: index put: a].
newBytes at: newBytes size put: (self mostSignificantByte bitXor: 255).
^self species from: newBytes
]
zero [
"Coerce 0 to the receiver's class"
<category: 'coercion'>
^Zero
]
unity [
"Coerce 1 to the receiver's class"
<category: 'coercion'>
^One
]
coerce: aNumber [
"Truncate the number; if needed, convert it to LargeInteger
representation."
<category: 'coercion'>
aNumber = 0 ifTrue: [^Zero].
^aNumber isInteger
ifTrue: [self species fromInteger: aNumber]
ifFalse: [self species fromInteger: aNumber truncated]
]
generality [
"Answer the receiver's generality"
<category: 'coercion'>
^200
]
mostSignificantByte [
"Private - Answer the value of the most significant byte"
<category: 'private'>
self subclassResponsibility
]
species [
<category: 'private'>
^LargeInteger
]
bytes [
<category: 'private'>
| bytes |
bytes := ByteArray new: self size + 1.
bytes
replaceFrom: 1
to: self size
with: self
startingAt: 1.
bytes at: bytes size put: self mostSignificantByte.
^bytes
]
setBytes: aByteArray [
<category: 'private'>
self
primReplaceFrom: 1
to: self size
with: aByteArray
startingAt: 1
]
]
LargeInteger subclass: LargeNegativeInteger [
<shape: #byte>
<category: 'Language-Data types'>
<comment: '
Just like my brother LargePositiveInteger, I provide a few methods that
allow LargeInteger to determine the sign of a large integer in a fast way
during its calculations. For example, I know that I am smaller than any
LargePositiveInteger'>
+ aNumber [
"Sum the receiver and aNumber, answer the result"
"All we have to do is convert the two numbers to two positive
numbers and make LargePositiveInteger do the calculation.
Use #largeNegated to save some coercions."
<category: 'reverting to LargePositiveInteger'>
<primitive: VMpr_LargeInteger_plus>
aNumber sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retrySumCoercing: aNumber].
^aNumber sign = -1
ifTrue: [(self largeNegated + aNumber largeNegated) negated]
ifFalse: [(self largeNegated - aNumber) negated]
]
- aNumber [
"Subtract aNumber from the receiver, answer the result"
"All we have to do is convert the two numbers to two positive
numbers and make LargePositiveInteger do the calculation.
Use #largeNegated to save some coercions."
<category: 'reverting to LargePositiveInteger'>
<primitive: VMpr_LargeInteger_minus>
aNumber sign = 0 ifTrue: [^self].
aNumber generality = self generality
ifFalse: [^self retryDifferenceCoercing: aNumber].
^aNumber sign = -1
ifTrue: [(self largeNegated - aNumber largeNegated) negated]
ifFalse: [(self largeNegated + aNumber) negated]
]
highBit [
"Answer the receiver's highest bit's index"
<category: 'reverting to LargePositiveInteger'>
^(self at: self size) = 255
ifTrue: [^8 * self size - 16 + ((self at: self size - 1) - 256) highBit]
ifFalse: [^8 * self size - 8 + ((self at: self size) - 256) highBit]
]
gcd: anInteger [
"Return the greatest common divisor between the receiver and anInteger"
<category: 'reverting to LargePositiveInteger'>
<primitive: VMpr_LargeInteger_gcd>
^self negated gcd: anInteger abs
]
positive [
"Answer whether the receiver is >= 0"
<category: 'numeric testing'>
^false
]
strictlyPositive [
"Answer whether the receiver is > 0"
<category: 'numeric testing'>
^false
]
negative [
"Answer whether the receiver is < 0"
<category: 'numeric testing'>
^true
]
abs [
"Answer the receiver's absolute value."
"This is surely a large integer (while `aLargePositiveInteger negated'
might be the smallest small integer)."
