This file is indexed.

/usr/share/gcompris/python/connect4p/minmax.py is in gcompris-data 12.01-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#  gcompris - connect4
#
# Copyright (C) 2005, 2008 Laurent Lacheny
#
#   This program is free software; you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation; either version 3 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#
#   You should have received a copy of the GNU General Public License
#   along with this program; if not, see <http://www.gnu.org/licenses/>.

#
# This code comes from the project 4stattack
# http://forcedattack.sourceforge.net/
#
#########################################################################
#                            4st Attack 2                               #
#########################################################################
# Created by:                                                           #
# Developer            - "slm" - Jeroen Vloothuis                       #
# Graphics             - "Korruptor" - Gareth Noyce                     #
# Music                - "theGREENzebra"                                #
#########################################################################
# Specail thanks:                                                       #
# chakie(Jan Elkholm)    - letting me "embrace and extend" his gui lib  #
# Mighty(Xander Soldaat) - for the Makefile and the Debian packages     #
# Han                    - for the rpms                                 #
# jk                     - for the FreeBSD port                         #
# Tjerk Nan              - for the Windows version                      #
# Micon                  - for the webdesign                            #
# Everyone in #pygame and the opensource community in general           #
#########################################################################
# This software is licensed under the GPL - General Public License      #
#########################################################################

import rules
from player import *
from random import *
import copy
from board import *

class Node:
  def __init__(self, board, move, player):
    self.board = board
    #self.parent = parent
    self.value = 0
    self.childs = []
    self.move = move
    self.player = player

  def __repr__(self):
    if self.childs > 1:
      number=0
      for child in self.childs:
        number=number+1
      return "Has %s child(s)" % number
    return "STATE"

class MinMax(Player):
  type = 'AI'

  def __init__(self, difficulty, f):
    self.search_depth = difficulty
    self.f = f

  def setDifficulty(self, difficulty):
    self.search_depth = difficulty

  def evaluate(self, node, player, opponent, depth):
    if len(node.childs) > 0:
      list = []
      for child in node.childs:
        list.append(child.value)
      if node.player != player:
        node.value = min(list)
        #print 'min =', node.value,
      else:
        node.value = max(list)
        #print 'max =', node.value,

    else:
      node.value = self.score(node, player, opponent)  / (depth + 1)

  def score(self, node, player, opponent):
    return int(random() * 100) - 50


  def makeBoard(self, move, board, player):
    temp_board = copy.deepcopy(board)
    temp_board.move(move, player)
    return temp_board

  def listMoves(self, board, player):
    checkmove = rules.isMoveLegal

    options = []
    for move in range(7):
      if checkmove(board, move):
        options.append(move)
    return options

  def statespace(self, node, depth, current_player, player, opponent):
    self.f()
    if rules.isWinner(node.board, opponent):
      #print "a lose up ahead"
      node.value = -10000 + depth
      return node
    elif rules.isWinner(node.board, player):
      node.value = 10000 - depth
      return node

    elif self.listMoves(node.board, 0) < 1:
      self.evaluate(node, player, opponent, depth)
      return node
    elif depth < self.search_depth:
      if current_player==2:
        next_player = 1
      else:
        next_player = 2
      for move in self.listMoves(node.board, current_player):
        node.board.move(move, current_player)

        node.childs.append(self.statespace(Node( node.board, move, next_player), depth+1, next_player, player, opponent))
        node.board.undomove(move)
    self.evaluate(node, player, opponent, depth)
    #print 'v=%d p=%d' %(node.value,node.player)
    return node


  def doMove(self, current_board, player, event):
    board = copy.deepcopy(current_board)

    if player == 1: opponent = 2
    else: opponent = 1

    node = Node(board, 0, player)

    node =  self.statespace( node, 0, player, player, opponent);

    bestscore = -100000
    best_moves = []
    #print "New Round"
    for child in node.childs:
      #print "Child value=", child.value, "move=", child.board.last_move
      if child.value >= bestscore:
        #if rules.isMoveLegal(board, child.board.last_move):
        if bestscore == child.value:
          #print "Move added"
          best_moves.append(child.move)
        else:
          #print "New best move"
          bestscore = child.value
          best_moves = [child.move]
    return best_moves[int(random()*len(best_moves))]

  def gameOver(self, move):
    return None
#try:
#  psyco.bind(MinMax)
#  psyco.bind(Node)
#except:
#  pass