/usr/share/common-lisp/source/mcclim/regions.lisp is in cl-mcclim 0.9.6.dfsg.cvs20100315-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 | ;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: CLIM-INTERNALS; -*-
;;; --------------------------------------------------------------------------------------
;;; Title: The CLIM Region Datatype
;;; Created: 1998-12-02 19:26
;;; Author: Gilbert Baumann <unk6@rz.uni-karlsruhe.de>
;;; License: LGPL (See file COPYING for details).
;;; $Id: regions.lisp,v 1.39 2009-06-03 20:33:16 ahefner Exp $
;;; --------------------------------------------------------------------------------------
;;; (c) copyright 1998,1999,2001 by Gilbert Baumann
;;; (c) copyright 2001 by Arnaud Rouanet (rouanet@emi.u-bordeaux.fr)
;;; This library is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Library General Public
;;; License as published by the Free Software Foundation; either
;;; version 2 of the License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Library General Public License for more details.
;;;
;;; You should have received a copy of the GNU Library General Public
;;; License along with this library; if not, write to the
;;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
;;; Boston, MA 02111-1307 USA.
;;;; Changes
;;; When Who What
;;; --------------------------------------------------------------------------------------
;;; 2002-06-27 GB REGION-INTERSECTS-REGION-P has an :around method on bounding
;;; rectangles.
;;; 2002-06-04 APD partially fixed (BOUNDING-RECTANGLE* STANDARD-ELLIPSE)
;;; 2001-07-16 GB added (REGION-CONTAINS-POSITION-P STANDARD-ELLIPSE ..)
;;; added (BOUNDING-RECTANGLE* STANDARD-ELLIPSE)
;;; added (REGION-INTERSECTION LINE STANDARD-ELLIPSE) and vice versa
;;; 2001-07-12 GB fixed bugs in
;;; (BOUNDING-RECTANGLE* STANDARD-REGION-UNION)
;;; (BOUNDING-RECTANGLE* STANDARD-REGION-INTERSECTION)
;;; 2001-07-09 GB maybe fixed a bug in MAP-OVER-SCHNITT-GERADE/POLYGON.
;;; 2001-03-09 AR fixed a bug in MAKE-ELLIPICAL-THING
;;; fixed STANDARD-ELLIPTICAL-ARC defclass
;;; 2001-03-06 AR fixed bug in (REGION-EQUAL STANDARD-RECTANGLE STANDARD-RECTANGLE)
;;; REGION is now a subclass of DESIGN.
;;; 2001-01-21 GB fixed bug in (TRANSFORM-REGION T RECTANGLE-SET)
;;; added some documentation
;;; GB = Gilbert Baumann <unk6@rz.uni-karlsruhe.de>
;;; AR = Arnaud Rouanet <rouanet@emi.u-bordeaux.fr>
;;; ---- TODO ----------------------------------------------------------------------------
;; - ellipses: The intersection of two ellipses is there, but
;; handling the start/end angle is not implemented.
;; - This code is anything else than well organized.
;; - provide better (faster) implementations for REGION-EQUAL,
;; REGION-CONTAINS-REGION-P, and REGION-INTERSECTS-REGION-P.
;; - Compute a union/intersection/difference of an union of polygon vs another
;; polygon or union of polygons directly via POLYGON-OP.
;; - STANDARD-REGION-UNION should either become a subclass
;; 'STANDARD-DISJUNCT-REGION-UNION' or a flag. Some set operations could take
;; advantage out the information, if the subregions of an union are disjunct.
;; - provide sensible PRINT-OBJECT methods.
;; - while you are are at it; provide a reasonable fast vertical scan routine.
;; polygons should make use of the sweep line algorithm.
;; - implement bounding rectangle cache for polygons and polylines
;; - make REGION-CONTAINS-POSITION-P for polygons faster by handling the special
;; case of the intersection of a horizontal line and the polygons
;; - MAKE-POLY{LINE,GON} should canonise its arguments; no edges of length 0 and
;; no co-linear vertexes. Maybe: canonise rectangles? Also a polygon of less
;; than three vertexes is to be considered empty aka +nowhere+.
(in-package :clim-internals)
(defclass nowhere-region (region nowhere-mixin) ())
(defclass everywhere-region (region everywhere-mixin) ())
;; coordinate is defined in coordinates.lisp
(defvar +everywhere+ (make-instance 'everywhere-region))
(defvar +nowhere+ (make-instance 'nowhere-region))
(defmethod bounding-rectangle* ((x nowhere-region))
(values 0 0 0 0))
;; 2.5.1.1 Region Predicates in CLIM
(defgeneric region-equal (region1 region2))
(defgeneric region-contains-region-p (region1 region2))
(defgeneric region-contains-position-p (region x y))
(defgeneric region-intersects-region-p (region1 region2))
;; 2.5.1.2 Composition of CLIM Regions
(defclass standard-region-union (region-set)
((regions :initarg :regions :reader standard-region-set-regions)))
(defclass standard-region-intersection (region-set)
((regions :initarg :regions :reader standard-region-set-regions)))
(defclass standard-region-difference (region-set)
((a :initarg :a :reader standard-region-difference-a)
(b :initarg :b :reader standard-region-difference-b)))
;; Protocol:
(defgeneric region-set-regions (region &key normalize))
(defgeneric map-over-region-set-regions (function region &key normalize))
(defgeneric region-union (region1 region2))
(defgeneric region-intersection (region1 region2))
(defgeneric region-difference (region1 region2))
;;; ---- 2.5.2 CLIM Point Objects --------------------------------------------------------
(defclass standard-point (point)
((x :type coordinate :initarg :x)
(y :type coordinate :initarg :y)))
(defun make-point (x y)
(make-instance 'standard-point :x (coerce x 'coordinate) :y (coerce y 'coordinate)))
(defmethod print-object ((self standard-point) sink)
(with-slots (x y) self
(format sink "#<~S ~S ~S>" 'standard-point x y)))
;; Point protocol: point-position
(defgeneric point-position (point))
(defmethod point-position ((self standard-point))
(with-slots (x y) self
(values x y)))
(defmethod point-x ((self point))
(nth-value 0 (point-position self)))
(defmethod point-y ((self point))
(nth-value 1 (point-position self)))
(defmethod transform-region (transformation (self standard-point))
(with-slots (x y) self
(multiple-value-bind (x* y*) (transform-position transformation x y)
(make-point x* y*))))
(defmethod region-contains-position-p ((self standard-point) px py)
(with-slots (x y) self
(and (coordinate= x px) (coordinate= y py))))
;;; ---- 2.5.3 Polygons and Polylines in CLIM --------------------------------------------
;; Protocol:
(defclass standard-polyline (polyline)
((points :initarg :points)
(closed :initarg :closed)))
(defclass standard-polygon (polygon)
((points :initarg :points)) )
;;; ---- 2.5.3.1 Constructors for CLIM Polygons and Polylines ---------------------------
(defun coord-seq->point-seq (sequence)
(let ((res nil))
(do-sequence ((x y) sequence)
(push (make-point x y) res))
(nreverse res)))
(defun make-polyline (point-seq &key closed)
(assert (every #'pointp point-seq))
(setq point-seq (coerce point-seq 'list))
(cond ((every (lambda (x) (region-equal x (car point-seq)))
(cdr point-seq))
+nowhere+)
(t
(make-instance 'standard-polyline :points point-seq :closed closed))))
(defun make-polyline* (coord-seq &key closed)
(make-polyline (coord-seq->point-seq coord-seq) :closed closed))
(defun make-polygon (point-seq)
(assert (every #'pointp point-seq))
(setq point-seq (coerce point-seq 'list))
(cond ((every (lambda (x) (region-equal x (car point-seq)))
(cdr point-seq))
+nowhere+)
(t
(make-instance 'standard-polygon :points point-seq))))
(defun make-polygon* (coord-seq)
(make-polygon (coord-seq->point-seq coord-seq)))
(defmethod polygon-points ((self standard-polygon))
(with-slots (points) self
points))
(defmethod map-over-polygon-coordinates (fun (self standard-polygon))
(with-slots (points) self
(mapc (lambda (p) (funcall fun (point-x p) (point-y p))) points)))
(defmethod map-over-polygon-segments (fun (self standard-polygon))
(with-slots (points) self
(do ((q points (cdr q)))
((null (cdr q))
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (car points)) (point-y (car points))))
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (cadr q)) (point-y (cadr q))))))
(defmethod polygon-points ((self standard-polyline))
(with-slots (points) self
points))
(defmethod map-over-polygon-coordinates (fun (self standard-polyline))
(with-slots (points) self
(mapc (lambda (p) (funcall fun (point-x p) (point-y p))) points)))
(defmethod map-over-polygon-segments (fun (self standard-polyline))
(with-slots (points closed) self
(do ((q points (cdr q)))
((null (cdr q))
(when closed
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (car points)) (point-y (car points)))))
(funcall fun (point-x (car q)) (point-y (car q)) (point-x (cadr q)) (point-y (cadr q))))))
(defmethod polyline-closed ((self standard-polyline))
(with-slots (closed) self
closed))
(defmethod transform-region (transformation (self standard-polyline))
(with-slots (points closed) self
(make-polyline (mapcar (lambda (p)
(multiple-value-bind (x* y*) (transform-position transformation (point-x p) (point-y p))
(make-point x* y*)))
points)
:closed closed)))
(defmethod transform-region (transformation (self standard-polygon))
(with-slots (points) self
(make-polygon (mapcar (lambda (p)
(multiple-value-bind (x* y*) (transform-position transformation (point-x p) (point-y p))
(make-point x* y*)))
points))))
(defmethod region-contains-position-p ((self standard-polyline) x y)
(setf x (coerce x 'coordinate)
y (coerce y 'coordinate))
(block nil
(map-over-polygon-segments (lambda (x1 y1 x2 y2)
(when (line-contains-point-p* x1 y1 x2 y2 x y)
(return t)))
self)
nil))
(defun line-contains-point-p* (x1 y1 x2 y2 px py)
(and (or (<= x1 px x2) (>= x1 px x2))
(or (<= y1 py y2) (>= y1 py y2))
(coordinate= (* (- py y1) (- x2 x1))
(* (- px x1) (- y2 y1)))))
(defun line-contains-point-p** (x1 y1 x2 y2 px py)
(coordinate= (* (- py y1) (- x2 x1))
(* (- px x1) (- y2 y1))))
;;; ---- 2.5.4 Lines in CLIM -------------------------------------------------------------
;; Line protocol: line-start-point* line-end-point*
(defclass standard-line (line)
((x1 :type coordinate :initarg :x1)
(y1 :type coordinate :initarg :y1)
(x2 :type coordinate :initarg :x2)
(y2 :type coordinate :initarg :y2)))
(defun make-line (start-point end-point)
(make-line* (point-x start-point) (point-y start-point) (point-x end-point) (point-y end-point)))
(defun make-line* (start-x start-y end-x end-y)
(setf start-x (coerce start-x 'coordinate)
start-y (coerce start-y 'coordinate)
end-x (coerce end-x 'coordinate)
end-y (coerce end-y 'coordinate))
(if (and (coordinate= start-x end-x)
(coordinate= start-y end-y))
+nowhere+
(make-instance 'standard-line :x1 start-x :y1 start-y :x2 end-x :y2 end-y)))
(defmethod line-start-point* ((line standard-line))
(with-slots (x1 y1 x2 y2) line
(values x1 y1)))
(defmethod line-end-point* ((line standard-line))
(with-slots (x1 y1 x2 y2) line
(values x2 y2)))
