This file is indexed.

/usr/share/gnu-smalltalk/kernel/LargeInt.st is in gnu-smalltalk-common 3.2.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
"======================================================================
|
|   LargeInteger hierarchy Method Definitions
|
|
 ======================================================================"

"======================================================================
|
| Copyright 1999, 2000, 2001, 2002, 2008, 2009 Free Software Foundation, Inc.
| Written by Paolo Bonzini.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
| 
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser
| General Public License for more details.
| 
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.  
|
 ======================================================================"



Integer subclass: LargeInteger [
    
    <shape: #byte>
    <category: 'Language-Data types'>
    <comment: '
I represent a large integer, which has to be stored as a long sequence
of bytes. I have methods to do arithmetics and comparisons, but I need
some help from my children, LargePositiveInteger and LargeNegativeInteger,
to speed them up a bit.'>

    Zero := nil.
    One := nil.
    ZeroBytes := nil.
    OneBytes := nil.
    LeadingZeros := nil.
    TrailingZeros := nil.

    LargeInteger class >> new [
	<category: 'private'>
	self shouldNotImplement
    ]

    LargeInteger class >> initialize [
	"Private - Initialize the receiver's class variables"

	<category: 'private'>
	ZeroBytes := #[0].
	OneBytes := #[1].
	Zero := LargeZeroInteger basicNew: 1.
	One := (LargePositiveInteger basicNew: 1) setBytes: OneBytes.

	"The leading zeros table is used in division and to compute
	 #highBit. It is obtained by:
	 LeadingZeros := ByteArray new: 255.
	 127 to: 1 by: -1 do: [ :i |
	 LeadingZeros at: i put: 1 + (LeadingZeros at: i + i).
	 ]."
	LeadingZeros := #[7 6 6 5 5 5 5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0].

	"The trailing zeros table is used in the GCD algorithm. It is obtained by:
	 TrailingZeros := ByteArray new: 255.
	 2 to: 254 by: 2 do: [ :i |
	 TrailingZeros at: i put: 1 + (TrailingZeros at: i // 2).
	 ]."
	TrailingZeros := #[0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 6 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 7 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 6 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0]
    ]

    LargeInteger class >> test: selector with: a with: b [
	<category: 'private'>
	| result |
	result := a perform: selector with: b.
	a printNl.
	b printNl.
	result printNl
    ]

    LargeInteger class >> from: byteArray [
	"Private - Answer an instance of a descendant of LargeInteger representing the
	 number whose base-256 representation is in byteArray (least significant
	 byte first).
	 The answered LargeInteger has the smallest possible representation
	 (i.e. there are no spurious leading bytes set to all zeros or all ones)
	 and already belongs to the correct class, either LargePositiveInteger,
	 LargeNegativeInteger or LargeZeroInteger"

	<category: 'private'>
	| class lastSignificant byte |
	lastSignificant := byteArray size.
	
	[byte := byteArray at: lastSignificant.
	lastSignificant = 1 
	    ifTrue: 
		[byte = 0 ifTrue: [^Zero].
		false	"Leave the while loop"]
	    ifFalse: 
		["Check if the current byte is spurious AND has the same
		 sign as the previous"

		(byte = 0 or: [byte = 255]) 
		    and: [(byte bitXor: (byteArray at: lastSignificant - 1)) < 128]]] 
		whileTrue: [lastSignificant := lastSignificant - 1].
	class := (byteArray at: lastSignificant) < 128 
		    ifTrue: [LargePositiveInteger]
		    ifFalse: [LargeNegativeInteger].
	^(class basicNew: lastSignificant) setBytes: byteArray
    ]

    LargeInteger class >> fromInteger: anInteger [
	"Private - Answer an instance of a descendant of LargeInteger representing
	 the (small) Integer contained in anInteger.
	 The answered LargeInteger has the smallest possible representation
	 (i.e. there are no spurious leading bytes set to all zeros or all ones)
	 and already belongs to the correct class, either LargePositiveInteger,
	 LargeNegativeInteger or LargeZeroInteger"

	<category: 'private'>
	| bytes int |
	anInteger isInteger ifFalse: [^anInteger].
	bytes := ByteArray new: CLongSize.
	int := anInteger.
	1 to: CLongSize
	    do: 
		[:i | 
		bytes at: i put: (int bitAnd: 255).
		int := int bitShift: -8].
	^self from: bytes
    ]

    LargeInteger class >> resultFrom: byteArray [
	"Private - Answer an instance of a descendant of Integer representing the
	 number whose base-256 representation is in byteArray (least significant
	 byte first).
	 If a kind of LargeInteger is answered, it has the smallest possible
	 representation (i.e. there are no spurious leading bytes set to all zeros
	 or all ones); however it is possible that this method answers an Integer."

	<category: 'private'>
	| result accum size |
	result := self from: byteArray.
	size := result size.
	size > CLongSize ifTrue: [^result].
	size = CLongSize 
	    ifTrue: [((result at: size) between: 64 and: 191) ifTrue: [^result]].
	accum := result negative ifTrue: [-1] ifFalse: [0].
	result size to: 1
	    by: -1
	    do: [:i | accum := (accum bitShift: 8) bitOr: (result at: i)].
	^accum
    ]

    hash [
	"Answer an hash value for the receiver"

	<category: 'built-ins'>
	<primitive: VMpr_String_hash>
	^0
    ]

    size [
	"Answer the number of indexed instance variable in the receiver"

	<category: 'built-ins'>
	<primitive: VMpr_Object_basicSize>
	
    ]

    digitLength [
	"Answer the number of base-256 digits in the receiver"

	<category: 'built-ins'>
	<primitive: VMpr_Object_basicSize>
	
    ]

    at: anIndex [
	"Answer the anIndex-th byte in the receiver's representation"

	<category: 'built-ins'>
	<primitive: VMpr_Object_basicAt>
	^self mostSignificantByte
    ]

    at: anIndex put: aNumber [
	"Set the anIndex-th byte in the receiver's representation"

