This file is indexed.

/usr/share/audacity/nyquist/nyquist.lsp is in audacity-data 2.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
;;;
;;;   ###########################################################
;;;   ### NYQUIST-- A Language for Composition and Synthesis. ###
;;;   ###                                                     ###
;;;   ### Copyright (c) 1994-2006 by Roger B. Dannenberg      ###
;;;   ###########################################################
;;;
(load "fileio.lsp" :verbose NIL)

(prog ()
   (setq lppp -12.0) (setq lpp -9.0)  (setq lp -6.0)    (setq lmp -3.0)
   (setq lfff 12.0) (setq lff 9.0)  (setq lf 6.0)    (setq lmf 3.0)
   (setq dB0 1.00)  (setq dB1 1.122) (setq dB10 3.1623)

   (setq s 0.25) (setq sd 0.375) (setq st (/ 0.5 3.0))
   (setq i 0.5)  (setq id 0.75)  (setq it (* st 2.0))
   (setq q 1.0)  (setq qd 1.5)   (setq qt (* st 4.0))
   (setq h 2.0)  (setq hd 3.0)   (setq ht (* st 8.0))
   (setq w 4.0)  (setq wd 6.0)   (setq wt (* st 16.0))
)

(init-global *A4-Hertz* 440.0)

; next pitch, for initializations below
; 
(defun np () (incf nyq:next-pitch))

(defun set-pitch-names ()
   (setq no-pitch 116.0)
   ; note: 58.0 is A4 - (C0 - 1) = 69 - (12 - 1)
   (setf nyq:next-pitch (- (hz-to-step *A4-Hertz*) 58.0))

   (setf nyq:pitch-names
    '(c0 (cs0 df0) d0 (ds0 ef0) e0 f0 (fs0 gf0) g0 (gs0 af0) a0
      (as0 bf0) b0
      c1 (cs1 df1) d1 (ds1 ef1) e1 f1 (fs1 gf1) g1 (gs1 af1) a1
      (as1 bf1) b1
      c2 (cs2 df2) d2 (ds2 ef2) e2 f2 (fs2 gf2) g2 (gs2 af2) a2
      (as2 bf2) b2
      c3 (cs3 df3) d3 (ds3 ef3) e3 f3 (fs3 gf3) g3 (gs3 af3) a3
      (as3 bf3) b3
      c4 (cs4 df4) d4 (ds4 ef4) e4 f4 (fs4 gf4) g4 (gs4 af4) a4
      (as4 bf4) b4
      c5 (cs5 df5) d5 (ds5 ef5) e5 f5 (fs5 gf5) g5 (gs5 af5) a5
      (as5 bf5) b5
      c6 (cs6 df6) d6 (ds6 ef6) e6 f6 (fs6 gf6) g6 (gs6 af6) a6
      (as6 bf6) b6
      c7 (cs7 df7) d7 (ds7 ef7) e7 f7 (fs7 gf7) g7 (gs7 af7) a7
      (as7 bf7) b7))

   (dolist (p nyq:pitch-names)
     (cond ((atom p) (set p (np)))
       (t (let ((pitch (np)))
        (dolist (s p) (set s pitch)))))))


(set-pitch-names)

(init-global *default-sound-srate* 44100.0)
(init-global *default-control-srate* 2205.0)

(setf *environment-variables*
      '(*WARP* *SUSTAIN* *START* *LOUD* *TRANSPOSE* 
    *STOP* *CONTROL-SRATE* *SOUND-SRATE*))

(setfn environment-time car)
(setfn environment-stretch cadr)

; ENVIRONMENT-MAP - map virtual time using an environment
;
;(defun environment-map (env tim)
;  (+ (environment-time env)
;     (* (environment-stretch env) tim)))


(defun nyq:the-environment () (mapcar 'eval *environment-variables*))