(defmethod line-start-point ((line line))
(multiple-value-bind (x y) (line-start-point* line)
(make-point x y)))
(defmethod line-end-point ((line line))
(multiple-value-bind (x y) (line-end-point* line)
(make-point x y)))
;; polyline protocol for standard-line's:
(defmethod polygon-points ((line standard-line))
(with-slots (x1 y1 x2 y2) line
(list (make-point x1 y1) (make-point x2 y2))))
(defmethod map-over-polygon-coordinates (fun (line standard-line))
(with-slots (x1 y1 x2 y2) line
(funcall fun x1 y1)
(funcall fun x2 y2)))
(defmethod map-over-polygon-segments (fun (line standard-line))
(with-slots (x1 y1 x2 y2) line
(funcall fun x1 y1 x2 y2)))
(defmethod polyline-closed ((line standard-line))
nil)
(defmethod transform-region (transformation (line standard-line))
(with-slots (x1 y1 x2 y2) line
(multiple-value-bind (x1* y1*) (transform-position transformation x1 y1)
(multiple-value-bind (x2* y2*) (transform-position transformation x2 y2)
(make-line* x1* y1* x2* y2*)))))
(defmethod region-contains-position-p ((self standard-line) x y)
(multiple-value-bind (x1 y1) (line-start-point* self)
(multiple-value-bind (x2 y2) (line-end-point* self)
(line-contains-point-p* x1 y1 x2 y2 x y))))
(defmethod print-object ((self standard-line) sink)
(with-slots (x1 y1 x2 y2) self
(format sink "#<~S ~D ~D ~D ~D>" (type-of self) x1 y1 x2 y2)))
;;; ---- 2.5.5 Rectangles in CLIM --------------------------------------------------------
;; protocol:
;; rectangle-edges*
(defclass standard-rectangle (rectangle)
((coordinates :initform (make-array 4 :element-type 'coordinate))))
(defmethod initialize-instance :after ((obj standard-rectangle)
&key (x1 0.0d0) (y1 0.0d0)
(x2 0.0d0) (y2 0.0d0))
(let ((coords (slot-value obj 'coordinates)))
(setf (aref coords 0) x1)
(setf (aref coords 1) y1)
(setf (aref coords 2) x2)
(setf (aref coords 3) y2)))
(defmacro with-standard-rectangle ((x1 y1 x2 y2) rectangle &body body)
(with-gensyms (coords)
`(let ((,coords (slot-value ,rectangle 'coordinates)))
(declare (type (simple-array coordinate (4)) ,coords))
(let ((,x1 (aref ,coords 0))
(,y1 (aref ,coords 1))
(,x2 (aref ,coords 2))
(,y2 (aref ,coords 3)))
(declare (type coordinate ,x1 ,y1 ,x2 ,y2))
,@body))))
(defmacro with-standard-rectangle* ((&key x1 y1 x2 y2) rectangle &body body)
(with-gensyms (coords)
`(let ((,coords (slot-value ,rectangle 'coordinates)))
(declare (type (simple-array coordinate (4)) ,coords))
(let (,@(and x1 `((,x1 (aref ,coords 0))))
,@(and y1 `((,y1 (aref ,coords 1))))
,@(and x2 `((,x2 (aref ,coords 2))))
,@(and y2 `((,y2 (aref ,coords 3)))))
(declare (type coordinate
,@(and x1 `(,x1))
,@(and y1 `(,y1))
,@(and x2 `(,x2))
,@(and y2 `(,y2))))
,@body))))
(defun make-rectangle (point1 point2)
(make-rectangle* (point-x point1) (point-y point1) (point-x point2) (point-y point2)))
(defun make-rectangle* (x1 y1 x2 y2)
(psetq x1 (coerce (min x1 x2) 'coordinate)
x2 (coerce (max x1 x2) 'coordinate)
y1 (coerce (min y1 y2) 'coordinate)
y2 (coerce (max y1 y2) 'coordinate))
(if (or (coordinate= x1 x2)
(coordinate= y1 y2))
+nowhere+
(make-instance 'standard-rectangle :x1 x1 :x2 x2 :y1 y1 :y2 y2)))
(defmethod rectangle-edges* ((rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(values x1 y1 x2 y2)))
;;; standard-rectangles are immutable and all that, but we still need to set
;;; their positions and dimensions (in output recording)
(defgeneric* (setf rectangle-edges*) (x1 y1 x2 y2 rectangle))
(defmethod* (setf rectangle-edges*)
(x1 y1 x2 y2 (rectangle standard-rectangle))
(let ((coords (slot-value rectangle 'coordinates)))
(declare (type (simple-array coordinate (4)) coords))
(setf (aref coords 0) x1)
(setf (aref coords 1) y1)
(setf (aref coords 2) x2)
(setf (aref coords 3) y2))
(values x1 y1 x2 y2))
(defmethod rectangle-min-point ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore x2 y2))
(make-point x1 y1)))
(defmethod rectangle-min-point ((rect standard-rectangle))
(with-standard-rectangle* (:x1 x1 :y1 y1)
rect
(make-point x1 y1)))
(defmethod rectangle-max-point ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore x1 y1))
(make-point x2 y2)))
(defmethod rectangle-max-point ((rect standard-rectangle))
(with-standard-rectangle* (:x2 x2 :y2 y2)
rect
(make-point x2 y2)))
(defmethod rectangle-min-x ((rect rectangle))
(nth-value 0 (rectangle-edges* rect)))
(defmethod rectangle-min-x ((rect standard-rectangle))
(with-standard-rectangle* (:x1 x1)
rect
x1))
(defmethod rectangle-min-y ((rect rectangle))
(nth-value 1 (rectangle-edges* rect)))
(defmethod rectangle-min-y ((rect standard-rectangle))
(with-standard-rectangle* (:y1 y1)
rect
y1))
(defmethod rectangle-max-x ((rect rectangle))
(nth-value 2 (rectangle-edges* rect)))
(defmethod rectangle-max-x ((rect standard-rectangle))
(with-standard-rectangle* (:x2 x2)
rect
x2))
(defmethod rectangle-max-y ((rect rectangle))
(nth-value 3 (rectangle-edges* rect)))
(defmethod rectangle-max-y ((rect standard-rectangle))
(with-standard-rectangle* (:y2 y2)
rect
y2))
(defmethod rectangle-width ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore y1 y2))
(- x2 x1)))
(defmethod rectangle-width ((rect standard-rectangle))
(with-standard-rectangle* (:x1 x1 :x2 x2)
rect
(- x2 x1)))
(defmethod rectangle-height ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(declare (ignore x1 x2))
(- y2 y1)))
(defmethod rectangle-height ((rect standard-rectangle))
(with-standard-rectangle* (:y1 y1 :y2 y2)
rect
(- y2 y1)))
(defmethod rectangle-size ((rect rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(values (- x2 x1) (- y2 y1))))
(defmethod rectangle-size ((rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(values (- x2 x1) (- y2 y1))))
;; polyline/polygon protocol for standard-rectangle's
(defmethod polygon-points ((rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(list (make-point x1 y1)
(make-point x1 y2)
(make-point x2 y2)
(make-point x2 y1))))
(defmethod map-over-polygon-coordinates (fun (rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(funcall fun x1 y1)
(funcall fun x1 y2)
(funcall fun x2 y2)
(funcall fun x2 y1)))
(defmethod map-over-polygon-segments (fun (rect standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
rect
(funcall fun x1 y1 x1 y2)
(funcall fun x1 y2 x2 y2)
(funcall fun x2 y2 x2 y1)
(funcall fun x2 y1 x1 y1)))
(defmethod transform-region (transformation (rect standard-rectangle))
(cond ((rectilinear-transformation-p transformation)
(with-standard-rectangle (x1 y1 x2 y2)
rect
(multiple-value-bind (x1* y1*) (transform-position transformation x1 y1)
(multiple-value-bind (x2* y2*) (transform-position transformation x2 y2)
(make-rectangle* x1* y1* x2* y2*)))))
(t
(make-polygon (mapcar (lambda (p) (transform-region transformation p))
(polygon-points rect)))) ))
(defmethod region-contains-position-p ((self standard-rectangle) x y)
(with-standard-rectangle (x1 y1 x2 y2)
self
(and (<= x1 (coerce x 'coordinate) x2)
(<= y1 (coerce y 'coordinate) y2))))
;;; ---- 2.5.6 Ellipses and Elliptical Arcs in CLIM --------------------------------------
(defclass elliptical-thing ()
((start-angle :initarg :start-angle)
(end-angle :initarg :end-angle)
(tr :initarg :tr))) ;a transformation from the unit circle to get the elliptical object
(defmethod print-object ((ell elliptical-thing) stream)
(with-slots (start-angle end-angle tr) ell
(format stream "#<~A [~A ~A] ~A>"
(type-of ell)
(and start-angle (* (/ 180 pi) start-angle))
(and end-angle (* (/ 180 pi) end-angle))
tr)))
(defclass standard-ellipse (elliptical-thing ellipse) ())
(defclass standard-elliptical-arc (elliptical-thing elliptical-arc) ())
;;; ---- 2.5.6.1 Constructor Functions for Ellipses and Elliptical Arcs in CLIM ---------
(defun make-ellipse (center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key start-angle end-angle)
(make-ellipse* (point-x center-point) (point-y center-point)
radius-1-dx radius-1-dy radius-2-dx radius-2-dy
:start-angle start-angle
:end-angle end-angle))
(defun make-ellipse* (center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
&key start-angle end-angle)
(make-ellipical-thing 'standard-ellipse
center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle))
(defun make-elliptical-arc (center-point radius-1-dx radius-1-dy radius-2-dx radius-2-dy &key start-angle end-angle)
(make-elliptical-arc* (point-x center-point) (point-y center-point)
radius-1-dx radius-1-dy radius-2-dx radius-2-dy
:start-angle start-angle
:end-angle end-angle))
(defun make-elliptical-arc* (center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
&key start-angle end-angle)
(make-ellipical-thing 'standard-elliptical-arc
center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle))
(defun make-ellipical-thing (class
center-x center-y radius-1-dx radius-1-dy radius-2-dx radius-2-dy
start-angle end-angle)
(setf center-x (coerce center-x 'coordinate)
center-y (coerce center-y 'coordinate)
radius-1-dx (coerce radius-1-dx 'coordinate)
radius-1-dy (coerce radius-1-dy 'coordinate)
radius-2-dx (coerce radius-2-dx 'coordinate)
radius-2-dy (coerce radius-2-dy 'coordinate)
start-angle (and start-angle (coerce start-angle 'coordinate))
end-angle (and end-angle (coerce end-angle 'coordinate)) )
(let ((tr (make-3-point-transformation* 0 0 1 0 0 1
center-x center-y
(+ center-x radius-1-dx) (+ center-y radius-1-dy)
(+ center-x radius-2-dx) (+ center-y radius-2-dy))))
(cond ((and (null start-angle) (null end-angle)))
((null start-angle) (setf start-angle 0))
((null end-angle) (setf end-angle (* 2 pi))))
(make-instance class :tr tr :start-angle start-angle :end-angle end-angle) ))
(defmethod transform-region (transformation (self elliptical-thing))
(with-slots (start-angle end-angle tr) self
;; I think this should be untransform-angle below, as the ellipse angles
;; go counter-clockwise in screen coordinates, whereas our transformations
;; rotate clockwise.. -Hefner
(let ((start-angle* (and start-angle (untransform-angle transformation start-angle)))
(end-angle* (and end-angle (untransform-angle transformation end-angle))))
(when (reflection-transformation-p transformation)
(rotatef start-angle* end-angle*))
(make-instance (type-of self)
:tr (compose-transformations transformation tr)
:start-angle start-angle*
:end-angle end-angle*))))
(defmethod region-contains-position-p ((self standard-ellipse) x y)
;; XXX start/end angle still missing
(with-slots (tr) self
(multiple-value-bind (x y) (untransform-position tr x y)
(<= (+ (* x x) (* y y)) 1))))
(defmethod bounding-rectangle* ((region standard-ellipse))
;; XXX start/end angle still missing
(with-slots (tr) region
(flet ((contact-radius* (x y)
"Returns coordinates of the radius of the point, in
which the vector field (x y) touches the ellipse."