	<category: 'built-ins'>
	<primitive: VMpr_Object_basicAtPut>
	self checkIndexableBounds: anIndex put: aNumber
    ]

    primReplaceFrom: start to: stop with: replacementString startingAt: replaceStart [
	"Private - Replace the characters from start to stop with new
	 characters contained in replacementString (which, actually, can be
	 any variable byte class), starting at the replaceStart location of
	 replacementString"

	<category: 'built-ins'>
	<primitive: VMpr_ArrayedCollection_replaceFromToWithStartingAt>
	^self primitiveFailed
    ]

    digitAt: anIndex [
	"Answer the index-th base-256 digit of the receiver (byte), expressed
	 in two's complement"

	<category: 'built-ins'>
	<primitive: VMpr_Object_basicAt>
	^self mostSignificantByte
    ]

    digitAt: anIndex put: aNumber [
	"Set the anIndex-th base-256 digit in the receiver's representation"

	<category: 'built-ins'>
	<primitive: VMpr_Object_basicAtPut>
	self checkIndexableBounds: anIndex put: aNumber
    ]

    asCNumber [
	"Convert the receiver to a kind of number that is understood by
	 the C call-out mechanism."
	<category: 'coercion'>
	^self
    ]

    asObject [
	"This method always fails. The number of OOPs is far less than
	 the minimum number represented with a LargeInteger."

	<category: 'disabled'>
	self primitiveFailed
    ]

    asObjectNoFail [
	<category: 'disabled'>
	^nil
    ]

    = aNumber [
	"Answer whether the receiver and aNumber identify the same number."

	<category: 'testing'>
	<primitive: VMpr_LargeInteger_eq>
	(aNumber isKindOf: Number) ifFalse: [^false].
	aNumber generality = self generality 
	    ifFalse: [^self retryEqualityCoercing: aNumber].
	self sign = aNumber sign ifFalse: [^false].
	self size = aNumber size ifFalse: [^false].
	self size to: 1
	    by: -1
	    do: [:index | (self at: index) = (aNumber at: index) ifFalse: [^false]].
	^true
    ]

    ~= aNumber [
	"Answer whether the receiver and aNumber identify different numbers."

	<category: 'testing'>
	<primitive: VMpr_LargeInteger_ne>
	(aNumber isKindOf: Number) ifFalse: [^true].
	aNumber generality = self generality 
	    ifFalse: [^self retryInequalityCoercing: aNumber].
	self sign = aNumber sign ifFalse: [^true].
	self size = aNumber size ifFalse: [^true].
	self size to: 1
	    by: -1
	    do: [:index | (self at: index) = (aNumber at: index) ifFalse: [^true]].
	^false
    ]

    < aNumber [
	"Answer whether the receiver is smaller than aNumber"

	<category: 'testing'>
	<primitive: VMpr_LargeInteger_lt>
	aNumber generality = self generality 
	    ifFalse: [^self retryRelationalOp: #< coercing: aNumber].
	self sign < aNumber sign ifTrue: [^true].
	self sign > aNumber sign ifTrue: [^false].
	self size > aNumber size ifTrue: [^self sign = -1].
	aNumber size to: 1
	    by: -1
	    do: 
		[:index | 
		(self at: index) < (aNumber at: index) ifTrue: [^true].
		(self at: index) > (aNumber at: index) ifTrue: [^false]].
	^false
    ]

    <= aNumber [
	"Answer whether the receiver is smaller than aNumber or equal to it"

	<category: 'testing'>
	<primitive: VMpr_LargeInteger_le>
	aNumber generality = self generality 
	    ifFalse: [^self retryRelationalOp: #<= coercing: aNumber].
	self sign < aNumber sign ifTrue: [^true].
	self sign > aNumber sign ifTrue: [^false].
	self size > aNumber size ifTrue: [^self sign = -1].
	aNumber size to: 1
	    by: -1
	    do: 
		[:index | 
		(self at: index) < (aNumber at: index) ifTrue: [^true].
		(self at: index) > (aNumber at: index) ifTrue: [^false]].
	^true
    ]

    > aNumber [
	"Answer whether the receiver is greater than aNumber"

	<category: 'testing'>
	<primitive: VMpr_LargeInteger_gt>
	aNumber generality = self generality 
	    ifFalse: [^self retryRelationalOp: #> coercing: aNumber].
	aNumber sign < self sign ifTrue: [^true].
	aNumber sign > self sign ifTrue: [^false].
	aNumber size > self size ifTrue: [^self sign = -1].
	self size to: 1
	    by: -1
	    do: 
		[:index | 
		(aNumber at: index) < (self at: index) ifTrue: [^true].
		(aNumber at: index) > (self at: index) ifTrue: [^false]].
	^false
    ]

    >= aNumber [
	"Answer whether the receiver is greater than aNumber or equal to it"

	<category: 'testing'>
	<primitive: VMpr_LargeInteger_ge>
	aNumber generality = self generality 
	    ifFalse: [^self retryRelationalOp: #>= coercing: aNumber].
	aNumber sign < self sign ifTrue: [^true].
	aNumber sign > self sign ifTrue: [^false].
	aNumber size > self size ifTrue: [^self sign = -1].
	self size to: 1
	    by: -1
	    do: 
		[:index | 
		(aNumber at: index) < (self at: index) ifTrue: [^true].
		(aNumber at: index) > (self at: index) ifTrue: [^false]].
	^true
    ]

    + aNumber [
	"Sum the receiver and aNumber, answer the result"

	<category: 'arithmetic'>
	self subclassResponsibility
    ]

    - aNumber [
	"Subtract aNumber from the receiver, answer the result"

	<category: 'arithmetic'>
	self subclassResponsibility
    ]

    * aNumber [
	"Multiply aNumber and the receiver, answer the result"

	<category: 'arithmetic'>
	| result |
	<primitive: VMpr_LargeInteger_times>
	aNumber sign = 0 ifTrue: [^0].
	aNumber generality = self generality 
	    ifFalse: [^self retryMultiplicationCoercing: aNumber].
	result := self abs multiply: aNumber abs.
	^self sign = aNumber sign ifTrue: [result] ifFalse: [result negated]
    ]