;; GLOBAL ENVIRONMENT VARIABLES and their startup values:
(defun nyq:environment-init ()
  (setq *WARP*		'(0.0 1.0 nil))
  (setq *LOUD*	0.0)   ; now in dB
  (setq *TRANSPOSE*	0.0)
  (setq *SUSTAIN*	        1.0)
  (setq *START*       MIN-START-TIME)
  (setq *STOP*        MAX-STOP-TIME)
  (setq *CONTROL-SRATE*  *DEFAULT-CONTROL-SRATE*)
  (setq *SOUND-SRATE* *DEFAULT-SOUND-SRATE*)
  t)				; return nothing in particular

(nyq:environment-init)

(defun get-duration (dur)
  (let ((duration 
         (- (local-to-global (* (get-sustain) dur))
            (setf *rslt* (local-to-global 0)))))
     (cond ((minusp duration)
            (error
"duration is less than zero: perhaps a warp or stretch
is ill-formed. Nyquist cannot continue because synthesis
functions assume durations are always positive.")))
     duration))


(defun get-loud ()
  (cond ((numberp *loud*) *loud*)
    ((soundp *loud*)
     (sref *loud* 0))
    (t
     (error (format t "*LOUD* should be a number or sound: ~A" *LOUD*)))))


(defun get-sustain ()
  (cond ((numberp *SUSTAIN*) *SUSTAIN*)
    ((soundp *SUSTAIN*)
     ;(display "get-sustain: lookup " (local-to-global 0) 0))
     (sref *SUSTAIN* 0))
    (t
     (error (format t "*SUSTAIN* should be a number or sound: ~A" *SUSTAIN*)))))


(defun get-tempo ()
  (slope (snd-inverse (get-warp) (local-to-global 0)
              *control-srate*)))

(defun get-transpose ()
  (cond ((numberp *TRANSPOSE*) *TRANSPOSE*)
    ((soundp *TRANSPOSE*)
     ; (display "get-transpose: lookup " 0)
     ; (format t "samples: ~A~%" (snd-samples *TRANSPOSE* 100))
     (sref *TRANSPOSE* 0))
    (t
     (error (format t "*TRANSPOSE* should be a number or sound: ~A" *TRANSPOSE*)))))


(defun get-warp ()
  (let ((f (warp-function *WARP*)))
    (cond ((null f) (error "Null warp function"))
    (t
     (shift-time (scale-srate f (/ (warp-stretch *WARP*)))
             (- (warp-time *WARP*)))))))


;;;;;;;;;;;;;;;;;;;;;;
;; OSCILATORS
;;;;;;;;;;;;;;;;;;;;;;

(defun build-harmonic (n table-size) (snd-sine 0 n table-size 1))

(setf *SINE-TABLE* (list (build-harmonic 1 2048)
             (hz-to-step 1.0)
             T))
(setf *TABLE* *SINE-TABLE*)


;; AMOSC
;;
(defun amosc (pitch modulation &optional (sound *table*) (phase 0.0))
  (let ((modulation-srate (snd-srate modulation))
    (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((> *SOUND-SRATE* modulation-srate)
       (setf modulation (snd-up *SOUND-SRATE* modulation)))
      ((< *SOUND-SRATE* modulation-srate)
       (format t "Warning: down-sampling AM modulation in amosc~%")
       (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
       (format t "Warning: amosc frequency (~A hz) will alias at current sample rate (~A hz).\n"
           hz *SOUND-SRATE*)))
    (scale-db (get-loud)
      (snd-amosc
    (car sound)	; samples for table
    (cadr sound)	; step represented by table
    *SOUND-SRATE*	; output sample rate
    hz		;  output hz
    (local-to-global 0)	; starting time
    modulation	; modulation
    phase))))	; phase


;; FMOSC
;;
;; modulation rate must be less than or equal to sound-srate, so
;; force resampling and issue a warning if necessary. snd-fmosc can
;; handle upsampling cases internally.
;;
(defun fmosc (pitch modulation &optional (sound *table*) (phase 0.0))
  (let ((modulation-srate (snd-srate modulation))
        (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((< *SOUND-SRATE* modulation-srate)
       (format t "Warning: down-sampling FM modulation in fmosc~%")
       (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
       (format t "Warning: fmosc nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
           hz *SOUND-SRATE*)))
    (scale-db (get-loud)
      (snd-fmosc 
        (car sound)		; samples for table
        (cadr sound)		; step represented by table
        *SOUND-SRATE*		; output sample rate
        hz			;  output hz
        (local-to-global 0)	; starting time
        modulation		; modulation
        phase))))		; phase