(multiple-value-bind (xc yc) (untransform-distance tr x y)
(let* ((d (sqrt (+ (* xc xc) (* yc yc))))
(xn (- (/ yc d)))
(yn (/ xc d)))
(transform-distance tr xn yn)))))
(multiple-value-bind (cx cy) (ellipse-center-point* region)
(if (zerop (ellipse-radii region))
(values cx cy cx cy)
(multiple-value-bind (vdx vdy) (contact-radius* 1 0)
(declare (ignore vdx))
(multiple-value-bind (hdx hdy) (contact-radius* 0 1)
(declare (ignore hdy))
(let ((rx (abs hdx))
(ry (abs vdy)))
(values (- cx rx) (- cy ry)
(+ cx rx) (+ cy ry))))))))))
(defun intersection-line/unit-circle (x1 y1 x2 y2)
"Computes the intersection of the line from (x1,y1) to (x2,y2) and the unit circle.
If the intersection is empty, NIL is returned.
Otherwise four values are returned: x1, y1, x2, y2; the start and end point of the
resulting line."
(let* ((dx (- x2 x1))
(dy (- y2 y1))
(a (+ (expt dx 2) (expt dy 2)))
(b (+ (* 2 x1 dx) (* 2 y1 dy)))
(c (+ (expt x1 2) (expt y1 2) -1)))
(let ((s1 (- (/ (+ (sqrt (- (expt b 2) (* 4 a c))) b) (* 2 a))))
(s2 (- (/ (- b (sqrt (- (expt b 2) (* 4 a c)))) (* 2 a)))))
(cond ((and (realp s1) (realp s2)
(not (and (< s1 0) (< s2 0)))
(not (and (> s1 1) (> s2 1))))
(let ((s1 (max 0 (min 1 s1)))
(s2 (max 0 (min 1 s2))))
(values (+ x1 (* s1 dx))
(+ y1 (* s1 dy))
(+ x1 (* s2 dx))
(+ y1 (* s2 dy)))))
(t
nil)))))
(defmethod region-intersection ((line line) (ellipse standard-ellipse))
(with-slots (tr) ellipse
(multiple-value-bind (x1 y1 x2 y2)
(multiple-value-call #'intersection-line/unit-circle
(multiple-value-call #'untransform-position tr (line-start-point* line))
(multiple-value-call #'untransform-position tr (line-end-point* line)))
(if x1
(multiple-value-call #'make-line*
(transform-position tr x1 y1)
(transform-position tr x2 y2))
+nowhere+))))
(defmethod region-intersection ((ellipse standard-ellipse) (line standard-line))
(region-intersection ellipse line))
;;; ---- 2.5.6.2 Accessors for CLIM Elliptical Objects -----------------------------------
(defmethod ellipse-center-point* ((self elliptical-thing))
(with-slots (tr) self
(transform-position tr 0 0)))
(defmethod ellipse-center-point ((self elliptical-thing))
(with-slots (tr) self
(transform-region tr (make-point 0 0))))
(defmethod ellipse-radii ((self elliptical-thing))
(with-slots (tr) self
(multiple-value-bind (dx1 dy1) (transform-distance tr 1 0)
(multiple-value-bind (dx2 dy2) (transform-distance tr 0 1)
(values dx1 dy1 dx2 dy2)))))
(defmethod ellipse-start-angle ((self elliptical-thing))
(with-slots (start-angle) self
start-angle))
(defmethod ellipse-end-angle ((self elliptical-thing))
(with-slots (end-angle) self
end-angle))
(defun ellipse-coefficients (ell)
;; Returns the coefficients of the equation specifing the ellipse as in
;; ax^2 + by^2 + cxy + dx + dy - f = 0
;; Note 1:
;; The `f' here may seem to be superfluous, since you
;; could simply multiply the whole equation by 1/f. But this is
;; not the case, since `f' may as well be 0.
;; Note 2:
;; In the literature you often find something like
;; (x^2)/a + (y^2)/b - 1 = 0 for an axis aligned ellipse, but
;; I rather choose to treat all coefficients as simple factors instead
;; of denominators.
(with-slots (tr) ell
;;warum die inverse hier?
(multiple-value-bind (a b d e c f) (get-transformation (invert-transformation tr))
(values
(+ (* a a) (* d d)) ; x**2
(+ (* b b) (* e e)) ; y**2
(+ (* 2 a b) (* 2 d e)) ; xy
(+ (* 2 a c) (* 2 d f)) ; x
(+ (* 2 b c) (* 2 e f)) ; y
(+ (* c c) (* f f) -1)))) )
;;; Straight from the horse's mouth -- moore
;;;
;;; Axis of an ellipse
;;; -------------------------
;; Given an ellipse with its center at the origin, as
;; ax^2 + by^2 + cxy - 1 = 0
;; The two axis of an ellipse are characterized by minimizing and
;; maximizing the radius. Let (x,y) be a point on the delimiter of the
;; ellipse. It's radius (distance from the origin) then is:
;; r^2 = x^2 + y^2
;; To find the axis can now be stated as an minimization problem with
;; constraints. So mechanically construct the auxiliarry function H:
;; H = x^2 + y^2 - k(ax^2 + by^2 + cxy - 1)
;; So the following set of equations remain to be solved
;; (I) dH/dx = 0 = 2x + 2kax + kcy
;; (II) dH/dy = 0 = 2y + 2kby + kcx
;; (III) dH/dk = 0 = ax^2 + by^2 + cxy - 1
;; Unfortunately, as I always do the math work - hopelessly, even -
;; Maxima is the tool of my choice:
;; g1: 2*x + 2*k*a*x + k*c*y$
;; g2: 2*y + 2*k*b*y + k*c*x$
;; g3: a*x*x + b*y*y + c*x*y -1$
;; sol1: solve ([g1,g2],[k,y])$
;; /* This yields two solutions because of the squares with occur. The
;; * last equation (G3) must therefore be handled for both solutions for
;; * y.
;; */
;; y1: rhs(first(rest(first(sol1))))$
;; y2: rhs(first(rest(first(rest(sol1)))))$
;; /* Substitute the 'y' found. */
;; sol2: solve(subst(y1,y,g3),x);
;; x11: rhs(first(sol2));
;; x12: rhs(first(rest(sol2)));
;; sol3: solve(subst(y2,y,g3),x);
;; x21: rhs(first(sol3));
;; x22: rhs(first(rest(sol3)));
;; /* dump everything */
;; dumpsol([[x=x11,y=y1], [x=x12,y=y1], [x=x21,y=y2], [x=x22,y=y2]]);
(defun ellipse-normal-radii* (ell)
(multiple-value-bind (a b c) (ellipse-coefficients ell)
(cond ((coordinate= 0 c)
;; this is the unit circle
(values 0 (sqrt (/ 1 b))
(sqrt (/ 1 a)) 0))
(t
(let* ((x1 (- (/ c
(sqrt (+ (- (* (* c c)
(sqrt (+ (* c c)
(* b b)
(- (* 2 a b)) (* a a)))))
(- (* 2 (* b b)
(sqrt (+ (* c c) (* b b)
(- (* 2 a b)) (* a a)))))
(* 2 a b (sqrt (+ (* c c) (* b b)
(- (* 2 a b))
(* a a))))
(* 2 b (* c c))
(* 2 (expt b 3))
(- (* 4 a (* b b))) (* 2 (* a a) b))))))
(y1 (- (/ (+ (* (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a)))
x1)
(- (* b x1)) (* a x1))
c)))
(x2 (- (/ c
(sqrt (+ (* (* c c)
(sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a))))
(* 2 (* b b) (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a))))
(- (* 2 a b (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a)))))
(* 2 b (* c c))
(* 2 (expt b 3))
(- (* 4 a (* b b))) (* 2 (* a a) b))))))
(y2 (- (/ (+ (- (* (sqrt (+ (* c c)
(* b b)
(- (* 2 a b))
(* a a)))
x2))
(- (* b x2)) (* a x2))
c))))
(values x1 y1 x2 y2))))))
;;; ---- Intersection of Ellipse vs. Ellipse ---------------------------------------------
;; Das ganze ist so unverstaendlich, ich muss noch mal nach meinen Notizen
;; fanden, um die Herleitung der Loesung fuer das Schnittproblem praesentieren
;; zu koennen.
(defun intersection-ellipse/ellipse (e1 e2)
;; Eine der beiden Ellipsen fuehren wir zuerst auf den Einheitskreis zurueck.
(let ((a (invert-transformation (slot-value e1 'tr))))
(let ((r (intersection-ellipse/unit-circle (transform-region a e2))))
(if (atom r)
r
(mapcar (lambda (p)
(multiple-value-bind (x y) (transform-position (slot-value e1 'tr) (car p) (cdr p))
(make-point x y)))
r)))))
(defun intersection-ellipse/unit-circle (ell)
(multiple-value-bind (a b c d e f) (ellipse-coefficients ell)
(let ((pn (elli-polynom ell)))
(cond ((= (length pn) 0)
:coincident)
(t
(let ((ys (newton-iteration pn 0d0))
(res nil))
(dolist (y ys)
(let ((x (sqrt (- 1 (* y y)))))
(when (realp x)
(when (coordinate= 0 (ellipse-equation a b c d e f x y))
(pushnew (cons x y) res :test #'equal))
(when (coordinate= 0 (ellipse-equation a b c d e f (- x) y))
(pushnew (cons (- x) y) res :test #'equal)) )))
res)) ))))
(defun ellipse-equation (a b c d e f x y)
(+ (* a x x) (* b y y) (* c x y) (* d x) (* e y) f))
(defun elli-polynom (ell)
;; Was ganz lustig ist, ist dass wir bei Kreisen immer ein Polynom
;; vom Grade zwei bekommen.
(multiple-value-bind (a b c d e f) (ellipse-coefficients ell)
(canonize-polynom
(vector (+ (* (- b a) (- b a)) (* c c))
(+ (* 2 b e) (* -2 a e) (* 2 c d))
(+ (* e e) (* 2 (- b a) (+ a f)) (* -1 c c) (* d d))
(+ (* 2 e a) (* 2 e f) (* -2 c d))
(+ (* (+ a f) (+ a f)) (* -1 d d)) ))) )
;; Wir basteln uns mal eine einfache Newtoniteration. Manchmal
;; scheitern wir noch hoffungslos an lokalen Minima. Ansonsten ist das
;; Konvergenzverhalten fuer unsere Aufgabe schon ganz gut. Aber wir
;; handeln uns durch das Abdividieren der Nullstellen z.T. noch
;; beachtliche Fehler ein; ich versuche das zu mildern in dem ich nach
;; Finden einer Nullstell noch eine paar Newtonschritte mit dem
;; Original-Polynom mache (newton-ziel-gerade).