    / aNumber [
	"Divide aNumber and the receiver, answer the result (an Integer or
	 Fraction)"

	<category: 'arithmetic'>
	| gcd |
	aNumber sign = 0 ifTrue: [^self zeroDivide].
	self sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retryDivisionCoercing: aNumber].
	gcd := self gcd: aNumber.
	gcd = self 
	    ifTrue: [^Fraction numerator: 1 denominator: (aNumber divExact: gcd)].
	gcd = aNumber ifTrue: [^self divExact: gcd].
	^Fraction numerator: (self divExact: gcd)
	    denominator: (aNumber divExact: gcd)
    ]

    // aNumber [
	"Divide aNumber and the receiver, answer the result truncated towards
	 -infinity"

	<category: 'arithmetic'>
	<primitive: VMpr_LargeInteger_intDiv>
	aNumber sign = 0 ifTrue: [^self zeroDivide].
	self sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #// coercing: aNumber].
	self sign = aNumber sign 
	    ifFalse: [^self - aNumber + aNumber sign quo: aNumber].
	^self abs divide: aNumber abs
	    using: [:quo :rem :remNotZero | self species resultFrom: quo]
    ]

    rem: aNumber [
	"Divide aNumber and the receiver, answer the remainder truncated
	 towards 0"

	<category: 'arithmetic'>
	| result |
	<primitive: VMpr_LargeInteger_rem>
	aNumber sign = 0 ifTrue: [^self zeroDivide].
	self sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #rem: coercing: aNumber].
	^self abs divide: aNumber abs
	    using: [:quo :rem :remNotZero | self species resultFrom: rem]
    ]

    quo: aNumber [
	"Divide aNumber and the receiver, answer the result truncated
	 towards 0"

	<category: 'arithmetic'>
	| result |
	<primitive: VMpr_LargeInteger_quo>
	aNumber sign = 0 ifTrue: [^self zeroDivide].
	self sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #quo: coercing: aNumber].
	result := self abs divide: aNumber abs
		    using: [:quo :rem :remNotZero | self species resultFrom: quo].
	^self sign = aNumber sign ifTrue: [result] ifFalse: [result negated]
    ]

    divExact: aNumber [
	"Dividing receiver by arg assuming that the remainder is zero, and answer
	 the result"

	<category: 'arithmetic'>
	| result |
	<primitive: VMpr_LargeInteger_divExact>
	aNumber sign = 0 
	    ifTrue: 
		["Same as quo:, not worthwhile to implement it in Smalltalk."

		^self zeroDivide].
	self sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #divExact: coercing: aNumber].
	result := self abs divide: aNumber abs
		    using: [:quo :rem :remNotZero | self species resultFrom: quo].
	^self sign = aNumber sign ifTrue: [result] ifFalse: [result negated]
    ]

    \\ aNumber [
	"Divide aNumber and the receiver, answer the remainder truncated
	 towards -infinity"

	<category: 'arithmetic'>
	<primitive: VMpr_LargeInteger_modulo>
	aNumber sign = 0 ifTrue: [^self zeroDivide].
	self sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #\\ coercing: aNumber].
	aNumber sign < 0 ifTrue: [^(self negated \\ aNumber negated) negated].
	^self abs divide: aNumber
	    using: 
		[:quo :rem :remNotZero | 
		"must be positive"

		| remInteger |
		remInteger := self species resultFrom: rem.
		(remNotZero and: [self negative]) 
		    ifTrue: [aNumber - remInteger]
		    ifFalse: [remInteger]]
    ]

    estimatedLog [
	"Answer an estimate of (self abs floorLog: 10)"

	<category: 'arithmetic'>
	^(self size asFloatD * 8.0 / FloatD log10Base2) ceiling
    ]

    negated [
	"Answer the receiver's negated"

	<category: 'arithmetic'>
	| newBytes carry a |
	<primitive: VMpr_LargeInteger_negated>
	newBytes := ByteArray new: self size + 1.
	carry := 256.
	1 to: self size
	    do: 
		[:index | 
		a := carry - (self at: index).
		a < 256 
		    ifTrue: [carry := 255]
		    ifFalse: 
			[carry := 256.
			a := a - 256].
		newBytes at: index put: a].
	newBytes at: newBytes size put: (self mostSignificantByte bitXor: 255).
	^self species resultFrom: newBytes
    ]

    lowBit [
	"Return the index of the lowest order 1 bit of the receiver."

	<category: 'bit operations'>
	| each |
	1 to: self size
	    do: 
		[:index | 
		(each := self digitAt: index) = 0 
		    ifFalse: [^index * 8 - 7 + (TrailingZeros at: each)]].
	^self highBit
    ]

    bitAnd: aNumber [
	"Answer the receiver ANDed with aNumber"

	<category: 'bit operations'>
	| newBytes |
	<primitive: VMpr_LargeInteger_bitAnd>
	aNumber isInteger 
	    ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #bitAnd: coercing: aNumber].
	newBytes := ByteArray new: (self size max: aNumber size).
	1 to: newBytes size
	    do: [:index | newBytes at: index put: ((self at: index) bitAnd: (aNumber at: index))].
	^self species resultFrom: newBytes
    ]

    bitAt: aNumber [
	"Answer the aNumber-th bit in the receiver, where the LSB is 1"

	<category: 'bit operations'>
	| bit |
	bit := aNumber - 1.
	^(self at: bit // 8 + 1) bitAt: bit \\ 8 + 1
    ]

    bitInvert [
	"Answer the receiver's 1's complement"

	<category: 'bit operations'>
	| bytes |
	<primitive: VMpr_LargeInteger_bitInvert>
	bytes := ByteArray new: self size + 1.
	bytes at: bytes size put: (self mostSignificantByte bitXor: 255).
	1 to: self size
	    do: [:index | bytes at: index put: ((self at: index) bitXor: 255)].
	^self species resultFrom: bytes
    ]

    bitOr: aNumber [
	"Answer the receiver ORed with aNumber"