;; FMFB
;;
;; this code is based on FMOSC above
;;
(defun fmfb (pitch index &optional dur)
 (let ((hz (step-to-hz (+ pitch (get-transpose)))))
   (cond ((> hz (/ *SOUND-SRATE* 2))
          (format "Warning: fmfb nominal frequency (~A hz) will alias at current sample rate (~A hz).~%"
                  hz *SOUND-SRATE*)))
   (setf dur (get-duration dur))
   (cond ((soundp index) (ny:fmfbv hz index))
          (t
           (scale-db (get-loud)
                     (snd-fmfb (local-to-global 0) 
                               hz *SOUND-SRATE* index dur))))))

;; private variable index version of fmfb
(defun ny:fmfbv (hz index)
  (let ((modulation-srate (snd-srate index)))
    (cond ((< *SOUND-SRATE* modulation-srate)
           (format t "Warning: down-sampling FM modulation in fmfb~%")
           (setf index (snd-down *SOUND-SRATE* index))))
    (scale-db (get-loud)
              (snd-fmfbv (local-to-global 0) hz *SOUND-SRATE* index))))


;; BUZZ
;;
;; (ARGUMENTS ("long" "n") ("rate_type" "sr") ("double" "hz")
;;            ("time_type" "t0") ("sound_type" "s_fm"))
;; 
(defun buzz (n pitch modulation)
  (let ((modulation-srate (snd-srate modulation))
        (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((< *SOUND-SRATE* modulation-srate)
           (format t "Warning: down-sampling modulation in buzz~%")
           (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: buzz nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
                   hz *SOUND-SRATE*)))
    (setf n (max n 1)) ; avoid divide by zero problem
    (scale-db (get-loud)
              (snd-buzz n                   ; number of harmonics
                        *SOUND-SRATE*       ; output sample rate
                        hz                  ; output hz
                        (local-to-global 0) ; starting time
                        modulation))))      ; freq. modulation
                        

;; (HZOSC hz [table [phase]])
;;
;; similar to FMOSC, but without "carrier" frequency parameter
;; also, hz may be a scalar or a sound
;;
(defun hzosc (hz &optional (sound *table*) (phase 0.0))
  (let (hz-srate)
    (cond ((numberp hz)
           (osc (hz-to-step hz) 1.0 sound phase))
          (t
           (setf hz-srate (snd-srate hz))
           (cond ((< *SOUND-SRATE* hz-srate)
                  (format t "Warning: down-sampling hz in hzosc~%")
                  (setf hz (snd-down *SOUND-SRATE* hz))))
           (scale-db (get-loud)
                     (snd-fmosc (car sound) ; samples for table
                                (cadr sound) ; step repr. by table
                                *SOUND-SRATE* ; output sample rate
                                0.0 ; dummy carrier
                                (local-to-global 0) ; starting time
                                hz phase))))))


;; (SIOSC-BREAKPOINTS tab0 t1 tab1 ... tn tabn)
;;   converts times to sample numbers
;; NOTE: time-warping the spectral envelope seems
;; like the wrong thing to do (wouldn't it be better
;; to warp the parameters that control the spectra,
;; or don't warp at all?). Nominally, a note should
;; have a "score" or local time duration equal to the
;; SUSTAIN environment variable. (When sustain is 1.0
;; and no time-warping is in effect, the duration is 1).
;; So, scale all times by
;;		(local-to-global (get-sustain))
;; so that if the final time tn = 1.0, we get a nominal
;; length note.