;; Ich sollte man nicht so faul sein und die reichhaltige Literatur zu
;; Rate ziehen tun; es muss auch etwas bessers als Newtoniteration
;; geben. Ich habe da noch so vage Erinnerungen an die
;; Numerik-Vorlesung ...
(defun newton-ziel-gerade (pn x &optional (n 4))
(cond ((= n 0) x)
((multiple-value-bind (f p2) (horner-schema pn x)
(multiple-value-bind (f*) (horner-schema p2 x)
(newton-ziel-gerade pn (- x (/ f f*)) (- n 1)))))))
(defun solve-p1 (b c)
(if (= b 0)
nil
(list (- (/ c b)))))
(defun solve-p2 (a b c)
(cond ((= a 0)
(solve-p1 b c))
(t
(let* ((p (/ b a))
(q (/ c a))
(d (- (/ (* p p) 4) q)))
(cond ((< d 0)
nil)
((= d 0)
(list (/ p 2)))
(t
(list (+ (/ p 2) (sqrt d))
(- (/ p 2) (sqrt d))))))) ))
(defun maybe-solve-polynom-trivially (pn)
(case (length pn)
(0 (values nil t))
(1 (values nil t))
(2 (values (solve-p1 (aref pn 0) (aref pn 1)) t))
(3 (values (solve-p2 (aref pn 0) (aref pn 1) (aref pn 2)) t))
(t (values nil nil))))
(defun canonize-polynom (pn)
(cond ((= (length pn) 0) pn)
((coordinate= (aref pn 0) 0)
(canonize-polynom (subseq pn 1)))
(t pn)))
(defun newton-iteration (polynom x-start)
;; ACHTUNG: Speziell auf unser problem angepasst, nicht ohne lesen uebernehmen!
(multiple-value-bind (sol done?) (maybe-solve-polynom-trivially polynom)
(cond (done?
sol)
(t
(let ((x x-start)
x1
(n 0)
(pn polynom)
(eps-f 0d0)
(eps-f* 0d-16)
(eps-x 1d-20)
(m 20) ;maximal zahl schritte
(res nil) )
(loop
(cond ((> n m)
(return)))
(multiple-value-bind (f p2) (horner-schema pn x)
(multiple-value-bind (f*) (horner-schema p2 x)
(cond ((<= (abs f*) eps-f*)
;; Wir haengen an einer Extremstelle fest -- mit zufaelligem Startwert weiter.
(setf x1 (+ 1d0 (random 2d0))))
(t
(setf x1 (- x (/ f f*)))
(cond ((or (<= (abs f) eps-f)
(<= (abs (- x1 x)) eps-x))
;; noch ein paar newton schritte, um das ergebnis zu verbessern
(setf x1 (newton-ziel-gerade polynom x1))
(push x1 res)
;; abdividieren
(multiple-value-bind (f p2) (horner-schema pn x1)
f
(setq pn (canonize-polynom p2))
(multiple-value-bind (sol done?) (maybe-solve-polynom-trivially pn)
(when done?
;; Hier trotzdem noch nachiterieren -- ist das eine gute Idee?
(setf sol (mapcar (lambda (x) (newton-ziel-gerade polynom x)) sol))
(setf res (nconc sol res))
(return))))
(setf x1 x-start)
(setq n 0)) ))))
(setf x (min 1d0 (max -1d0 x1))) ;Darf man das machen?
(incf n)))
res)) )))
(defun horner-schema (polynom x)
;; Wertet das polynom `polynom' mit Hilfe des Hornerschemas an der
;; Stelle `x' aus; Gibt zwei Werte zurueck:
;; - den Funktionswert
;; - die letzte Zeile des Hornerschemas (Divisionsergebnis)
(let ((n (length polynom)))
(cond ((= n 0) (values 0))
((= n 1) (values (aref polynom 0) '#()))
(t
(let ((b (make-array (1- n))))
(setf (aref b 0) (aref polynom 0))
(do ((i 1 (+ i 1)))
((= i (- n 1))
(values
(+ (* (aref b (- i 1)) x) (aref polynom i))
b))
(setf (aref b i) (+ (* (aref b (- i 1)) x) (aref polynom i))))))) ))
;;;; ====================================================================================================
(defmethod region-union ((a point) (b point))
(cond ((region-equal a b)
a)
(t
(make-instance 'standard-region-union :regions (list a b)))))
(defmethod region-intersection ((a point) (b point))
(cond
((region-equal a b) a)
(t +nowhere+)))
(defmethod region-equal ((a point) (b point))
(and (coordinate= (point-x a) (point-x b))
(coordinate= (point-y a) (point-y b))))
;;; ====================================================================================================
;;; ---- Rectangle Sets ---------------------------------------------------------------------------------
(defclass standard-rectangle-set (region-set bounding-rectangle)
((bands
;; Represents the set of rectangles. This is list like:
;;
;; ((<y_1> . <x_band_1>)
;; (<y_2> . <x_band_2>)
;; :
;; (<y_n>))
;;
;; <x_band_i> := (x_i_1 u_i_1 x_i_2 u_i_2 ... x_i_m u_i_m)
;;
;; Now a point (x,y) is member of the rectangle set, if there is an
;; i, such that y member of [y_i, y_(i+1)] and x member of x_band_i.
;;
;; An x is member of an band i, if there is an j, such that x
;; member [x_i_j, u_i_j].
;;
;; That is <x_band_i> describes the possible x-coordinates in the
;; y-range [y_i, y_(i+1)].
;;
:initarg :bands
:reader standard-rectangle-set-bands)
;;
(bounding-rectangle
;; Caches the regions bounding-rectangle. Is either NIL or the
;; bounding-rectangle, represented by a list (x1 y1 x2 y2).
:initform nil)))
(defmethod map-over-region-set-regions (fun (self standard-rectangle-set) &key normalize)
(with-slots (bands) self
(cond ((or (null normalize) (eql normalize :x-banding))
(map-over-bands-rectangles (lambda (x1 y1 x2 y2)
(funcall fun (make-rectangle* x1 y1 x2 y2)))
bands))
((eql normalize :y-banding)
(map-over-bands-rectangles (lambda (y1 x1 y2 x2)
(funcall fun (make-rectangle* x1 y1 x2 y2)))
(xy-bands->yx-bands bands)))
(t
(error "Bad ~S argument to ~S: ~S"
:normalize 'map-over-region-set-regions normalize)) )))
(defmethod region-set-regions ((self standard-rectangle-set) &key normalize)
(let ((res nil))
(map-over-region-set-regions (lambda (r) (push r res)) self :normalize normalize)
res))
(defun make-standard-rectangle-set (bands)
(cond ((null bands) +nowhere+)
((and (= (length bands) 2)
(null (cdr (second bands)))
(= (length (cdr (first bands))) 2))
(make-rectangle* (first (cdar bands)) (caar bands)
(second (cdar bands)) (caadr bands)))
((= (length (first bands)) 1)
(make-standard-rectangle-set (rest bands)))
(t
(make-instance 'standard-rectangle-set :bands bands)) ))
;;; rectangle-set vs. rectangle-set
(defmethod region-union ((xs standard-rectangle-set) (ys standard-rectangle-set))
(make-standard-rectangle-set (bands-union (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys))))
(defmethod region-intersection ((xs standard-rectangle-set) (ys standard-rectangle-set))
(make-standard-rectangle-set (bands-intersection (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys))))
(defmethod region-difference ((xs standard-rectangle-set) (ys standard-rectangle-set))
(make-standard-rectangle-set (bands-difference (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys))))
;;; rectangle-set vs. rectangle and vice versa
(defmethod region-union ((xs standard-rectangle-set) (ys standard-rectangle))
(region-union xs (rectangle->standard-rectangle-set ys)))
(defmethod region-union ((xs standard-rectangle) (ys standard-rectangle-set))
(region-union (rectangle->standard-rectangle-set xs) ys))
(defmethod region-difference ((xs standard-rectangle-set) (ys standard-rectangle))
(region-difference xs (rectangle->standard-rectangle-set ys)))
(defmethod region-difference ((xs standard-rectangle) (ys standard-rectangle-set))
(region-difference (rectangle->standard-rectangle-set xs) ys))
(defmethod region-intersection ((xs standard-rectangle-set) (ys standard-rectangle))
(region-intersection xs (rectangle->standard-rectangle-set ys)))
(defmethod region-intersection ((xs standard-rectangle) (ys standard-rectangle-set))
(region-intersection (rectangle->standard-rectangle-set xs) ys))
;;; rectangle vs rectangle
(defmethod region-union ((xs standard-rectangle) (ys standard-rectangle))
(region-union (rectangle->standard-rectangle-set xs) (rectangle->standard-rectangle-set ys)))
(defmethod region-difference ((xs standard-rectangle) (ys standard-rectangle))
(region-difference (rectangle->standard-rectangle-set xs) (rectangle->standard-rectangle-set ys)))
(defmethod region-intersection ((xs standard-rectangle) (ys standard-rectangle))
(region-intersection (rectangle->standard-rectangle-set xs) (rectangle->standard-rectangle-set ys)))
(defmethod region-intersection ((xr rectangle) (yr rectangle))
(region-intersection (rectangle->standard-rectangle-set xr)
(rectangle->standard-rectangle-set yr)))
;;;
(defmethod region-equal ((xs standard-rectangle-set) (ys standard-rectangle-set))
;; Our bands representation is canonic
(equal (standard-rectangle-set-bands xs)
(standard-rectangle-set-bands ys)))
(defmethod region-contains-position-p ((self standard-rectangle-set) x y)
(block nil
(map-over-bands (lambda (y1 y2 isum)
(when (<= y1 y y2)
(when (isum-member x isum)
(return t)))
(when (> y y2)
(return nil)))
(standard-rectangle-set-bands self))
nil))
(defmethod region-contains-region-p ((xs standard-rectangle-set) (point point))
(multiple-value-bind (x y) (point-position point)
(region-contains-position-p xs x y)))
;;; ---- interval sums ----------------------------------------------------------------------------------
(defun isum-union* (xs ys) (isum-op xs ys boole-ior 0 0 nil))
(defun isum-difference* (xs ys) (isum-op xs ys boole-andc2 0 0 nil))
(defun isum-intersection* (xs ys) (isum-op xs ys boole-and 0 0 nil))
;; You could optimize all this like hell, but I better let the code
;; alone.
;; BTW this is the first time I make use of boole-xyz
(defun isum-op (as bs boole-op in-a in-b x0)
(let (x)
(cond ((and (null as) (null bs))
nil)
(t
(cond ((null bs)
(setq in-a (- 1 in-a))
(setq x (pop as)))
((null as)
(setq in-b (- 1 in-b))
(setq x (pop bs)))
((< (first as) (first bs))
(setq in-a (- 1 in-a))
(setq x (pop as)))
((< (first bs) (first as))
(setq in-b (- 1 in-b))
(setq x (pop bs)))
(t
(setq in-a (- 1 in-a)
in-b (- 1 in-b))
(setq x (pop as))
(pop bs)))
(cond ((zerop (boole boole-op in-a in-b))
(if x0
(list* x0 x (isum-op as bs boole-op in-a in-b nil))
(isum-op as bs boole-op in-a in-b x0)))
(t
(if (null x0)
(isum-op as bs boole-op in-a in-b x)
(isum-op as bs boole-op in-a in-b x0))))))))
;;; ---- Bands ------------------------------------------------------------------------------------------
;; A band list is represented by
;; ((x_0 . a_0) (x_1 . a_1) ... (x_n . nil))
;; The a_i are the relevant interval sums for x in [x_i, x_(i+1)].