	<category: 'bit operations'>
	| newBytes |
	<primitive: VMpr_LargeInteger_bitOr>
	aNumber isInteger 
	    ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #bitOr: coercing: aNumber].
	newBytes := ByteArray new: (self size max: aNumber size).
	1 to: newBytes size
	    do: [:index | newBytes at: index put: ((self at: index) bitOr: (aNumber at: index))].
	^self species resultFrom: newBytes
    ]

    bitXor: aNumber [
	"Answer the receiver XORed with aNumber"

	<category: 'bit operations'>
	| newBytes |
	<primitive: VMpr_LargeInteger_bitXor>
	aNumber isInteger 
	    ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
	aNumber generality = self generality 
	    ifFalse: [^self retry: #bitXor: coercing: aNumber].
	newBytes := ByteArray new: (self size max: aNumber size).
	1 to: newBytes size
	    do: [:index | newBytes at: index put: ((self at: index) bitXor: (aNumber at: index))].
	^self species resultFrom: newBytes
    ]

    bitShift: aNumber [
	"Answer the receiver shifted by aNumber places"

	<category: 'bit operations'>
	<primitive: VMpr_LargeInteger_bitShift>
	aNumber isInteger 
	    ifFalse: [^SystemExceptions.WrongClass signalOn: aNumber mustBe: Integer].
	^aNumber > 0 
	    ifTrue: [self basicLeftShift: aNumber]
	    ifFalse: [self basicRightShift: aNumber negated]
    ]

    raisedToInteger: n [
	"Return self raised to the anInteger-th power"

	"For LargeIntegers only, it pays off to strip the rightmost
	 0 bits and put them back later with a left shift..."

	<category: 'accessing'>
	| nbit |
	nbit := 1.
	[(self bitAt: nbit) = 0] whileTrue: [nbit := nbit + 1].
	nbit = 1 ifTrue: [^super raisedToInteger: n].
	nbit := nbit - 1.
	^((self bitShift: nbit negated) raisedToInteger: n) bitShift: nbit * n
    ]

    basicLeftShift: totalShift [
	"Private - Left shift the receiver by aNumber places"

	<category: 'primitive operations'>
	| newBytes byteShift carry shift a |
	byteShift := totalShift // 8.
	shift := totalShift bitAnd: 7.
	newBytes := ByteArray new: (totalShift + 7) // 8 + self size.

	"That `+ 1' in the #to:do: performs an extra iteration that stores the
	 last carry in the extra byte reserved in the previous statement"
	carry := 0.
	1 to: newBytes size - byteShift
	    do: 
		[:index | 
		a := ((self at: index) bitShift: shift) + carry.
		carry := a bitShift: -8.
		a := a bitAnd: 255.
		newBytes at: index + byteShift put: a].
	^self species resultFrom: newBytes
    ]

    basicRightShift: totalShift [
	"Private - Right shift the receiver by 'shift' places"

	<category: 'primitive operations'>
	| shift newBytes byteShift carryShift x a |
	byteShift := totalShift // 8.
	shift := (totalShift bitAnd: 7) negated.
	carryShift := 8 + shift.
	self size <= (byteShift - 1) ifTrue: [^0].
	newBytes := ByteArray new: self size - byteShift + 1.
	x := (self at: byteShift + 1) bitShift: shift.
	byteShift + 1 to: self size
	    do: 
		[:j | 
		a := self at: j + 1.
		newBytes at: j - byteShift put: ((a bitShift: carryShift) bitAnd: 255) + x.
		x := a bitShift: shift].
	newBytes at: newBytes size put: self mostSignificantByte.
	^self species resultFrom: newBytes
    ]

    largeNegated [
	"Private - Same as negated, but always answer a LargeInteger"

	<category: 'primitive operations'>
	| newBytes carry a |
	newBytes := ByteArray new: self size + 1.
	carry := 256.
	1 to: self size
	    do: 
		[:index | 
		a := carry - (self at: index).
		a < 256 
		    ifTrue: [carry := 255]
		    ifFalse: 
			[carry := 256.
			a := a - 256].
		newBytes at: index put: a].
	newBytes at: newBytes size put: (self mostSignificantByte bitXor: 255).
	^self species from: newBytes
    ]

    zero [
	"Coerce 0 to the receiver's class"

	<category: 'coercion'>
	^Zero
    ]

    unity [
	"Coerce 1 to the receiver's class"

	<category: 'coercion'>
	^One
    ]

    coerce: aNumber [
	"Truncate the number; if needed, convert it to LargeInteger
	 representation."

	<category: 'coercion'>
	aNumber = 0 ifTrue: [^Zero].
	^aNumber isInteger 
	    ifTrue: [self species fromInteger: aNumber]
	    ifFalse: [self species fromInteger: aNumber truncated]
    ]

    generality [
	"Answer the receiver's generality"

	<category: 'coercion'>
	^200
    ]

    mostSignificantByte [
	"Private - Answer the value of the most significant byte"

	<category: 'private'>
	self subclassResponsibility
    ]

    species [
	<category: 'private'>
	^LargeInteger
    ]

    bytes [
	<category: 'private'>
	| bytes |
	bytes := ByteArray new: self size + 1.
	bytes 
	    replaceFrom: 1
	    to: self size
	    with: self
	    startingAt: 1.
	bytes at: bytes size put: self mostSignificantByte.
	^bytes
    ]

    setBytes: aByteArray [
	<category: 'private'>
	self 
	    primReplaceFrom: 1
	    to: self size
	    with: aByteArray
	    startingAt: 1
    ]
]



LargeInteger subclass: LargeNegativeInteger [
    
    <shape: #byte>
    <category: 'Language-Data types'>
    <comment: '
Just like my brother LargePositiveInteger, I provide a few methods that
allow LargeInteger to determine the sign of a large integer in a fast way
during its calculations. For example, I know that I am smaller than any
LargePositiveInteger'>

    + aNumber [
	"Sum the receiver and aNumber, answer the result"

	"All we have to do is convert the two numbers to two positive
	 numbers and make LargePositiveInteger do the calculation.
	 Use #largeNegated to save some coercions."