(defun siosc-breakpoints (breakpoints)
  (display "siosc-breakpoints" breakpoints)
  (prog (sample-count result (last-count 0) time-factor)
    (setf time-factor
      (- (local-to-global (get-sustain))
         (local-to-global 0.0)))
    (setf time-factor (* time-factor *SOUND-SRATE*))
    (cond ((and (listp breakpoints)
        (cdr breakpoints)
        (cddr breakpoints)))
      (t (error "SIOSC table list must have at least 3 elements")))
loop
    (cond ((and (listp breakpoints)
           (soundp (car breakpoints)))
       (push (car breakpoints) result)
       (setf breakpoints (cdr breakpoints)))
      (t
       (error "SIOSC expecting SOUND in table list")))
    (cond ((and breakpoints
        (listp breakpoints)
        (numberp (car breakpoints)))
       (setf sample-count (truncate
        (+ 0.5 (* time-factor (car breakpoints)))))
       (cond ((< sample-count last-count)
          (setf sample-count (1+ last-count))))
       (push sample-count result)
       (setf last-count sample-count)
       (setf breakpoints (cdr breakpoints))
       (cond (breakpoints
          (go loop))))
      (breakpoints
       (error "SIOSC expecting number (time) in table list")))
    (setf result (reverse result))
    (display "siosc-breakpoints" result)
    (return result)))

;; SIOSC -- spectral interpolation oscillator
;;
;; modulation rate must be less than or equal to sound-srate, so
;; force resampling and issue a warning if necessary. snd-fmosc can
;; handle upsampling cases internally.
;;
(defun siosc (pitch modulation breakpoints)
  (let ((modulation-srate (snd-srate modulation))
    (hz (step-to-hz (+ pitch (get-transpose)))))
    (cond ((< *SOUND-SRATE* modulation-srate)
       (format t "Warning: down-sampling FM modulation in siosc~%")
       (setf modulation (snd-down *SOUND-SRATE* modulation))))
    (cond ((> hz (/ *SOUND-SRATE* 2))
       (format t "Warning: siosc nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
           hz *SOUND-SRATE*)))
     (scale-db (get-loud)
      (snd-siosc 
    (siosc-breakpoints breakpoints)	; tables
    *SOUND-SRATE*		; output sample rate
    hz			;  output hz
    (local-to-global 0)	; starting time
    modulation))))		; modulation


;; LFO -- freq &optional duration sound phase)
;;
;; Default duration is 1.0 sec, default sound is *TABLE*, 
;; default phase is 0.0.
;;
(defun lfo (freq &optional (duration 1.0)
         (sound *SINE-TABLE*) (phase 0.0))
  (let ((d (get-duration duration)))
    (if (minusp d) (setf d 0))
    (cond ((> freq (/ *CONTROL-SRATE* 2))
           (format t "Warning: lfo frequency (~A hz) will alias at current control rate (~A hz).\n"
                     freq *CONTROL-SRATE*)))
    (set-logical-stop
      (snd-osc
        (car sound)		; samples for table
        (cadr sound)		; step represented by table
        *CONTROL-SRATE*		; output sample rate
        freq			; output hz
        *rslt*			; starting time
        d			; duration
        phase)		        ; phase
      duration)))


;; FMLFO -- like LFO but uses frequency modulation
;;
(defun fmlfo (freq &optional (sound *SINE-TABLE*) (phase 0.0))
  (let ()
    (cond ((numberp freq)
           (lfo freq 1.0 sound phase))
          ((soundp freq)
           (cond ((> (snd-srate freq) *CONTROL-SRATE*)
                  (setf freq (force-srate *CONTROL-SRATE* freq))))
           (snd-fmosc (car sound) (cadr sound) *CONTROL-SRATE* 0.0 
                      (local-to-global 0) freq phase))
          (t
           (error "frequency must be a number or sound")))))


;; OSC - table lookup oscillator
;;
(defun osc (pitch &optional (duration 1.0) 
            (sound *TABLE*) (phase 0.0))
  (let ((d  (get-duration duration))
        (hz (step-to-hz (+ pitch (get-transpose)))))
    ;(display "osc" *warp* global-start global-stop actual-dur  
    ;         (get-transpose))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: osc frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (set-logical-stop
      (scale-db (get-loud)
        (snd-osc 
          (car sound)		; samples for table
          (cadr sound)		; step represented by table
          *SOUND-SRATE*		; output sample rate
          hz			;  output hz
          *rslt*		; starting time
          d			; duration
          phase))               ; phase
      duration)))