<category: 'numeric testing'>
<primitive: VMpr_LargeInteger_negated>
^self largeNegated
]
sign [
"Answer the receiver's sign"
<category: 'numeric testing'>
^-1
]
asFloatD [
"Answer the receiver converted to a FloatD"
<category: 'converting'>
^self negated asFloatD negated
]
asFloatE [
"Answer the receiver converted to a FloatE"
<category: 'converting'>
^self negated asFloatE negated
]
asFloatQ [
"Answer the receiver converted to a FloatQ"
<category: 'converting'>
^self negated asFloatQ negated
]
mostSignificantByte [
"Private - Answer the value of the most significant byte"
<category: 'private'>
^255
]
]
LargeInteger subclass: LargePositiveInteger [
<shape: #byte>
<category: 'Language-Data types'>
<comment: '
Just like my brother LargeNegativeInteger, I provide a few methods that
allow LargeInteger to determine the sign of a large integer in a fast way
during its calculations. For example, I know that I am larger than any
LargeNegativeInteger. In addition I implement the guts of arbitrary
precision arithmetic.'>
+ aNumber [
"Sum the receiver and aNumber, answer the result"
<category: 'arithmetic'>
| newBytes carry a b result |
<primitive: VMpr_LargeInteger_plus>
aNumber sign = 0 ifTrue: [^self].
aNumber sign = -1 ifTrue: [^self - aNumber negated].
aNumber generality = self generality
ifFalse: [^self retrySumCoercing: aNumber].
newBytes := ByteArray new: (self size max: aNumber size) + 1.
carry := 0.
1 to: newBytes size - 1
do:
[:index |
result := (self at: index) + (aNumber at: index) + carry.
result > 255
ifTrue:
[carry := 1.
result := result - 256]
ifFalse: [carry := 0].
newBytes at: index put: result].
newBytes at: newBytes size put: carry.
^LargeInteger resultFrom: newBytes
]
- aNumber [
"Subtract aNumber from the receiver, answer the result"
<category: 'arithmetic'>
| newBytes carry a b result |
<primitive: VMpr_LargeInteger_minus>
aNumber sign = 0 ifTrue: [^self].
aNumber sign = -1 ifTrue: [^self + aNumber negated].
aNumber generality = self generality
ifFalse: [^self retryDifferenceCoercing: aNumber].
newBytes := ByteArray new: (self size max: aNumber size) + 1.
carry := 0.
1 to: newBytes size - 1
do:
[:index |
result := (self at: index) - (aNumber at: index) + carry.
result < 0
ifTrue:
[carry := -1.
result := result + 256]
ifFalse: [carry := 0].
newBytes at: index put: result].
newBytes at: newBytes size put: (carry bitAnd: 255).
^LargeInteger resultFrom: newBytes
]
gcd: anInteger [
"Calculate the GCD between the receiver and anInteger"
"Binary GCD - See Knuth `Seminumerical algorithms', Vol 2, 4.5.2
It was adapted to remove the variable `r' and to only work with
unsigned numbers"
<category: 'arithmetic'>
| adjust t tmp u v |
<primitive: VMpr_LargeInteger_gcd>
(self sign bitAnd: anInteger sign) = 0 ifTrue: [^self + anInteger].
u := self bytes.
v := anInteger abs.
v generality = self generality ifFalse: [v := self coerce: v].
v := v bytes.
"Divide u and v by 2 as long as they are both even"
adjust := t := self bytesTrailingZeros: u.
self bytesRightShift: u big: t.
adjust := adjust min: (t := self bytesTrailingZeros: v).
self bytesRightShift: v big: t.
u size = v size
ifFalse:
[u size < v size
ifTrue: [u := u copyGrowTo: v size]
ifFalse: [v := v copyGrowTo: u size]].
"Well, this is it -- the stuff up to this point was just set up"
[t := self
bytes: u
from: 1
compare: v.
t = 0]
whileFalse:
[t < 0
ifTrue:
[t := v.
v := u.
u := t].
self
bytes: u
from: 1
subtract: v.