	<category: 'reverting to LargePositiveInteger'>
	<primitive: VMpr_LargeInteger_plus>
	aNumber sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retrySumCoercing: aNumber].
	^aNumber sign = -1 
	    ifTrue: [(self largeNegated + aNumber largeNegated) negated]
	    ifFalse: [(self largeNegated - aNumber) negated]
    ]

    - aNumber [
	"Subtract aNumber from the receiver, answer the result"

	"All we have to do is convert the two numbers to two positive
	 numbers and make LargePositiveInteger do the calculation.
	 Use #largeNegated to save some coercions."

	<category: 'reverting to LargePositiveInteger'>
	<primitive: VMpr_LargeInteger_minus>
	aNumber sign = 0 ifTrue: [^self].
	aNumber generality = self generality 
	    ifFalse: [^self retryDifferenceCoercing: aNumber].
	^aNumber sign = -1 
	    ifTrue: [(self largeNegated - aNumber largeNegated) negated]
	    ifFalse: [(self largeNegated + aNumber) negated]
    ]

    highBit [
	"Answer the receiver's highest bit's index"

	<category: 'reverting to LargePositiveInteger'>
	^(self at: self size) = 255 
	    ifTrue: [^8 * self size - 16 + ((self at: self size - 1) - 256) highBit]
	    ifFalse: [^8 * self size - 8 + ((self at: self size) - 256) highBit]
    ]

    gcd: anInteger [
	"Return the greatest common divisor between the receiver and anInteger"

	<category: 'reverting to LargePositiveInteger'>
	<primitive: VMpr_LargeInteger_gcd>
	^self negated gcd: anInteger abs
    ]

    positive [
	"Answer whether the receiver is >= 0"

	<category: 'numeric testing'>
	^false
    ]

    strictlyPositive [
	"Answer whether the receiver is > 0"

	<category: 'numeric testing'>
	^false
    ]

    negative [
	"Answer whether the receiver is < 0"

	<category: 'numeric testing'>
	^true
    ]

    abs [
	"Answer the receiver's absolute value."

	"This is surely a large integer (while `aLargePositiveInteger negated'
	 might be the smallest small integer)."

	<category: 'numeric testing'>
	<primitive: VMpr_LargeInteger_negated>
	^self largeNegated
    ]

    sign [
	"Answer the receiver's sign"

	<category: 'numeric testing'>
	^-1
    ]

    asFloatD [
	"Answer the receiver converted to a FloatD"

	<category: 'converting'>
	^self negated asFloatD negated
    ]

    asFloatE [
	"Answer the receiver converted to a FloatE"

	<category: 'converting'>
	^self negated asFloatE negated
    ]

    asFloatQ [
	"Answer the receiver converted to a FloatQ"

	<category: 'converting'>
	^self negated asFloatQ negated
    ]

    mostSignificantByte [
	"Private - Answer the value of the most significant byte"

	<category: 'private'>
	^255
    ]
]



LargeInteger subclass: LargePositiveInteger [
    
    <shape: #byte>
    <category: 'Language-Data types'>
    <comment: '
Just like my brother LargeNegativeInteger, I provide a few methods that
allow LargeInteger to determine the sign of a large integer in a fast way
during its calculations.  For example, I know that I am larger than any
LargeNegativeInteger.  In addition I implement the guts of arbitrary
precision arithmetic.'>

    + aNumber [
	"Sum the receiver and aNumber, answer the result"

	<category: 'arithmetic'>
	| newBytes carry a b result |
	<primitive: VMpr_LargeInteger_plus>
	aNumber sign = 0 ifTrue: [^self].
	aNumber sign = -1 ifTrue: [^self - aNumber negated].
	aNumber generality = self generality 
	    ifFalse: [^self retrySumCoercing: aNumber].
	newBytes := ByteArray new: (self size max: aNumber size) + 1.
	carry := 0.
	1 to: newBytes size - 1
	    do: 
		[:index | 
		result := (self at: index) + (aNumber at: index) + carry.
		result > 255 
		    ifTrue: 
			[carry := 1.
			result := result - 256]
		    ifFalse: [carry := 0].
		newBytes at: index put: result].
	newBytes at: newBytes size put: carry.
	^LargeInteger resultFrom: newBytes
    ]

    - aNumber [
	"Subtract aNumber from the receiver, answer the result"

	<category: 'arithmetic'>
	| newBytes carry a b result |
	<primitive: VMpr_LargeInteger_minus>
	aNumber sign = 0 ifTrue: [^self].
	aNumber sign = -1 ifTrue: [^self + aNumber negated].
	aNumber generality = self generality 
	    ifFalse: [^self retryDifferenceCoercing: aNumber].
	newBytes := ByteArray new: (self size max: aNumber size) + 1.
	carry := 0.
	1 to: newBytes size - 1
	    do: 
		[:index | 
		result := (self at: index) - (aNumber at: index) + carry.
		result < 0 
		    ifTrue: 
			[carry := -1.
			result := result + 256]
		    ifFalse: [carry := 0].
		newBytes at: index put: result].
	newBytes at: newBytes size put: (carry bitAnd: 255).
	^LargeInteger resultFrom: newBytes
    ]

    gcd: anInteger [
	"Calculate the GCD between the receiver and anInteger"

	"Binary GCD - See Knuth `Seminumerical algorithms', Vol 2, 4.5.2
	 It was adapted to remove the variable `r' and to only work with
	 unsigned numbers"

	<category: 'arithmetic'>
	| adjust t tmp u v |
	<primitive: VMpr_LargeInteger_gcd>
	(self sign bitAnd: anInteger sign) = 0 ifTrue: [^self + anInteger].
	u := self bytes.
	v := anInteger abs.
	v generality = self generality ifFalse: [v := self coerce: v].
	v := v bytes.

	"Divide u and v by 2 as long as they are both even"
	adjust := t := self bytesTrailingZeros: u.
	self bytesRightShift: u big: t.
	adjust := adjust min: (t := self bytesTrailingZeros: v).
	self bytesRightShift: v big: t.
	u size = v size 
	    ifFalse: 
		[u size < v size 
		    ifTrue: [u := u copyGrowTo: v size]
		    ifFalse: [v := v copyGrowTo: u size]].