;; The empty band could have been representated as
;; ((x . nil)) x arbitrary
;; But to get a cononic representation, I'll choose simply NIL.
;; A better representation would be
;; (x_0 a_0 x_1 a_1 ... x_n)
;; Pro: Unlimited bands could be represented by simply skipping the
;; first or last 'x'. So similar representation could apply to
;; interval sums also. But I let the representation as it is, since
;; this version is well tested.
(defun bands-op (as bs isum-op z0 a b)
(let (z1)
(cond ((and (null as) (null bs))
(if z0
(list (cons z0 nil))
nil))
(t
(setq z1 (cond ((null as) (caar bs))
((null bs) (caar as))
(t (min (caar as) (caar bs)))))
(let ((rest (bands-op (if (and as (= z1 (caar as))) (cdr as) as)
(if (and bs (= z1 (caar bs))) (cdr bs) bs)
isum-op
z1
(if (and as (= z1 (caar as))) (cdar as) a)
(if (and bs (= z1 (caar bs))) (cdar bs) b)))
(isum (funcall isum-op a b)))
(if z0
(if (and rest (equal isum (cdar rest)))
(cons (cons z0 isum)
(cdr rest))
(cons (cons z0 isum)
rest))
rest))) )))
(defun canon-empty-bands (x)
(cond ((null (cdr x)) nil)
(t x)))
(defun bands-union (as bs)
(canon-empty-bands (bands-op as bs #'isum-union* nil nil nil)))
(defun bands-intersection (as bs)
(canon-empty-bands (bands-op as bs #'isum-intersection* nil nil nil)))
(defun bands-difference (as bs)
(canon-empty-bands (bands-op as bs #'isum-difference* nil nil nil)))
(defun rectangle->xy-bands* (x1 y1 x2 y2)
(list (list y1 x1 x2)
(cons y2 nil)))
(defun rectangle->yx-bands* (x1 y1 x2 y2)
(list (list x1 y1 y2)
(cons x2 nil)))
(defun xy-bands->yx-bands (bands)
;; Das kann man sicherlich noch viel geschicker machen ...
(let ((res nil))
(map-over-bands-rectangles (lambda (x1 y1 x2 y2)
(setf res (bands-union res (rectangle->yx-bands* x1 y1 x2 y2))))
bands)
res))
(defun map-over-bands-rectangles (fun bands)
(map-over-bands (lambda (y1 y2 isum)
(do ((p isum (cddr p)))
((null p))
(funcall fun (car p) y1 (cadr p) y2)))
bands))
(defun map-over-bands (fun bands)
(do ((q bands (cdr q)))
((null (cdr q)))
(funcall fun (caar q) (caadr q) (cdar q))))
(defun isum-member (elt isum)
(cond ((null isum) nil)
((< elt (car isum)) nil)
((<= elt (cadr isum)) t)
(t (isum-member elt (cddr isum)))))
(defun rectangle->standard-rectangle-set (rect)
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* rect)
(make-instance 'standard-rectangle-set :bands (rectangle->xy-bands* x1 y1 x2 y2))))
(defmethod transform-region (tr (self standard-rectangle-set))
(cond ((scaling-transformation-p tr)
(multiple-value-bind (mxx mxy myx myy tx ty)
(get-transformation tr)
(declare (ignore mxy myx))
(let ((rev-x-p (< mxx 0))
(rev-y-p (< myy 0)))
(flet ((correct (bands)
(loop for ((y . nil) (nil . xs)) on (nreverse bands)
collect `(,y . ,xs))))
(make-standard-rectangle-set
(loop for band in (standard-rectangle-set-bands self)
for new-band = (loop for x in (cdr band)
collect (+ (* mxx x) tx) into new-xs
finally (return (cons (+ (* myy (car band)) ty)
(if rev-x-p
(nreverse new-xs)
new-xs))))
collect new-band into new-bands
finally (return (if rev-y-p
(correct new-bands)
new-bands))))))))
(t
;; We have insufficient knowledge about the transformation,
;; so we have to take the union of all transformed rectangles.
;; Maybe there is a faster way to do this.
(let ((res +nowhere+))
(map-over-region-set-regions
(lambda (rect)
(setf res (region-union res (transform-region tr rect))))
self)
res)) ))
;;; ====================================================================================================
(defclass standard-bounding-rectangle (standard-rectangle) ())
(defmethod region-equal ((a everywhere-region) (b everywhere-region))
t)
(defmethod region-equal ((a nowhere-region) (b nowhere-region))
t)
(defmethod region-equal ((a everywhere-region) (b region))
nil)
(defmethod region-equal ((a nowhere-region) (b region))
nil)
(defmethod region-equal ((a region) (b everywhere-region))
nil)
(defmethod region-equal ((a region) (b nowhere-region))
nil)
(defmethod region-equal ((a standard-rectangle) (b standard-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* a)
(multiple-value-bind (u1 v1 u2 v2) (rectangle-edges* b)
(and (coordinate= x1 u1)
(coordinate= y1 v1)
(coordinate= x2 u2)
(coordinate= y2 v2)))))
(defmethod region-equal ((a standard-rectangle) (b path)) nil)
(defmethod region-equal ((a path) (b standard-rectangle)) nil)
(defmethod transform-region (tr (self everywhere-region)) (declare (ignore tr)) +everywhere+)
(defmethod transform-region (tr (self nowhere-region)) (declare (ignore tr)) +nowhere+)
(defmethod region-contains-position-p ((self everywhere-region) x y)
(declare (ignore x y))
t)
(defmethod region-contains-position-p ((self nowhere-region) x y)
(declare (ignore x y))
nil)
(defmethod region-contains-position-p ((self standard-region-union) x y)
(some (lambda (r) (region-contains-position-p r x y))
(standard-region-set-regions self)))
(defmethod region-contains-position-p ((self standard-region-intersection) x y)
(every (lambda (r) (region-contains-position-p r x y))
(standard-region-set-regions self)))
(defmethod region-contains-position-p ((self standard-region-difference) x y)
(and (region-contains-position-p (standard-region-difference-a self) x y)
(not (region-contains-position-p (standard-region-difference-b self) x y))))
;; Trivial set operations
(defmethod region-union ((a everywhere-region) (b region)) +everywhere+)
(defmethod region-union ((a region) (b everywhere-region)) +everywhere+)
(defmethod region-union ((a nowhere-region) (b region)) b)
(defmethod region-union ((a region) (b nowhere-region)) a)
(defmethod region-intersection ((a everywhere-region) (b region)) b)
(defmethod region-intersection ((a region) (b everywhere-region)) a)
(defmethod region-intersection ((a nowhere-region) (b region)) +nowhere+)
(defmethod region-intersection ((a region) (b nowhere-region)) +nowhere+)
;;;(defmethod region-difference ((a everywhere-region) (b region)) b)
(defmethod region-difference ((a region) (b everywhere-region)) +nowhere+) ;mit ohne alles
(defmethod region-difference ((a nowhere-region) (b region)) +nowhere+)
(defmethod region-difference ((a region) (b nowhere-region)) a)
;; dimensionally rule
(defmethod region-union ((a area) (b path)) a)
(defmethod region-union ((a path) (b point)) a)
(defmethod region-union ((a area) (b point)) a)
(defmethod region-union ((a path) (b area)) b)
(defmethod region-union ((a point) (b path)) b)
(defmethod region-union ((a point) (b area)) b)
(defmethod transform-region (tr (self standard-region-difference))
(with-slots (a b) self
(make-instance 'standard-region-difference
:a (transform-region tr a)
:b (transform-region tr b))))
(defmethod transform-region (tr (self standard-region-union))
(with-slots (regions) self
(make-instance 'standard-region-union :regions (mapcar (lambda (r) (transform-region tr r)) regions))))
(defmethod transform-region (tr (self standard-region-intersection))
(with-slots (regions) self
(make-instance 'standard-region-intersection :regions (mapcar (lambda (r) (transform-region tr r)) regions))))
(defmethod region-set-regions ((self standard-region-union) &key normalize)
(declare (ignorable normalize))
(standard-region-set-regions self))
(defmethod region-set-regions ((self standard-region-intersection) &key normalize)
(declare (ignorable normalize))
(standard-region-set-regions self))
(defmethod region-set-regions ((self standard-region-difference) &key normalize)
(declare (ignorable normalize))
(list (standard-region-difference-a self)
(standard-region-difference-b self)))
(defmethod region-set-regions ((self region) &key normalize)
(declare (ignorable normalize))
(list self))
(defmethod map-over-region-set-regions (fun (self standard-region-union) &key normalize)
(declare (ignorable normalize))
(mapc fun (standard-region-set-regions self)))
(defmethod map-over-region-set-regions (fun (self standard-region-intersection) &key normalize)
(declare (ignorable normalize))
(mapc fun (standard-region-set-regions self)))
(defmethod map-over-region-set-regions (fun (self standard-region-difference) &key normalize)
(declare (ignorable normalize))
(funcall fun (standard-region-difference-a self))
(funcall fun (standard-region-difference-b self)))
(defmethod map-over-region-set-regions (fun (self region) &key normalize)
(declare (ignorable normalize))
(funcall fun self))
(defun line-intersection* (x1 y1 x2 y2 u1 v1 u2 v2)
(let ((dx (- x2 x1)) (dy (- y2 y1))
(du (- u2 u1)) (dv (- v2 v1)))
(let ((q (- (* dx dv) (* du dy))))
(cond ((not (and (<= (min x1 x2) (max u1 u2)) (<= (min u1 u2) (max x1 x2))
(<= (min y1 y2) (max v1 v2)) (<= (min v1 v2) (max y1 y2))))
nil)
((coordinate= 0 q)
(cond ((coordinate= (* (- v1 y1) dx) (* (- u1 x1) dy))
;; koninzident
(cond ((> (abs dx) (abs dy))
(let* ((sx1 (max (min x1 x2) (min u1 u2)))
(sx2 (min (max x1 x2) (max u1 u2)))
(sy1 (+ (* (- sx1 x1) (/ dy dx)) x1))
(sy2 (+ (* (- sx2 x1) (/ dy dx)) x1)))
(values :coincident sx1 sy1 sx2 sy2)))
(t
(let* ((sy1 (max (min y1 y2) (min v1 v2)))
(sy2 (min (max y1 y2) (max v1 v2)))
(sx1 (+ (* (- sy1 y1) (/ dx dy)) y1))
(sx2 (+ (* (- sy2 y1) (/ dx dy)) y1)))
(values :coincident sx1 sy1 sx2 sy2)))))
(t
;;paralell -- kein Schnitt
nil)))
(t
(let ((x (/ (+ (* dx (- (* u1 dv) (* v1 du))) (* du (- (* y1 dx) (* x1 dy)))) q))
(y (/ (+ (* dy (- (* u1 dv) (* v1 du))) (* dv (- (* y1 dx) (* x1 dy)))) q)))
(if (and (or (<= x1 x x2) (<= x2 x x1))
(or (<= u1 x u2) (<= u2 x u1))
(or (<= y1 y y2) (<= y2 y y1))
(or (<= v1 y v2) (<= v2 y v1)))
(values :hit x y)
nil)) ) )) ))
(defmethod region-intersection ((a standard-line) (b standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(multiple-value-bind (u1 v1) (line-start-point* b)
(multiple-value-bind (u2 v2) (line-end-point* b)
(multiple-value-bind (r sx1 sy1 sx2 sy2) (line-intersection* x1 y1 x2 y2 u1 v1 u2 v2)
(case r
(:hit (make-point sx1 sy1))
(:coincident (make-line* sx1 sy1 sx2 sy2))
((nil) +nowhere+))))))))
;; IHMO the CLIM dimensionality rule is brain dead!