;; PARTIAL -- sine osc with built-in envelope scaling
;;
(defun partial (steps env)
  (let ((hz (step-to-hz (+ steps (get-transpose)))))
    (cond ((> hz (/ *sound-srate* 2))
           (format t "Warning: partial frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *sound-srate*)))
    (scale-db (get-loud)
      (snd-partial *sound-srate* hz
                   (force-srate *sound-srate* env)))))


;; SAMPLER -- simple attack + sustain sampler
;;
(defun sampler (pitch modulation 
                &optional (sample *table*) (npoints 2))
  (let ((samp (car sample))
    (samp-pitch (cadr sample))
    (samp-loop-start (caddr sample))
    (hz (step-to-hz (+ pitch (get-transpose)))))
    ; make a waveform table look like a sample with no attack:
    (cond ((not (numberp samp-loop-start))
           (setf samp-loop-start 0.0)))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: sampler nominal frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (scale-db (get-loud)
       (snd-sampler 
        samp		; samples for table
        samp-pitch	; step represented by table
        samp-loop-start ; time to start loop
        *SOUND-SRATE*	; output sample rate
        hz		;  output hz
        (local-to-global 0)	; starting time
        modulation	; modulation
        npoints))))    	; number of interpolation points


;; SINE -- simple sine oscillator
;;
(defun sine (steps &optional (duration 1.0))
  (let ((hz (step-to-hz (+ steps (get-transpose))))
        (d (get-duration duration)))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: sine frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (set-logical-stop
      (scale-db (get-loud)
        (snd-sine *rslt* hz *sound-srate* d))
      duration)))


;; PLUCK
;;
;; (ARGUMENTS ("double" "sr") ("double" "hz") ("time_type" "t0") 
;;            ("time_type" "d") ("double" "final_amp"))
;;
(defun pluck (steps &optional (duration 1.0) (final-amp 0.001))
  (let ((hz (step-to-hz (+ steps (get-transpose))))
        (d (get-duration duration)))
    (cond ((> hz (/ *SOUND-SRATE* 2))
           (format t "Warning: pluck frequency (~A hz) will alias at current sample rate (~A hz).\n"
                     hz *SOUND-SRATE*)))
    (set-logical-stop
      (scale-db (get-loud)
        (snd-pluck *SOUND-SRATE* hz *rslt* d final-amp))
      duration)))


;; abs-env -- restore the standard environment
;;
(defmacro abs-env (s)
  `(progv '(*WARP* *LOUD* *TRANSPOSE* *SUSTAIN* 
            *START* *STOP*
            *CONTROL-SRATE* *SOUND-SRATE*)
          (list '(0.0 1.0 NIL) 0.0 0.0 1.0
           MIN-START-TIME MAX-STOP-TIME
           *DEFAULT-CONTROL-SRATE* *DEFAULT-SOUND-SRATE*)
     ,s))


; nyq:add2 - add two arguments
; 
(defun nyq:add2 (s1 s2)
  (cond ((and (arrayp s1) (not (arrayp s2)))
         (setf s2 (vector s2)))
        ((and (arrayp s2) (not (arrayp s1)))
         (setf s1 (vector s1))))
  (cond ((arrayp s1)
         (sum-of-arrays s1 s2))
        (t
         (nyq:add-2-sounds s1 s2))))


; (NYQ:ADD-2-SOUNDS S1 S2) - add two sound (or number) arguments
; 
(defun nyq:add-2-sounds (s1 s2)
  (cond ((numberp s1)
         (cond ((numberp s2)
        (+ s1 s2))
          (t
           (snd-offset s2 s1))))
    ((numberp s2)
     (snd-offset s1 s2))
    (t
     (let ((s1sr (snd-srate s1))
           (s2sr (snd-srate s2)))
;    (display "nyq:add-2-sounds" s1sr s2sr)
       (cond ((> s1sr s2sr)
              (snd-add s1 (snd-up s1sr s2)))
             ((< s1sr s2sr)
              (snd-add (snd-up s2sr s1) s2))
             (t
              (snd-add s1 s2)))))))