	"Well, this is it -- the stuff up to this point was just set up"
	
	[t := self 
		    bytes: u
		    from: 1
		    compare: v.
	t = 0] 
		whileFalse: 
		    [t < 0 
			ifTrue: 
			    [t := v.
			    v := u.
			    u := t].
		    self 
			bytes: u
			from: 1
			subtract: v.
		    ((u at: 1) bitAnd: 1) = 0 
			ifTrue: 
			    [t := self bytesTrailingZeros: u.
			    self bytesRightShift: u big: t]].
	self bytesLeftShift: u big: adjust.
	^self species resultFrom: u
    ]

    highBit [
	"Answer the receiver's highest bit's index"

	<category: 'arithmetic'>
	^(self at: self size) = 0 
	    ifTrue: [^8 * self size - 8 - (LeadingZeros at: (self at: self size - 1))]
	    ifFalse: [^8 * self size - (LeadingZeros at: (self at: self size))]
    ]

    positive [
	"Answer whether the receiver is >= 0"

	<category: 'numeric testing'>
	^true
    ]

    strictlyPositive [
	"Answer whether the receiver is > 0"

	<category: 'numeric testing'>
	^true
    ]

    negative [
	"Answer whether the receiver is < 0"

	<category: 'numeric testing'>
	^false
    ]

    abs [
	"Answer the receiver's absolute value"

	<category: 'numeric testing'>
	^self
    ]

    sign [
	"Answer the receiver's sign"

	<category: 'numeric testing'>
	^1
    ]

    asFloat: characterization [
	"Answer the receiver converted to a Float"

	<category: 'private'>
	"Check for number bigger than maximum mantissa"

	| nTruncatedBits mantissa exponent mask trailingBits inexact carry |
	nTruncatedBits := self highBit - characterization precision.
	nTruncatedBits <= 0 ifTrue: [^self fastAsFloat: characterization].
	mantissa := self bitShift: nTruncatedBits negated.
	exponent := nTruncatedBits.

	"Apply IEEE 754 round to nearest even default rounding mode"
	carry := self bitAt: nTruncatedBits.
	(carry = 1 and: [mantissa odd or: [self lowBit < nTruncatedBits]]) 
	    ifTrue: [mantissa := mantissa + 1].
	^(characterization coerce: mantissa) timesTwoPower: exponent
    ]

    fastAsFloat: characterization [
	"Conversion can be exact, construct Float by successive mul add operations"

	<category: 'private'>
	| result byte |
	byte := characterization coerce: 256.
	result := characterization coerce: 0.
	self size to: 1
	    by: -1
	    do: [:index | result := result * byte + (self at: index)].
	^result
    ]

    mostSignificantByte [
	"Private - Answer the value of the most significant byte"

	<category: 'private'>
	^0
    ]

    asFloatD [
	"Answer the receiver converted to a FloatD"

	<category: 'converting'>
	<primitive: VMpr_LargeInteger_asFloatD>
	^self asFloat: FloatD
    ]

    asFloatE [
	"Answer the receiver converted to a FloatE"

	<category: 'converting'>
	<primitive: VMpr_LargeInteger_asFloatE>
	^self asFloat: FloatE
    ]

    asFloatQ [
	"Answer the receiver converted to a FloatQ"

	<category: 'converting'>
	<primitive: VMpr_LargeInteger_asFloatQ>
	^self asFloat: FloatQ
    ]

    replace: str withStringBase: radix [
	"Return in a String str the base radix representation of the
	 receiver."

	<category: 'converting'>
	| digits source quo t rem where |
	source := self.
	quo := ByteArray new: self size.
	where := str size.
	self size to: 1
	    by: -1
	    do: 
		[:i | 
		
		[rem := 0.
		i to: 1
		    by: -1
		    do: 
			[:j | 
			t := (rem bitShift: 8) + (source at: j).
			quo at: j put: t // radix.
			rem := t \\ radix].
		str at: where put: (Character digitValue: rem).
		where := where - 1.
		source := quo.
		(source at: i) = 0] 
			whileFalse].
	^str
    ]

    isSmall [
	"Private - Answer whether the receiver is small enough to employ simple
	 scalar algorithms for division and multiplication"

	<category: 'primitive operations'>
	^self size <= 2 and: [(self at: 2) = 0]
    ]

    divide: aNumber using: aBlock [
	"Private - Divide the receiver by aNumber (unsigned division). Evaluate
	 aBlock passing the result ByteArray, the remainder ByteArray, and
	 whether the division had a remainder"

	<category: 'primitive operations'>
	| result a b |
	aNumber isSmall 
	    ifTrue: 
		[result := ByteArray new: self size.
		b := 0.
		self size to: 1
		    by: -1
		    do: 
			[:j | 
			a := (b bitShift: 8) + (self at: j).
			result at: j put: a // (aNumber at: 1).
			b := a \\ (aNumber at: 1)].
		^aBlock 
		    value: result
		    value: (ByteArray with: b with: 0)
		    value: b ~= 0].