(defmethod region-intersection ((a standard-polyline) (b region))
(let ((res +nowhere+))
;; hack alert
(map-over-polygon-segments
(lambda (x1 y1 x2 y2)
(setf res (region-union res (region-intersection (make-line* x1 y1 x2 y2) b))))
a)
res))
(defmethod region-difference ((a standard-polyline) (b region))
(let ((res +nowhere+))
(map-over-polygon-segments
(lambda (x1 y1 x2 y2)
(setf res (region-union res (region-difference (make-line* x1 y1 x2 y2) b))))
a)
res))
(defmethod region-difference ((a region) (b standard-polyline))
(map-over-polygon-segments
(lambda (x1 y1 x2 y2)
(setf a (region-difference a (make-line* x1 y1 x2 y2))))
b)
a)
(defmethod region-intersection ((b region) (a standard-polyline))
(region-intersection a b))
(defmethod region-intersection ((a region) (p point))
(multiple-value-bind (x y) (point-position p)
(if (region-contains-position-p a x y)
p
+nowhere+)))
(defmethod region-intersection ((p point) (a region))
(region-intersection a p))
(defmethod region-intersection ((a standard-region-union) (b region))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (r) (setf res (region-union res (region-intersection r b)))) a)
res))
(defmethod region-intersection ((a region) (b standard-region-union))
(region-intersection b a))
(defmethod region-intersection ((a standard-rectangle-set) (b region))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (r) (setf res (region-union res (region-intersection r b)))) a)
res))
(defmethod region-intersection ((a region) (b standard-rectangle-set))
(region-intersection b a))
(defmethod region-intersection ((a region) (b standard-region-intersection))
(map-over-region-set-regions (lambda (r) (setf a (region-intersection a r))) b)
a)
(defmethod region-intersection ((a standard-region-intersection) (b region))
(region-intersection b a))
(defmethod region-intersection ((a region) (b region))
(make-instance 'standard-region-intersection :regions (list a b)))
(defmethod region-intersection ((x region) (y standard-region-difference))
(with-slots (a b) y
(region-difference (region-intersection x a) b)))
(defmethod region-intersection ((x standard-region-difference) (y region))
(with-slots (a b) x
(region-difference (region-intersection y a) b)))
(defmethod region-difference ((x area) (y path)) x)
(defmethod region-difference ((x area) (y point)) x)
(defmethod region-difference ((x path) (y point)) x)
(defmethod region-difference ((x everywhere-region) (y region))
(make-instance 'standard-region-difference :a x :b y))
(defmethod region-difference ((x everywhere-region) (y nowhere-region))
x)
(defmethod region-difference ((x everywhere-region) (y everywhere-region))
+nowhere+)
(defmethod region-difference ((x region) (y standard-region-difference))
(with-slots (a b) y
(region-union (region-difference x a) (region-intersection x b))))
(defmethod region-difference ((x region) (y standard-region-union))
;; A \ (B1 u B2 .. u Bn) = ((((A \ B1) \ B2) ... ) \ Bn)
(let ((res x))
(map-over-region-set-regions (lambda (a)
(setf res (region-difference res a)))
y)
res))
(defmethod region-difference ((x standard-region-union) (y region))
;; (A u B) \ C = A\C u B\C
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (a)
(setf res (region-union res (region-difference a y))))
x)
res))
(defmethod region-difference ((x region) (y standard-rectangle-set))
(let ((res x))
(map-over-region-set-regions (lambda (a)
(setf res (region-difference res a)))
y)
res))
(defmethod region-difference ((x standard-rectangle-set) (y region))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (a)
(setf res (region-union res (region-difference a y))))
x)
res))
(defmethod region-difference ((x point) (y region))
(multiple-value-bind (px py) (point-position x)
(if (region-contains-position-p y px py)
+nowhere+
x)))
(defmethod region-difference ((x standard-region-difference) (y region))
;; (A\B)\C = A \ (B u C)
(with-slots (a b) x
(region-difference a (region-union b y))))
(defmethod region-difference ((x region) (y standard-region-intersection))
(let ((res +nowhere+))
(map-over-region-set-regions (lambda (b)
(setf res (region-union res (region-difference x b))))
y)
res))
;; Diese CLIM dimensionality rule ist in hoechsten ma?e inkonsistent
;; und bringt mehr probleme als sie beseitigt.
;;; ---- Set operations on polygons ---------------------------------------------------------------------
(defstruct (pg-edge (:constructor make-pg-edge* (x1 y1 x2 y2 extra)))
x1 y1 x2 y2 extra)
(defstruct pg-splitter
links ;liste von punkten
rechts) ; von unten nach oben
(defun make-pg-edge (p1 p2 extra)
(multiple-value-bind (x1 y1) (point-position p1)
(multiple-value-bind (x2 y2) (point-position p2)
(make-pg-edge* x1 y1 x2 y2 extra))))
(defmethod region-intersection ((a standard-polygon) (b standard-polygon))
(polygon-op a b #'logand))
(defmethod region-union ((a standard-polygon) (b standard-polygon))
(polygon-op a b #'logior))
(defmethod region-difference ((a standard-polygon) (b standard-polygon))
(polygon-op a b #'logandc2))
(defmethod region-intersection ((a standard-polygon) (b standard-rectangle))
(polygon-op a b #'logand))
(defmethod region-union ((a standard-polygon) (b standard-rectangle))
(polygon-op a b #'logior))
(defmethod region-difference ((a standard-polygon) (b standard-rectangle))
(polygon-op a b #'logandc2))
(defmethod region-intersection ((a standard-rectangle) (b standard-polygon))
(polygon-op a b #'logand))
(defmethod region-union ((a standard-rectangle) (b standard-polygon))
(polygon-op a b #'logior))
(defmethod region-difference ((a standard-rectangle) (b standard-polygon))
(polygon-op a b #'logandc2))
(defun polygon-op (pg1 pg2 &optional logop)
(let ((sps nil))
(over-sweep-bands pg1 pg2
(lambda (sy0 sy1 S &aux (ys nil))
(setq ys (list sy0 sy1))
(dolist (k1 S)
(dolist (k2 S)
(multiple-value-bind (px py)
(line-intersection** (pg-edge-x1 k1) (pg-edge-y1 k1)
(pg-edge-x2 k1) (pg-edge-y2 k1)
(pg-edge-x1 k2) (pg-edge-y1 k2)
(pg-edge-x2 k2) (pg-edge-y2 k2))
(when (and px (< sy0 py sy1))
(pushnew py ys :test #'coordinate=)))))
(setq ys (sort ys #'<))
(do ((q ys (cdr q)))
((null (cdr q)))
(let ((by0 (car q)) (by1 (cadr q))
(R nil))
(dolist (k S)
(when (> (pg-edge-y2 k) (pg-edge-y1 k))
(multiple-value-bind (x1 y1 x2 y2)
(restrict-line-on-y-interval* (pg-edge-x1 k) (pg-edge-y1 k)
(pg-edge-x2 k) (pg-edge-y2 k)
by0 by1)
(declare (ignore y1 y2))
(push (list x1 x2 (pg-edge-extra k)) R))))
(setq R (sort R #'< :key (lambda (x) (+ (first x) (second x)))))
(labels
((add (lo lu ro ru)
(dolist (s sps
;; ansonsten
(push (make-pg-splitter :links (list lu lo)
:rechts (list ru ro))
sps) )
(when (and (region-equal lo (car (pg-splitter-links s)))
(region-equal ro (car (pg-splitter-rechts s))))
(push lu (pg-splitter-links s))
(push ru (pg-splitter-rechts s))
(return))) ))
(let ((eintritt nil)
(ina 0)
(inb 0))
(dolist (k R)
(ecase (third k)
(:a (setq ina (- 1 ina)))
(:b (setq inb (- 1 inb))))
(cond ((/= 0 (funcall logop ina inb))
(when (null eintritt)
(setq eintritt k)))
(t
(when eintritt
(add (make-point (first eintritt) by0)
(make-point (second eintritt) by1)
(make-point (first k) by0)
(make-point (second k) by1))
(setq eintritt nil)) )))) ) )) ) )
(setq sps (delete +nowhere+ (mapcar #'pg-splitter->polygon sps)))
(cond ((null sps) +nowhere+)
((null (cdr sps))
(car sps))
((make-instance 'standard-region-union :regions sps))) ))
(defun over-sweep-bands (pg1 pg2 fun)
(let ((es (nconc (polygon->pg-edges pg1 :a) (polygon->pg-edges pg2 :b))))
(setq es (sort es #'< :key #'pg-edge-y1))
(let ((ep es)
(sy (pg-edge-y1 (car es)))
(S nil))
(do () ((null ep))
(setq S (delete-if (lambda (e)
(<= (pg-edge-y2 e) sy))
S))
(do () ((or (null ep) (/= sy (pg-edge-y1 (car ep)))))
(push (pop ep) S))
(let ((sy2 (or (and ep (pg-edge-y1 (car ep)))
(reduce #'max (mapcar #'pg-edge-y2 S)))))
(funcall fun sy sy2 S)
(setq sy sy2)) ))))
(defun polygon->pg-edges (pg extra)
(let ((pts (polygon-points pg))
(res nil))
(let ((prev pts)
(cur (cdr pts))
(next (cddr pts)))
(loop
(when (or (> (point-y (car next)) (point-y (car cur)))
(and (= (point-y (car next)) (point-y (car cur)))
(> (point-x (car next)) (point-x (car cur)))))
(push (make-pg-edge (car cur) (car next) extra) res))
(when (or (> (point-y (car prev)) (point-y (car cur)))
(and (= (point-y (car prev)) (point-y (car cur)))
(> (point-x (car prev)) (point-x (car cur)))))
(push (make-pg-edge (car cur) (car prev) extra) res))
(when (not (or (> (point-y (car next)) (point-y (car cur)))
(and (= (point-y (car next)) (point-y (car cur)))
(> (point-x (car next)) (point-x (car cur))))
(> (point-y (car next)) (point-y (car cur)))
(and (= (point-y (car next)) (point-y (car cur)))
(> (point-x (car next)) (point-x (car cur))))))
(push (make-pg-edge (car cur) (car cur) extra) res))
(psetq prev cur
cur next
next (or (cdr next) pts))
(when (eq prev pts)
(return)) ))
res))
(defun restrict-line-on-y-interval* (x1 y1 x2 y2 ry0 ry1)
(let ((dx (- x2 x1))
(dy (- y2 y1)))
(values (+ (* (- ry0 y1) (/ dx dy)) x1) ry0
(+ (* (- ry1 y1) (/ dx dy)) x1) ry1)))
(defun pg-splitter->polygon (s)
(make-polygon (clean-up-point-sequence (nconc (pg-splitter-links s) (reverse (pg-splitter-rechts s))))))
(defun clean-up-point-sequence (pts)
(cond ((null (cdr pts)) pts)
((region-equal (car pts) (cadr pts))
(clean-up-point-sequence (cdr pts)))
((null (cddr pts)) pts)
((colinear-p (car pts) (cadr pts) (caddr pts))
(clean-up-point-sequence (list* (car pts) (caddr pts) (cdddr pts))))
(t
(cons (car pts) (clean-up-point-sequence (cdr pts)))) ))
(defun colinear-p (p1 p2 p3)
(multiple-value-bind (x1 y1) (point-position p1)
(multiple-value-bind (x2 y2) (point-position p2)
(multiple-value-bind (x3 y3) (point-position p3)
(coordinate= (* (- x2 x1) (- y3 y2))
(* (- x3 x2) (- y2 y1)))))))
(defun line-intersection** (x1 y1 x2 y2 u1 v1 u2 v2)
(let ((dx (- x2 x1)) (dy (- y2 y1))
(du (- u2 u1)) (dv (- v2 v1)))
(let ((q (- (* dx dv) (* du dy))))
(cond ((coordinate= 0 q)
nil)
(t
(let ((x (/ (+ (* dx (- (* u1 dv) (* v1 du))) (* du (- (* y1 dx) (* x1 dy)))) q))
(y (/ (+ (* dy (- (* u1 dv) (* v1 du))) (* dv (- (* y1 dx) (* x1 dy)))) q)))
(values x y)))))))
;;; -----------------------------------------------------------------------------------------------------
(defmethod region-union ((a standard-region-union) (b nowhere-region))
a)
(defmethod region-union ((b nowhere-region) (a standard-region-union))
a)
(defmethod region-union ((a standard-region-union) (b region))
(assert (not (eq b +nowhere+)))
(make-instance 'standard-region-union :regions (cons b (standard-region-set-regions a))))
(defmethod region-union ((b region) (a standard-region-union))
(assert (not (eq b +nowhere+)))
(make-instance 'standard-region-union :regions (cons b (standard-region-set-regions a))))
(defmethod region-union ((a standard-region-union) (b standard-region-union))
(assert (not (eq b +nowhere+)))
(assert (not (eq a +nowhere+)))
(make-instance 'standard-region-union