((u at: 1) bitAnd: 1) = 0
ifTrue:
[t := self bytesTrailingZeros: u.
self bytesRightShift: u big: t]].
self bytesLeftShift: u big: adjust.
^self species resultFrom: u
]
highBit [
"Answer the receiver's highest bit's index"
<category: 'arithmetic'>
^(self at: self size) = 0
ifTrue: [^8 * self size - 8 - (LeadingZeros at: (self at: self size - 1))]
ifFalse: [^8 * self size - (LeadingZeros at: (self at: self size))]
]
positive [
"Answer whether the receiver is >= 0"
<category: 'numeric testing'>
^true
]
strictlyPositive [
"Answer whether the receiver is > 0"
<category: 'numeric testing'>
^true
]
negative [
"Answer whether the receiver is < 0"
<category: 'numeric testing'>
^false
]
abs [
"Answer the receiver's absolute value"
<category: 'numeric testing'>
^self
]
sign [
"Answer the receiver's sign"
<category: 'numeric testing'>
^1
]
asFloat: characterization [
"Answer the receiver converted to a Float"
<category: 'private'>
"Check for number bigger than maximum mantissa"
| nTruncatedBits mantissa exponent mask trailingBits inexact carry |
nTruncatedBits := self highBit - characterization precision.
nTruncatedBits <= 0 ifTrue: [^self fastAsFloat: characterization].
mantissa := self bitShift: nTruncatedBits negated.
exponent := nTruncatedBits.
"Apply IEEE 754 round to nearest even default rounding mode"
carry := self bitAt: nTruncatedBits.
(carry = 1 and: [mantissa odd or: [self lowBit < nTruncatedBits]])
ifTrue: [mantissa := mantissa + 1].
^(characterization coerce: mantissa) timesTwoPower: exponent
]
fastAsFloat: characterization [
"Conversion can be exact, construct Float by successive mul add operations"
<category: 'private'>
| result byte |
byte := characterization coerce: 256.
result := characterization coerce: 0.
self size to: 1
by: -1
do: [:index | result := result * byte + (self at: index)].
^result
]
mostSignificantByte [
"Private - Answer the value of the most significant byte"
<category: 'private'>
^0
]
asFloatD [
"Answer the receiver converted to a FloatD"
<category: 'converting'>
<primitive: VMpr_LargeInteger_asFloatD>
^self asFloat: FloatD
]
asFloatE [
"Answer the receiver converted to a FloatE"
<category: 'converting'>
<primitive: VMpr_LargeInteger_asFloatE>
^self asFloat: FloatE
]
asFloatQ [
"Answer the receiver converted to a FloatQ"
<category: 'converting'>
<primitive: VMpr_LargeInteger_asFloatQ>
^self asFloat: FloatQ
]
replace: str withStringBase: radix [
"Return in a String str the base radix representation of the
receiver."
<category: 'converting'>
| digits source quo t rem where |
source := self.
quo := ByteArray new: self size.
where := str size.
self size to: 1
by: -1
do:
[:i |
[rem := 0.
i to: 1
by: -1
do:
[:j |
t := (rem bitShift: 8) + (source at: j).
quo at: j put: t // radix.
rem := t \\ radix].
str at: where put: (Character digitValue: rem).
where := where - 1.
source := quo.
(source at: i) = 0]
whileFalse].
^str
]
isSmall [
"Private - Answer whether the receiver is small enough to employ simple
scalar algorithms for division and multiplication"
<category: 'primitive operations'>
^self size <= 2 and: [(self at: 2) = 0]
]
divide: aNumber using: aBlock [
"Private - Divide the receiver by aNumber (unsigned division). Evaluate
aBlock passing the result ByteArray, the remainder ByteArray, and
whether the division had a remainder"
<category: 'primitive operations'>
| result a b |
aNumber isSmall
ifTrue:
[result := ByteArray new: self size.
b := 0.
self size to: 1
by: -1
do:
[:j |
a := (b bitShift: 8) + (self at: j).
result at: j put: a // (aNumber at: 1).
b := a \\ (aNumber at: 1)].