	"special case: numerator < denominator"
	self size < aNumber size 
	    ifTrue: 
		[^aBlock 
		    value: ZeroBytes
		    value: self
		    value: true].
	self size > aNumber size 
	    ifTrue: 
		[result := self primDivide: aNumber.
		^aBlock 
		    value: result key
		    value: result value
		    value: (result value anySatisfy: [:each | each ~= 0])].
	self size to: 1
	    by: -1
	    do: 
		[:index | 
		a := self at: index.
		b := aNumber at: index.
		b > a 
		    ifTrue: 
			[^aBlock 
			    value: ZeroBytes
			    value: self
			    value: true].
		a > b 
		    ifTrue: 
			[result := self primDivide: aNumber.
			^aBlock 
			    value: result key
			    value: result value
			    value: (result value anySatisfy: [:each | each ~= 0])]].
	"Special case: numerator = denominator"
	^aBlock 
	    value: OneBytes
	    value: ZeroBytes
	    value: false
    ]

    multiply: aNumber [
	"Private - Multiply the receiver by aNumber (unsigned multiply)"

	<category: 'primitive operations'>
	"Special case - other factor < 255"

	| newBytes byte carry index digit start |
	aNumber isSmall 
	    ifTrue: 
		[^self species from: (self bytes: self bytes multiply: (aNumber at: 1))].
	start := 1.
	[(aNumber at: start) = 0] whileTrue: [start := start + 1].
	newBytes := ByteArray new: self size + aNumber size + 2.
	1 to: self size
	    do: 
		[:indexA | 
		digit := self at: indexA.
		digit = 0 
		    ifFalse: 
			[carry := 0.
			index := indexA + start - 1.
			start to: aNumber size
			    do: 
				[:indexB | 
				byte := digit * (aNumber at: indexB) + carry + (newBytes at: index).
				carry := byte bitShift: -8.
				newBytes at: index put: (byte bitAnd: 255).
				index := index + 1].
			newBytes at: indexA + aNumber size put: carry]].
	"If I multiply two large integers, the result is large, so use #from:..."
	^self species from: newBytes
    ]

    bytes: bytes multiply: anInteger [
	"Private - Multiply the bytes in bytes by anInteger, which must be < 255.
	 Put the result back in bytes."

	<category: 'helper byte-level methods'>
	| byte carry |
	carry := 0.
	1 to: bytes size
	    do: 
		[:index | 
		byte := (bytes at: index) * anInteger + carry.
		carry := byte bitShift: -8.
		bytes at: index put: (byte bitAnd: 255)].
	carry > 0 ifTrue: [bytes at: bytes size - 1 put: carry].
	^bytes
    ]

    bytes: byteArray1 from: j compare: byteArray2 [
	"Private - Answer the sign of byteArray2 - byteArray1; the
	 j-th byte of byteArray1 is compared with the first of byteArray2,
	 the j+1-th with the second, and so on."

	<category: 'helper byte-level methods'>
	| a b i |
	i := byteArray2 size.
	j + byteArray2 size - 1 to: j
	    by: -1
	    do: 
		[:index | 
		b := byteArray2 at: i.
		a := byteArray1 at: index.
		a < b ifTrue: [^-1].
		a > b ifTrue: [^1].
		i := i - 1].
	^0
    ]

    bytes: byteArray1 from: j subtract: byteArray2 [
	"Private - Sutract the bytes in byteArray2 from those in byteArray1"

	<category: 'helper byte-level methods'>
	| carry a i |
	carry := 256.
	i := 1.
	j to: j + byteArray2 size - 1
	    do: 
		[:index | 
		a := (byteArray1 at: index) - (byteArray2 at: i) + carry.
		a < 256 
		    ifTrue: [carry := 255]
		    ifFalse: 
			[carry := 256.
			a := a - 256].
		byteArray1 at: index put: a.
		i := i + 1]
    ]

    bytesLeftShift: aByteArray [
	"Private - Left shift by 1 place the bytes in aByteArray"

	<category: 'helper byte-level methods'>
	| carry a |
	carry := 0.
	1 to: aByteArray size
	    do: 
		[:index | 
		a := aByteArray at: index.
		a := a + a + carry.
		carry := a bitShift: -8.
		a := a bitAnd: 255.
		aByteArray at: index put: a]
    ]

    bytesLeftShift: aByteArray n: shift [
	"Private - Left shift by shift places the bytes in aByteArray
	 (shift <= 7)"

	<category: 'helper byte-level methods'>
	| carry a |
	carry := 0.
	1 to: aByteArray size
	    do: 
		[:index | 
		a := aByteArray at: index.
		a := (a bitShift: shift) + carry.
		carry := a bitShift: -8.
		aByteArray at: index put: (a bitAnd: 255)]
    ]

    bytesLeftShift: aByteArray big: totalShift [
	"Private - Left shift the bytes in aByteArray by totalShift places"

	<category: 'helper byte-level methods'>
	| newBytes byteShift shift a last |
	totalShift = 0 ifTrue: [^self].
	byteShift := totalShift // 8.
	shift := totalShift bitAnd: 7.
	last := 0.
	aByteArray size - 1 to: byteShift + 1
	    by: -1
	    do: 
		[:index | 
		a := aByteArray at: index - byteShift.
		a := a bitShift: shift.
		aByteArray at: index + 1 put: last + (a bitShift: -8).
		last := a bitAnd: 255].
	aByteArray at: byteShift + 1 put: last.
	1 to: byteShift do: [:i | aByteArray at: i put: 0]
    ]

    bytesRightShift: aByteArray big: totalShift [
	"Private - Right shift the bytes in aByteArray by totalShift places"

	<category: 'helper byte-level methods'>
	| shift byteShift carryShift x a |
	totalShift = 0 ifTrue: [^self].
	byteShift := totalShift // 8.
	shift := (totalShift bitAnd: 7) negated.
	carryShift := 8 + shift.
	x := (aByteArray at: byteShift + 1) bitShift: shift.
	byteShift + 2 to: aByteArray size
	    do: 
		[:j | 
		a := aByteArray at: j.
		aByteArray at: j - byteShift - 1
		    put: ((a bitShift: carryShift) bitAnd: 255) + x.
		x := a bitShift: shift].
	aByteArray at: aByteArray size - byteShift put: x.
	aByteArray size - byteShift + 1 to: aByteArray size
	    do: [:i | aByteArray at: i put: 0]
    ]

    bytesRightShift: bytes n: aNumber [
	"Private - Right shift the bytes in `bytes' by 'aNumber' places
	 (shift <= 7)"

	<category: 'helper byte-level methods'>
	| shift carryShift x a |
	aNumber = 0 ifTrue: [^self].
	shift := aNumber negated.
	carryShift := 8 + shift.
	x := (bytes at: 1) bitShift: shift.
	2 to: bytes size
	    do: 
		[:j | 
		a := bytes at: j.
		bytes at: j - 1 put: ((a bitShift: carryShift) bitAnd: 255) + x.
		x := a bitShift: shift].
	bytes at: bytes size put: x
    ]

    bytesTrailingZeros: bytes [
	"Private - Answer the number of trailing zero bits in the receiver"

	<category: 'helper byte-level methods'>
	| each |
	1 to: bytes size
	    do: 
		[:index | 
		(each := bytes at: index) = 0 
		    ifFalse: [^index * 8 - 8 + (TrailingZeros at: each)]].
	^bytes size * 8
    ]

    primDivide: rhs [
	"Private - Implements Knuth's divide and correct algorithm from
	 `Seminumerical Algorithms' 3rd Edition, section 4.3.1 (which
	 is basically an enhanced version of the divide `algorithm' for
	 two-digit divisors which is taught in primary school!!!)"