:regions (append (standard-region-set-regions a) (standard-region-set-regions b))))
(defmethod region-union ((a region) (b region))
(make-instance 'standard-region-union :regions (list a b)))
(defmethod region-union ((a standard-rectangle-set) (b path)) a)
(defmethod region-union ((b path) (a standard-rectangle-set)) a)
(defmethod region-union ((a standard-rectangle-set) (b point)) a)
(defmethod region-union ((b point) (a standard-rectangle-set)) a)
;;; ---- Intersection Line/Polygon ----------------------------------------------------------------------
(defun geraden-schnitt/prim (x1 y1 x12 y12 x2 y2 x22 y22)
(let ((dx1 (- x12 x1)) (dy1 (- y12 y1))
(dx2 (- x22 x2)) (dy2 (- y22 y2)))
;; zwei geraden gegeben als
;; g : s -> (x1 + s*dx1, y1 + s*dy1)
;; h : t -> (x2 + t*dx2, y2 + t*dy2)
;; -> NIL | (s ; t)
(let ((quot (- (* DX2 DY1) (* DX1 DY2))))
(if (coordinate= quot 0)
nil
(values
(- (/ (+ (* DX2 (- Y1 Y2)) (* DY2 X2) (- (* DY2 X1))) quot))
(- (/ (+ (* DX1 (- Y1 Y2)) (* DY1 X2) (- (* DY1 X1))) quot)))) )) )
(defun geraden-gleichung (x0 y0 x1 y1 px py)
;; ??? This somehow tries to calculate the distance between a point
;; and a line. The sign of the result depends upon the side the point
;; is on wrt to the line. --GB
(- (* (- py y0) (- x1 x0))
(* (- px x0) (- y1 y0))))
(defun position->geraden-fktn-parameter (x0 y0 x1 y1 px py)
(let ((dx (- x1 x0)) (dy (- y1 y0)))
(if (> (abs dx) (abs dy))
(/ (- px x0) dx)
(/ (- py y0) dy))))
(defun map-over-schnitt-gerade/polygon (fun x1 y1 x2 y2 points)
;; This calles 'fun' with the "Geradenfunktionsparameter" of each
;; intersection of the line (x1,y1),(x2,y2) and the polygon denoted
;; by 'points' in a "sensible" way. --GB
(let ((n (length points)))
(dotimes (i n)
(let ((pv (elt points (mod (- i 1) n))) ;the point before
(po (elt points (mod i n))) ;the "current" point
(pn (elt points (mod (+ i 1) n))) ;the point after
(pnn (elt points (mod (+ i 2) n)))) ;the point after**2
(cond
;; The line goes directly thru' po
((line-contains-point-p** x1 y1 x2 y2 (point-x po) (point-y po))
(let ((sign-1 (geraden-gleichung x1 y1 x2 y2 (point-x pn) (point-y pn)))
(sign-2 (geraden-gleichung x1 y1 x2 y2 (point-x pv) (point-y pv))))
(cond ((or (and (> sign-1 0) (< sign-2 0))
(and (< sign-1 0) (> sign-2 0)))
;; clear cases: the line croses the polygon's border
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x po) (point-y po)) ))
((= sign-1 0)
;; more difficult:
;; The line is coincident with the edge po/pn
(let ((sign-1 (geraden-gleichung x1 y1 x2 y2 (point-x pnn) (point-y pnn))))
(cond ((or (and (> sign-1 0) (< sign-2 0))
(and (< sign-1 0) (> sign-2 0)))
;; The line goes through the polygons border, by edge po/pn
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x po) (point-y po)) ))
(t
;; otherwise the line touches the polygon at the edge po/pn,
;; return both points
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x po) (point-y po)) )
(funcall fun (position->geraden-fktn-parameter x1 y1 x2 y2 (point-x pn) (point-y pn)) ) ))))
(t
;; all other cases: Line either touches polygon in
;; a point or in an edge [handled above]. --GB
nil) )))
((line-contains-point-p** x1 y1 x2 y2 (point-x pn) (point-y pn))
nil)
(t
(multiple-value-bind (k m)
(geraden-schnitt/prim x1 y1 x2 y2 (point-x po) (point-y po) (point-x pn) (point-y pn))
(when (and k (<= 0 m 1)) ;Moegliche numerische Instabilitaet
(funcall fun k)))))))))
(defun schnitt-gerade/polygon-prim (x1 y1 x2 y2 points)
(let ((res nil))
(map-over-schnitt-gerade/polygon (lambda (k) (push k res)) x1 y1 x2 y2 points)
(sort res #'<)))
(defun schnitt-line/polygon (x1 y1 x2 y2 polygon)
(let ((ks (schnitt-gerade/polygon-prim x1 y1 x2 y2 (polygon-points polygon))))
(assert (evenp (length ks)))
(let ((res nil))
(do ((q ks (cddr q)))
((null q))
(let ((k1 (max 0d0 (min 1d0 (car q))))
(k2 (max 0d0 (min 1d0 (cadr q)))))
(when (/= k1 k2)
(push (make-line* (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))
(+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))))
res))))
(cond ((null res) +nowhere+)
((null (cdr res)) (car res))
(t (make-instance 'standard-region-union :regions res)) ))))
(defmethod region-contains-position-p ((pg polygon) x y)
(setf x (coerce x 'coordinate))
(setf y (coerce y 'coordinate))
(let ((n 0) (m 0))
(map-over-schnitt-gerade/polygon (lambda (k)
(when (>= k 0) (incf n))
(incf m))
x y (+ x 1) y (polygon-points pg))
(assert (evenp m))
(oddp n)))
(defmethod region-intersection ((a standard-line) (b standard-polygon))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-intersection ((b standard-polygon) (a standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-intersection ((a standard-line) (b standard-rectangle))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-intersection ((b standard-rectangle) (a standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(schnitt-line/polygon x1 y1 x2 y2 b))))
(defmethod region-difference ((a standard-line) (b standard-polygon))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(differenz-line/polygon x1 y1 x2 y2 b))))
(defmethod region-difference ((a standard-line) (b standard-rectangle))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(differenz-line/polygon x1 y1 x2 y2 b))))
(defun differenz-line/polygon (x1 y1 x2 y2 polygon)
(let ((ks (schnitt-gerade/polygon-prim x1 y1 x2 y2 (polygon-points polygon))))
(assert (evenp (length ks)))
(let ((res nil)
(res2 nil))
(push 0d0 res)
(do ((q ks (cddr q)))
((null q))
(let ((k1 (max 0d0 (min 1d0 (car q))))
(k2 (max 0d0 (min 1d0 (cadr q)))))
(when (/= k1 k2)
(push k1 res)
(push k2 res))))
(push 1d0 res)
(setf res (nreverse res))
(do ((q res (cddr q)))
((null q))
(let ((k1 (car q))
(k2 (cadr q)))
(when (/= k1 k2)
(push (make-line* (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))
(+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))))
res2))))
(cond ((null res2) +nowhere+)
((null (cdr res2)) (car res2))
(t (make-instance 'standard-region-union :regions res2)) ))))
(defmethod region-difference ((a standard-line) (b standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(multiple-value-bind (u1 v1) (line-start-point* b)
(multiple-value-bind (u2 v2) (line-end-point* b)
(cond ((and (coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u1 v1))
(coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u2 v2)))
(let ((k1 (position->geraden-fktn-parameter x1 y1 x2 y2 u1 v1))
(k2 (position->geraden-fktn-parameter x1 y1 x2 y2 u2 v2)))
(psetq k1 (max 0 (min k1 k2))
k2 (min 1 (max k1 k2)))
(let ((r (nconc (if (> k1 0)
(list (make-line* x1 y1 (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))))
nil)
(if (< k2 1)
(list (make-line* (+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))) x2 y2))
nil))))
(cond ((null r) +nowhere+)
((null (cdr r)) (car r))
(t (make-instance 'standard-region-union :regions r)) ))))
(t
a)))))))
(defmethod region-union ((a standard-line) (b standard-line))
(multiple-value-bind (x1 y1) (line-start-point* a)
(multiple-value-bind (x2 y2) (line-end-point* a)
(multiple-value-bind (u1 v1) (line-start-point* b)
(multiple-value-bind (u2 v2) (line-end-point* b)
(cond ((and (coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u1 v1))
(coordinate= 0 (geraden-gleichung x1 y1 x2 y2 u2 v2)))
(let ((k1 (position->geraden-fktn-parameter x1 y1 x2 y2 u1 v1))
(k2 (position->geraden-fktn-parameter x1 y1 x2 y2 u2 v2)))
(psetq k1 (min k1 k2)
k2 (max k1 k2))
(cond ((and (<= k1 1) (>= k2 0))
(let ((k1 (min 0 k1))
(k2 (max 1 k2)))
(make-line* (+ x1 (* k1 (- x2 x1))) (+ y1 (* k1 (- y2 y1)))
(+ x1 (* k2 (- x2 x1))) (+ y1 (* k2 (- y2 y1))))))
(t
(make-instance 'standard-region-union :regions (list a b))))))
((and (coordinate= x1 u1) (coordinate= y1 v1))
(make-polyline* (list u2 v2 x1 y1 x2 y2)))
((and (coordinate= x2 u2) (coordinate= y2 v2))
(make-polyline* (list x1 y1 x2 y2 u1 v1)))
((and (coordinate= x1 u2) (coordinate= y1 v2))
(make-polyline* (list u1 v1 x1 y1 x2 y2)))
((and (coordinate= x2 u1) (coordinate= y2 v1))
(make-polyline* (list x1 y1 x2 y2 u2 v2)))
(t
(make-instance 'standard-region-union :regions (list a b))) ))))))
(defmethod region-union ((a standard-polyline) (b standard-line))
(with-slots (points) a
(cond ((polyline-closed a)
(make-instance 'standard-region-union :regions (list a b)))
((region-equal (car points) (line-end-point b))
(make-polyline (cons (line-start-point b) points)))
((region-equal (car points) (line-start-point b))
(make-polyline (cons (line-end-point b) points)))
((region-equal (car (last points)) (line-end-point b))
(make-polyline (append points (list (line-start-point b)))))
((region-equal (car (last points)) (line-start-point b))
(make-polyline (append points (list (line-end-point b)))))
(t
(make-instance 'standard-region-union :regions (list a b))))))
(defmethod region-union ((a standard-line) (b standard-polyline))
(region-union b a))
(defmethod region-union ((a standard-polyline) (b standard-polyline))
(with-slots ((a-points points)) a
(with-slots ((b-points points)) b
(cond ((polyline-closed a)
(make-instance 'standard-region-union :regions (list a b)))
((polyline-closed b)
(make-instance 'standard-region-union :regions (list a b)))
((region-equal (car a-points) (car b-points))
(make-polyline (append (reverse (cdr a-points)) b-points)))
((region-equal (car (last a-points)) (car (last b-points)))
(make-polyline (append a-points (reverse (cdr b-points)))))
((region-equal (car a-points) (car (last b-points)))
(make-polyline (append b-points (cdr a-points))))
((region-equal (car (last a-points)) (car b-points))
(make-polyline (append a-points (cdr b-points))))
(t
(make-instance 'standard-region-union :regions (list a b)))))))
(defmethod region-union ((a standard-rectangle-set) (b polygon))
(region-union (rectangle-set->polygon-union a) b))
(defmethod region-union ((a polygon) (b standard-rectangle-set))
(region-union a (rectangle-set->polygon-union b)))
(defun rectangle-set->polygon-union (rs)
(let ((res nil))
(map-over-region-set-regions (lambda (r) (push r res)) rs)
(make-instance 'standard-region-union :regions res)))
(defmethod region-union ((a standard-region-difference) (b region))
(make-instance 'standard-region-union :regions (list a b)))
(defmethod region-union ((a region) (b standard-region-difference))
(make-instance 'standard-region-union :regions (list a b)))
(defmethod region-equal ((a standard-line) (b standard-line))
(or (and (region-equal (line-start-point a) (line-start-point b))
(region-equal (line-end-point a) (line-end-point b)))
(and (region-equal (line-start-point a) (line-end-point b))
(region-equal (line-end-point a) (line-start-point b)))))
(defmethod region-union ((a nowhere-region) (b nowhere-region))
+nowhere+)
(defmethod region-exclusive-or ((a region) (b region))
(region-union (region-difference a b) (region-difference b a)))
(defmethod region-contains-region-p ((a region) (b point))
(region-contains-position-p a (point-x b) (point-y b)))
;; xxx was ist mit (region-contains-region-p x +nowhere+) ?