^aBlock
value: result
value: (ByteArray with: b with: 0)
value: b ~= 0].
"special case: numerator < denominator"
self size < aNumber size
ifTrue:
[^aBlock
value: ZeroBytes
value: self
value: true].
self size > aNumber size
ifTrue:
[result := self primDivide: aNumber.
^aBlock
value: result key
value: result value
value: (result value anySatisfy: [:each | each ~= 0])].
self size to: 1
by: -1
do:
[:index |
a := self at: index.
b := aNumber at: index.
b > a
ifTrue:
[^aBlock
value: ZeroBytes
value: self
value: true].
a > b
ifTrue:
[result := self primDivide: aNumber.
^aBlock
value: result key
value: result value
value: (result value anySatisfy: [:each | each ~= 0])]].
"Special case: numerator = denominator"
^aBlock
value: OneBytes
value: ZeroBytes
value: false
]
multiply: aNumber [
"Private - Multiply the receiver by aNumber (unsigned multiply)"
<category: 'primitive operations'>
"Special case - other factor < 255"
| newBytes byte carry index digit start |
aNumber isSmall
ifTrue:
[^self species from: (self bytes: self bytes multiply: (aNumber at: 1))].
start := 1.
[(aNumber at: start) = 0] whileTrue: [start := start + 1].
newBytes := ByteArray new: self size + aNumber size + 2.
1 to: self size
do:
[:indexA |
digit := self at: indexA.
digit = 0
ifFalse:
[carry := 0.
index := indexA + start - 1.
start to: aNumber size
do:
[:indexB |
byte := digit * (aNumber at: indexB) + carry + (newBytes at: index).
carry := byte bitShift: -8.
newBytes at: index put: (byte bitAnd: 255).
index := index + 1].
newBytes at: indexA + aNumber size put: carry]].
"If I multiply two large integers, the result is large, so use #from:..."
^self species from: newBytes
]
bytes: bytes multiply: anInteger [
"Private - Multiply the bytes in bytes by anInteger, which must be < 255.
Put the result back in bytes."
<category: 'helper byte-level methods'>
| byte carry |
carry := 0.
1 to: bytes size
do:
[:index |
byte := (bytes at: index) * anInteger + carry.
carry := byte bitShift: -8.
bytes at: index put: (byte bitAnd: 255)].
carry > 0 ifTrue: [bytes at: bytes size - 1 put: carry].
^bytes
]
bytes: byteArray1 from: j compare: byteArray2 [
"Private - Answer the sign of byteArray2 - byteArray1; the
j-th byte of byteArray1 is compared with the first of byteArray2,
the j+1-th with the second, and so on."
<category: 'helper byte-level methods'>
| a b i |
i := byteArray2 size.
j + byteArray2 size - 1 to: j
by: -1
do:
[:index |
b := byteArray2 at: i.
a := byteArray1 at: index.
a < b ifTrue: [^-1].
a > b ifTrue: [^1].
i := i - 1].
^0
]
bytes: byteArray1 from: j subtract: byteArray2 [
"Private - Sutract the bytes in byteArray2 from those in byteArray1"
<category: 'helper byte-level methods'>
| carry a i |
carry := 256.
i := 1.
j to: j + byteArray2 size - 1
do:
[:index |
a := (byteArray1 at: index) - (byteArray2 at: i) + carry.
a < 256
ifTrue: [carry := 255]
ifFalse:
[carry := 256.
a := a - 256].
byteArray1 at: index put: a.
i := i + 1]
]
bytesLeftShift: aByteArray [
"Private - Left shift by 1 place the bytes in aByteArray"
<category: 'helper byte-level methods'>
| carry a |
carry := 0.
1 to: aByteArray size
do:
[:index |
a := aByteArray at: index.
a := a + a + carry.
carry := a bitShift: -8.
a := a bitAnd: 255.
aByteArray at: index put: a]
]
bytesLeftShift: aByteArray n: shift [
"Private - Left shift by shift places the bytes in aByteArray
(shift <= 7)"
<category: 'helper byte-level methods'>
| carry a |
carry := 0.