(defmacro at (x s)
 `(progv '(*WARP*) (list (list (+ (warp-time *WARP*) 
                  (* (warp-stretch *WARP*) ,x))
                   (warp-stretch *WARP*)
                   (warp-function *WARP*)))
      ,s))


;; (AT-ABS t behavior) evaluate behavior at global time t
;;
;; *WARP* is the triple (d s f) denoting the function f(st+d),
;; a mapping from local to global time.
;; We want (d' s f) such that f(s*0 + d') = t
;; (Note that we keep the same s and f, and only change the offset.
;; To eliminate the warp and stretch use "(abs-env (at t behavior))")
;; Applying the inverse of f, d' = f-1(t), or (sref (snd-inverse f ...) t)
;; Rather than invert the entire function just to evaluate at one point,
;; we use SREF-INVERSE to find d'.
;;
(defmacro at-abs (x s)
 `(progv '(*WARP*)
     (if (warp-function *WARP*)
               (list (list (sref-inverse (warp-function *WARP*) ,x)
                   (warp-stretch *WARP*)
                   (warp-function *WARP*)))
               (list (list ,x (warp-stretch *WARP*) NIL)))
     ,s))

;; (CLIP S1 VALUE) - clip maximum amplitude to value
;
(defun clip (x v)
  (cond ((numberp x)
     (max (min x v) (- v)))
    ((arrayp x)
     (let* ((len (length x))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) 
              (snd-clip (aref x i) v)))
        result))
    (t
     (snd-clip x v))))


;; (NYQ:COERCE-TO S1 S2) - expand sound s1 to type of s2
; 
(defun nyq:coerce-to (s1 s2)
  (cond ((or (soundp s1) (numberp s1))
         (cond ((arrayp s2)
                (nyq:sound-to-array s1 (length s2)))
               (t s1)))
         (t s1)))


(defmacro continuous-control-warp (beh)
  `(snd-compose (warp-abs nil ,beh)
        (snd-inverse (get-warp)
         (local-to-global 0) *control-srate*)))

(defmacro continuous-sound-warp (beh)
  `(snd-compose (warp-abs nil ,beh)
        (snd-inverse (get-warp)
         (local-to-global 0) *sound-srate*)))


(defmacro control-srate-abs (r s)
  `(progv '(*CONTROL-SRATE*) (list ,r)
      ,s))

; db = 20log(ratio)
; db = 20 ln(ratio)/ln(10)
; db/20 = ln(ratio)/ln(10)
; db ln(10)/20 = ln(ratio)
; e^(db ln(10)/20) = ratio
;
(setf ln10over20 (/ (log 10.0) 20))

(defun db-to-linear (x) 
  (cond ((numberp x)
     (exp (* ln10over20 x)))
    ((arrayp x)
     (let* ((len (length x))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) 
              (snd-exp (snd-scale ln10over20 (aref x i)))))
        result))
    (t
     (snd-exp (snd-scale ln10over20 x)))))


(defun linear-to-db (x) 
  (cond ((numberp x)
     (/ (log (float x)) ln10over20))
    ((arrayp x)
     (let* ((len (length x))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) 
              (snd-scale (/ 1.0 ln10over20) (snd-log (aref x i)))))
        result))
    (t
     (snd-scale (/ 1.0 ln10over20) (snd-log x)))))


(cond ((not (fboundp 'scalar-step-to-hz))
       (setfn scalar-step-to-hz step-to-hz)
       (setfn scalar-hz-to-step hz-to-step)))


(defun step-to-hz (x)
  (cond ((numberp x)
         (scalar-step-to-hz x))
        ((arrayp x)
         (let* ((len (length x))
                (result (make-array len)))
           (dotimes (i len)
             (setf (aref result i) (step-to-hz (aref x i))))
           result))
        (t
         (s-exp (snd-offset (snd-scale 0.0577622650466621 x) 
                            2.1011784386926213)))))

(defun hz-to-step (x)
  (cond ((numberp x)
         (scalar-hz-to-step x))
        ((arrayp x)
         (let* ((len (length x))
                (result (make-array len)))
           (dotimes (i len)
             (setf (aref result i) (hz-to-step (aref x i))))
           result))
        (t
         (snd-scale 17.312340490667565
                    (snd-offset (s-log x) -2.1011784386926213))))) 