	<category: 'helper byte-level methods'>
	"Leading zeros in `v'"

	"Cached v at: n, v at: n - 1, j + n, j + n - 1"

	"Cached `u size - v size' and `v size'"

	"High 2 bytes of `u'"

	"guess times the divisor (v)"

	"Quotient"

	"guess at the quotient byte and remainder"

	"The operands"

	"0. Initialize everything"

	| d vn vn1 jn jn1 m n high sub q guess rem u v |
	u := self bytes.
	v := rhs bytes.
	n := v size.
	sub := ByteArray new: n.
	m := u size - n.
	q := ByteArray new: m + 2.

	"1. Normalize the divisor
	 Knuth's algorithm is based on an initial guess for the quotient. The
	 guess is guaranteed to be no more than 2 in error, if v[n] >= 128.
	 If we multiply both vectors by the same value, the result of division
	 remains the same, so we can always guarantee that v[n] is
	 sufficiently large.
	 While the algorithm calls for d to be 255 / v[n], we will set d to a
	 simple left shift count because this is fast and nicely approximates that"
	[(v at: n) = 0] whileTrue: [n := n - 1].
	(v at: n) < 128 
	    ifFalse: [d := 0]
	    ifTrue: 
		["Multiply each value by the normalizing value"

		d := LeadingZeros at: (v at: n).
		self bytesLeftShift: u n: d.
		self bytesLeftShift: v n: d].
	vn := v at: n.	"Cache common values"
	vn1 := v at: n - 1.
	m + 1 to: 1
	    by: -1
	    do: 
		[:j | 
		jn := j + n.
		jn1 := jn - 1.

		"2. Calculate the quotient `guess'.
		 Remember that our guess will be generated such that
		 guess - 2 <= quotient <= guess.  Thus, we generate our first
		 guess at quotient, and keep decrementing by one until we have found
		 the real quotient."
		high := (u at: jn) * 256 + (u at: jn1).
		guess := high // vn.
		rem := high \\ vn.
		"(Array with: u with: high with: guess with: rem) printNl."

		"4. We know now that the quotient guess is most likely ok, but possibly
		 the real quotient is guess - 1 or guess - 2.  Multiply the divisor by the
		 guess and compare the result with the dividend."
		sub 
		    replaceFrom: 1
		    to: sub size
		    with: v
		    startingAt: 1.
		self bytes: sub multiply: guess.
		[(self 
		    bytes: u
		    from: j
		    compare: sub) >= 0] 
		    whileFalse: 
			["Our guess was one off, so we need to readjust it by one and subtract
			 back the divisor (since we multiplied by one in excess)."

			guess := guess - 1.
			self 
			    bytes: sub
			    from: 1
			    subtract: v].
		"(Array with: u with: sub with: guess with: rem) printNl."

		"Got another byte of the quotient"
		self 
		    bytes: u
		    from: j
		    subtract: sub.
		q at: j put: guess].
	"Readjust the remainder"
	self bytesRightShift: u n: d.
	^q -> u
    ]
]



LargePositiveInteger subclass: LargeZeroInteger [
    
    <shape: #byte>
    <category: 'Language-Data types'>
    <comment: '
I am quite a strange class. Indeed, the concept of a "large integer"
that is zero is a weird one. Actually my only instance is zero but
is represented like LargeIntegers, has the same generality as
LargeIntegers, and so on. That only instance is stored in the class
variable Zero, and is used in arithmetical methods, when we have to
coerce a parameter that is zero.'>

    size [
	<category: 'accessing'>
	^0
    ]

    hash [
	<category: 'accessing'>
	^0
    ]

    at: anIndex [
	<category: 'accessing'>
	^0
    ]

    strictlyPositive [
	"Answer whether the receiver is > 0"

	<category: 'numeric testing'>
	^false
    ]

    sign [
	"Answer the receiver's sign"

	<category: 'numeric testing'>
	^0
    ]

    + aNumber [
	"Sum the receiver and aNumber, answer the result"

	<category: 'arithmetic'>
	^aNumber
    ]

    - aNumber [
	"Subtract aNumber from the receiver, answer the result"

	<category: 'arithmetic'>
	^aNumber negated
    ]

    * aNumber [
	"Multiply aNumber and the receiver, answer the result"

	<category: 'arithmetic'>
	^0
    ]

    / aNumber [
	"Divide aNumber and the receiver, answer the result (an Integer or
	 Fraction)"

	<category: 'arithmetic'>
	^0
    ]

    // aNumber [
	"Divide aNumber and the receiver, answer the result truncated towards
	 -infinity"

	<category: 'arithmetic'>
	^0
    ]

    rem: aNumber [
	"Divide aNumber and the receiver, answer the remainder truncated
	 towards 0"

	<category: 'arithmetic'>
	^0
    ]

    quo: aNumber [
	"Divide aNumber and the receiver, answer the result truncated
	 towards 0"

	<category: 'arithmetic'>
	^0
    ]

    \\ aNumber [
	"Divide aNumber and the receiver, answer the remainder truncated
	 towards -infinity"

	<category: 'arithmetic'>
	^0
    ]

    replace: str withStringBase: radix [
	"Return in a string the base radix representation of the receiver."

	<category: 'printing'>
	str at: str size put: $0.
	^str
    ]
]