1 to: aByteArray size
do:
[:index |
a := aByteArray at: index.
a := (a bitShift: shift) + carry.
carry := a bitShift: -8.
aByteArray at: index put: (a bitAnd: 255)]
]
bytesLeftShift: aByteArray big: totalShift [
"Private - Left shift the bytes in aByteArray by totalShift places"
<category: 'helper byte-level methods'>
| newBytes byteShift shift a last |
totalShift = 0 ifTrue: [^self].
byteShift := totalShift // 8.
shift := totalShift bitAnd: 7.
last := 0.
aByteArray size - 1 to: byteShift + 1
by: -1
do:
[:index |
a := aByteArray at: index - byteShift.
a := a bitShift: shift.
aByteArray at: index + 1 put: last + (a bitShift: -8).
last := a bitAnd: 255].
aByteArray at: byteShift + 1 put: last.
1 to: byteShift do: [:i | aByteArray at: i put: 0]
]
bytesRightShift: aByteArray big: totalShift [
"Private - Right shift the bytes in aByteArray by totalShift places"
<category: 'helper byte-level methods'>
| shift byteShift carryShift x a |
totalShift = 0 ifTrue: [^self].
byteShift := totalShift // 8.
shift := (totalShift bitAnd: 7) negated.
carryShift := 8 + shift.
x := (aByteArray at: byteShift + 1) bitShift: shift.
byteShift + 2 to: aByteArray size
do:
[:j |
a := aByteArray at: j.
aByteArray at: j - byteShift - 1
put: ((a bitShift: carryShift) bitAnd: 255) + x.
x := a bitShift: shift].
aByteArray at: aByteArray size - byteShift put: x.
aByteArray size - byteShift + 1 to: aByteArray size
do: [:i | aByteArray at: i put: 0]
]
bytesRightShift: bytes n: aNumber [
"Private - Right shift the bytes in `bytes' by 'aNumber' places
(shift <= 7)"
<category: 'helper byte-level methods'>
| shift carryShift x a |
aNumber = 0 ifTrue: [^self].
shift := aNumber negated.
carryShift := 8 + shift.
x := (bytes at: 1) bitShift: shift.
2 to: bytes size
do:
[:j |
a := bytes at: j.
bytes at: j - 1 put: ((a bitShift: carryShift) bitAnd: 255) + x.
x := a bitShift: shift].
bytes at: bytes size put: x
]
bytesTrailingZeros: bytes [
"Private - Answer the number of trailing zero bits in the receiver"
<category: 'helper byte-level methods'>
| each |
1 to: bytes size
do:
[:index |
(each := bytes at: index) = 0
ifFalse: [^index * 8 - 8 + (TrailingZeros at: each)]].
^bytes size * 8
]
primDivide: rhs [
"Private - Implements Knuth's divide and correct algorithm from
`Seminumerical Algorithms' 3rd Edition, section 4.3.1 (which
is basically an enhanced version of the divide `algorithm' for
two-digit divisors which is taught in primary school!!!)"
<category: 'helper byte-level methods'>
"Leading zeros in `v'"
"Cached v at: n, v at: n - 1, j + n, j + n - 1"
"Cached `u size - v size' and `v size'"
"High 2 bytes of `u'"
"guess times the divisor (v)"
"Quotient"
"guess at the quotient byte and remainder"
"The operands"
"0. Initialize everything"
| d vn vn1 jn jn1 m n high sub q guess rem u v |
u := self bytes.
v := rhs bytes.
n := v size.
sub := ByteArray new: n.
m := u size - n.
q := ByteArray new: m + 2.
"1. Normalize the divisor
Knuth's algorithm is based on an initial guess for the quotient. The
guess is guaranteed to be no more than 2 in error, if v[n] >= 128.