; sref - access a sound at a given time point
;    note that the time is transformed to global
(defun sref (sound point)
  (snd-sref sound (local-to-global point)))


; extract - start is stretched and shifted as is stop
;  result is shifted to start at local time zero
(defun extract (start stop sound)
  (snd-xform sound (snd-srate sound) (local-to-global 0) 
         (local-to-global start) (local-to-global stop) 1.0))

(defun extract-abs (start stop sound)
  (snd-xform sound (snd-srate sound) 0 start stop 1.0))
     

(defun local-to-global (local-time)
  (let ((d (warp-time *WARP*))
    (s (warp-stretch *WARP*))
    (w (warp-function *WARP*))
    global-time)
    (setf global-time (+ (* s local-time) d))
    (if w (snd-sref w global-time) global-time)))


(defmacro loud (x s)
 `(progv '(*LOUD*) (list (sum *LOUD* ,x))
     ,s))


(defmacro loud-abs (x s)
 `(progv '(*LOUD*) (list ,x)
     ,s))

(defun must-be-sound (x)
 (cond ((soundp x) x)
       (t
    (error "SOUND type expected" x))))

;; SCALE-DB -- same as scale, but argument is in db
;;
(defun scale-db (factor sound)
  (scale (db-to-linear factor) sound))

(defun set-control-srate (rate)
  (setf *default-control-srate* (float rate))
  (nyq:environment-init))

(defun set-sound-srate (rate) 
  (setf *default-sound-srate* (float rate))
  (nyq:environment-init))


; s-plot -- compute and write n data points for plotting
;
; dur is how many seconds of sound to plot. If necessary, cut the
;     sample rate to allow plotting dur seconds
; n is the number of points to plot. If there are more than n points,
;     cut the sample rate. If there are fewer than n samples, just
;     plot the points that exist.
;
(defun s-plot (snd &optional (dur 2.0) (n 1000))
  (prog* ((sr (snd-srate snd))
          (t0 (snd-t0 snd))
          (filename (soundfilename *default-plot-file*))
          (s snd) ;; s is either snd or resampled copy of snd
          (outf (open filename :direction :output)) ;; for plot data
          (maximum -1000000.0) ;; maximum amplitude
          (minimum  1000000.0) ;; minimum amplitude
          actual-dur ;; is the actual-duration of snd
          sample-count ;; is how many samples to get from s
          period  ;; is the period of samples to be plotted
          truncation-flag     ;; true if we didn't get whole sound
          points) ;; is array of samples
     ;; If we need more than n samples to get dur seconds, resample
     (cond ((< n (* dur sr))
            (setf s (force-srate (/ (float n) dur) snd))))
     ;; Get samples from the signal
     (setf points (snd-samples s (1+ n)))
     ;; If we got fewer than n points, we can at least estimate the
     ;; actual duration (we might not know exactly if we use a lowered
     ;; sample rate). If the actual sample rate was lowered to avoid
     ;; getting more than n samples, we can now raise the sample rate
     ;; based on our estimate of the actual sample duration.
     (display "test" (length points) n)
     (cond ((< (length points) n)
            ;; sound is shorter than dur, estimate actual length
            (setf actual-dur (/ (length points) (snd-srate s)))
            (setf sample-count (round (min n (* actual-dur sr))))
            (cond ((< n (* actual-dur sr))
                   (setf s (force-srate (/ (float n) actual-dur) snd)))
                  (t ;; we can use original signal
                   (setf s snd)))
            (setf points (snd-samples s sample-count))
            ;; due to rounding, need to recalculate exact count
            (setf sample-count (length points)))
           ((= (length points) n)
            (setf actual-dur dur)
            (setf sample-count n))
           (t ;; greater than n points, so we must have truncated sound
            (setf actual-dur dur)
            (setf sample-count n)
            (setf truncation-flag t)))
     ;; actual-dur is the duration of the plot
     ;; sample-count is how many samples we have
     (setf period (/ 1.0 (snd-srate s)))
     (cond ((null outf)
            (format t "s-plot: could not open ~A!~%" filename)
            (return nil)))
    (format t "s-plot: writing ~A ... ~%" filename)
    (cond (truncation-flag
           (format t "        !!TRUNCATING SOUND TO ~As\n" actual-dur)))
    (cond ((/= (snd-srate s) (snd-srate snd))
           (format t "        !!RESAMPLING SOUND FROM ~A to ~Ahz\n"
                   (snd-srate snd) (snd-srate s))))
    (cond (truncation-flag
           (format t "        Plotting ~As, actual sound duration is greater\n"
                     actual-dur))
          (t
           (format t "        Sound duration is ~As~%" actual-dur)))
    (dotimes (i sample-count)
      (setf maximum (max maximum (aref points i)))
      (setf minimum (min minimum (aref points i)))
      (format outf "~A ~A~%" (+ t0 (* i period)) (aref points i)))
    (close outf)
    (format t "        Wrote ~A points from ~As to ~As~%" 
              sample-count t0 (+ t0 actual-dur))
    (format t "        Range of values ~A to ~A\n" minimum maximum)
    (cond ((or (< minimum -1) (> maximum 1))
           (format t "        !!SIGNAL EXCEEDS +/-1~%")))))