(defmethod region-contains-region-p ((a everywhere-region) (b region))
t)
(defmethod region-contains-region-p ((a nowhere-region) (b region))
nil)
(defmethod region-contains-region-p ((a everywhere-region) (b everywhere-region))
t)
(defmethod region-contains-region-p ((a region) (b everywhere-region))
;; ??? was ist mit
;; (region-union (region-difference +everywhere+ X) X) ???
nil)
(defmethod region-contains-region-p ((a region) (b nowhere-region))
t)
;; REGION-CONTAINS-REGION-P region1 region2
;;
;; Returns t if all points in the region region2 are members of the
;; region region1; otherwise, it returns nil.
;;
;; aka region2 ist teilmenge von region1 aka B\A = 0
;;
;; REGION-INTERSECTS-REGION-P region1 region2
;;
;; Returns nil if region-intersection of the two regions region1 and
;; region2 would be +nowhere+; otherwise, it returns t.
;;
;; aka region1 und region2 sind nicht disjunkt aka AB /= 0
;;
;; generic versions
(defmethod region-equal ((a region) (b region))
(region-equal +nowhere+ (region-exclusive-or a b)))
(defmethod region-intersects-region-p ((a region) (b region))
(not (region-equal +nowhere+ (region-intersection a b))))
(defmethod region-contains-region-p ((a region) (b region))
(or (eq a b)
(region-equal +nowhere+ (region-difference b a))))
;;;; ====================================================================================================
(defmethod bounding-rectangle* ((a standard-line))
(with-slots (x1 y1 x2 y2) a
(values (min x1 x2) (min y1 y2) (max x1 x2) (max y1 y2))))
(defmethod bounding-rectangle* ((a standard-rectangle))
(with-standard-rectangle (x1 y1 x2 y2)
a
(values x1 y1 x2 y2)))
(defmethod bounding-rectangle* ((self standard-rectangle-set))
(with-slots (bands bounding-rectangle) self
(values-list (or bounding-rectangle
(setf bounding-rectangle
(let (bx1 by1 bx2 by2)
(map-over-bands-rectangles (lambda (x1 y1 x2 y2)
(setf bx1 (min (or bx1 x1) x1)
bx2 (max (or bx2 x2) x2)
by1 (min (or by1 y1) y1)
by2 (max (or by2 y2) y2)))
bands)
(list bx1 by1 bx2 by2)))))))
(defmethod bounding-rectangle* ((self standard-polygon))
(values (reduce #'min (mapcar #'point-x (polygon-points self)))
(reduce #'min (mapcar #'point-y (polygon-points self)))
(reduce #'max (mapcar #'point-x (polygon-points self)))
(reduce #'max (mapcar #'point-y (polygon-points self)))))
(defmethod bounding-rectangle* ((self standard-polyline))
(values (reduce #'min (mapcar #'point-x (polygon-points self)))
(reduce #'min (mapcar #'point-y (polygon-points self)))
(reduce #'max (mapcar #'point-x (polygon-points self)))
(reduce #'max (mapcar #'point-y (polygon-points self)))))
(defmethod bounding-rectangle* ((self standard-point))
(with-slots (x y) self
(values x y x y)))
(defmethod bounding-rectangle* ((self standard-region-union))
(let (bx1 by1 bx2 by2)
(map-over-region-set-regions (lambda (r)
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* r)
(setf bx1 (min (or bx1 x1) x1)
bx2 (max (or bx2 x2) x2)
by1 (min (or by1 y1) y1)
by2 (max (or by2 y2) y2))))
self)
(values bx1 by1 bx2 by2)))
(defmethod bounding-rectangle* ((self standard-region-difference))
(with-slots (a b) self
(cond ((eq a +everywhere+)
(bounding-rectangle* b))
(t
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* a)
(multiple-value-bind (u1 v1 u2 v2) (bounding-rectangle* b)
(values (min x1 u1) (min y1 v1)
(max x2 u2) (min y2 v2))))) )))
(defmethod bounding-rectangle* ((self standard-region-intersection))
;; kill+yank alert
(let (bx1 by1 bx2 by2)
(map-over-region-set-regions (lambda (r)
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* r)
(setf bx1 (min (or bx1 x1) x1)
bx2 (max (or bx2 x2) x2)
by1 (min (or by1 y1) y1)
by2 (max (or by2 y2) y2))))
self)
(values bx1 by1 bx2 by2)))
;;;; ====================================================================================================
(defun make-bounding-rectangle (x1 y1 x2 y2)
(setf x1 (coerce x1 'coordinate)
y1 (coerce y1 'coordinate)
x2 (coerce x2 'coordinate)
y2 (coerce y2 'coordinate))
(make-instance 'standard-bounding-rectangle :x1 (min x1 x2) :y1 (min y1 y2) :x2 (max x1 x2) :y2 (max y1 y2)))
(defmethod bounding-rectangle ((region rectangle))
region)
(defmethod bounding-rectangle ((region region))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* region)
(make-bounding-rectangle x1 y1 x2 y2)))
(defmacro with-bounding-rectangle* ((min-x min-y max-x max-y) region &body body)
;; What is the purpose of this macro; IHMO m.-v.-b. looks as nice as with-b.-.r. .
`(multiple-value-bind (,min-x ,min-y ,max-x ,max-y) (bounding-rectangle* ,region)
,@body))
(defmethod bounding-rectangle-position ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(declare (ignore x2 y2))
(values x1 y1)))
(defmethod set-bounding-rectangle-position ((self standard-rectangle) x y)
;;(error "DO NOT CALL ME")
;;Yes, but... output records are based on rectangles
(with-standard-rectangle (x1 y1 x2 y2)
self
(setf (rectangle-edges* self)
(values x y (+ x (- x2 x1)) (+ y (- y2 y1))))))
(defmethod bounding-rectangle-min-x ((self bounding-rectangle))
(nth-value 0 (bounding-rectangle* self)))
(defmethod bounding-rectangle-min-y ((self bounding-rectangle))
(nth-value 1 (bounding-rectangle* self)))
(defmethod bounding-rectangle-max-x ((self bounding-rectangle))
(nth-value 2 (bounding-rectangle* self)))
(defmethod bounding-rectangle-max-y ((self bounding-rectangle))
(nth-value 3 (bounding-rectangle* self)))
(defmethod bounding-rectangle-width ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(declare (ignore y1 y2))
(- x2 x1)))
(defmethod bounding-rectangle-height ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(declare (ignore x1 x2))
(- y2 y1)))
(defmethod bounding-rectangle-size ((self bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* self)
(values (- x2 x1) (- y2 y1))))
;;;
(defmethod print-object ((self standard-rectangle) stream)
(print-unreadable-object (self stream :type t :identity t)
(with-standard-rectangle (x1 y1 x2 y2)
self
(format stream "X ~S:~S Y ~S:~S" x1 x2 y1 y2))))
;;;;
(defmethod region-intersects-region-p :around ((a bounding-rectangle) (b bounding-rectangle))
(multiple-value-bind (x1 y1 x2 y2) (bounding-rectangle* a)
(multiple-value-bind (u1 v1 u2 v2) (bounding-rectangle* b)
(cond ((and (<= u1 x2) (<= x1 u2)
(<= v1 y2) (<= y1 v2))
(call-next-method))
(t
nil)))))
(defmethod region-intersects-region-p ((a standard-rectangle) (b standard-rectangle))
(declare (ignorable a b))
;; for rectangles, the bounding rectangle test is correct, so if we
;; wind up here, we just can return T.
t
;;(multiple-value-bind (x1 y1 x2 y2) (rectangle-edges* a)
;; (multiple-value-bind (u1 v1 u2 v2) (rectangle-edges* b)
;; (and (<= u1 x2) (<= x1 u2)
;; (<= v1 y2) (<= y1 v2))))
)
;;; Internal helpers
(defmacro with-grown-rectangle* (((out-x1 out-y1 out-x2 out-y2)
(in-x1 in-y1 in-x2 in-y2)
&key
radius
(radius-x radius)
(radius-y radius)
(radius-left radius-x)
(radius-right radius-x)
(radius-top radius-y)
(radius-bottom radius-y))
&body body)
`(multiple-value-bind (,out-x1 ,out-y1 ,out-x2 ,out-y2)
(values (- ,in-x1 ,radius-left)
(- ,in-y1 ,radius-top)
(+ ,in-x2 ,radius-right)
(+ ,in-y2 ,radius-bottom))
,@body))
|