If we multiply both vectors by the same value, the result of division
remains the same, so we can always guarantee that v[n] is
sufficiently large.
While the algorithm calls for d to be 255 / v[n], we will set d to a
simple left shift count because this is fast and nicely approximates that"
[(v at: n) = 0] whileTrue: [n := n - 1].
(v at: n) < 128
ifFalse: [d := 0]
ifTrue:
["Multiply each value by the normalizing value"
d := LeadingZeros at: (v at: n).
self bytesLeftShift: u n: d.
self bytesLeftShift: v n: d].
vn := v at: n. "Cache common values"
vn1 := v at: n - 1.
m + 1 to: 1
by: -1
do:
[:j |
jn := j + n.
jn1 := jn - 1.
"2. Calculate the quotient `guess'.
Remember that our guess will be generated such that
guess - 2 <= quotient <= guess. Thus, we generate our first
guess at quotient, and keep decrementing by one until we have found
the real quotient."
high := (u at: jn) * 256 + (u at: jn1).
guess := high // vn.
rem := high \\ vn.
"(Array with: u with: high with: guess with: rem) printNl."
"4. We know now that the quotient guess is most likely ok, but possibly
the real quotient is guess - 1 or guess - 2. Multiply the divisor by the
guess and compare the result with the dividend."
sub
replaceFrom: 1
to: sub size
with: v
startingAt: 1.
self bytes: sub multiply: guess.
[(self
bytes: u
from: j
compare: sub) >= 0]
whileFalse:
["Our guess was one off, so we need to readjust it by one and subtract
back the divisor (since we multiplied by one in excess)."
guess := guess - 1.
self
bytes: sub
from: 1
subtract: v].
"(Array with: u with: sub with: guess with: rem) printNl."
"Got another byte of the quotient"
self
bytes: u
from: j
subtract: sub.
q at: j put: guess].
"Readjust the remainder"
self bytesRightShift: u n: d.
^q -> u
]
]
LargePositiveInteger subclass: LargeZeroInteger [
<shape: #byte>
<category: 'Language-Data types'>
<comment: '
I am quite a strange class. Indeed, the concept of a "large integer"
that is zero is a weird one. Actually my only instance is zero but
is represented like LargeIntegers, has the same generality as
LargeIntegers, and so on. That only instance is stored in the class
variable Zero, and is used in arithmetical methods, when we have to
coerce a parameter that is zero.'>
size [
<category: 'accessing'>
^0
]
hash [
<category: 'accessing'>
^0
]
at: anIndex [
<category: 'accessing'>
^0
]
strictlyPositive [
"Answer whether the receiver is > 0"
<category: 'numeric testing'>
^false
]
sign [
"Answer the receiver's sign"
<category: 'numeric testing'>
^0
]
+ aNumber [
"Sum the receiver and aNumber, answer the result"
<category: 'arithmetic'>
^aNumber
]
- aNumber [
"Subtract aNumber from the receiver, answer the result"
<category: 'arithmetic'>
^aNumber negated
]
* aNumber [
"Multiply aNumber and the receiver, answer the result"
<category: 'arithmetic'>
^0
]
/ aNumber [
"Divide aNumber and the receiver, answer the result (an Integer or
Fraction)"
<category: 'arithmetic'>
^0
]
// aNumber [
"Divide aNumber and the receiver, answer the result truncated towards
-infinity"
<category: 'arithmetic'>
^0
]
rem: aNumber [
"Divide aNumber and the receiver, answer the remainder truncated
towards 0"
<category: 'arithmetic'>
^0
]
quo: aNumber [
"Divide aNumber and the receiver, answer the result truncated
towards 0"
<category: 'arithmetic'>
^0
]
\\ aNumber [
"Divide aNumber and the receiver, answer the remainder truncated
towards -infinity"
<category: 'arithmetic'>
^0
]
replace: str withStringBase: radix [
"Return in a string the base radix representation of the receiver."
<category: 'printing'>
str at: str size put: $0.
^str
]
]
|