; run something like this to plot the points:
; graph < points.dat | plot -Ttek


(defmacro sound-srate-abs (r s)
  `(progv '(*SOUND-SRATE*) (list ,r)
      ,s))


(defmacro stretch (x s)
 `(progv '(*WARP*) (list (list (warp-time *WARP*) 
                   (* (warp-stretch *WARP*) ,x)
                   (warp-function *WARP*)))
     (if (minusp (warp-stretch *WARP*))
         (break "Negative stretch factor is not allowed"))
             ,s))

         
(defmacro stretch-abs (x s)
 `(progv '(*WARP*) (list (list (local-to-global 0)
                   ,x
                   nil))
     (if (minusp (warp-stretch *WARP*))
         (break "Negative stretch factor is not allowed"))
             ,s))


(defmacro sustain (x s)
 `(progv '(*SUSTAIN*) (list (prod *SUSTAIN* ,x))
      ,s))


(defmacro sustain-abs (x s)
 `(progv '(*SUSTAIN*) (list ,x)
      ,s))


;; (WARP-FUNCTION *WARP*) - extracts function field of warp triple
;;
(setfn warp-function caddr)


;; (WARP-STRETCH *WARP*) - extracts stretch field of warp triple
;;
(setfn warp-stretch cadr)


;; (WARP-TIME *WARP*) - extracts time field of warp triple
;;
(setfn warp-time car)


(defmacro transpose (x s)
 `(progv '(*TRANSPOSE*) (list (sum *TRANSPOSE* ,x))
      ,s))


(defmacro transpose-abs (x s)
 `(progv '(*TRANSPOSE*) (list ,x)
      ,s))


;; COMPUTE-DEFAULT-SOUND-FILE -- construct and set *default-sound-file*
;;
;; (this is harder than it might seem because the default place for
;;  sound files is in /tmp, which is shared by users, so we'd like to
;;  use a user-specific name to avoid collisions)
;;
(defun compute-default-sound-file () 
  (let (inf user extension)
      ; the reason for the user name is that if UserA creates a temp file,
      ; then UserB will not be able to overwrite it. The user name is a
      ; way to give each user a unique temp file name. Note that we don't
      ; want each session to generate a unique name because Nyquist doesn't
      ; delete the sound file at the end of the session.
   (setf user (get-user))
#|
   (cond ((null user)           
       (format t 
"Please type your user-id so that I can construct a default 
sound-file name.  To avoid this message in the future, add
this to your .login file:
    setenv USER <your id here>
or add this to your init.lsp file:
    (setf *default-sound-file* \"<your filename here>\")
    (setf *default-sf-dir* \"<full pathname of desired directory here>\")

Your id please: ")
       (setf user (read))))
|#
    ; now compute the extension based on *default-sf-format*
    (cond ((= *default-sf-format* snd-head-AIFF)
           (setf extension ".aif"))
          ((= *default-sf-format* snd-head-Wave)
           (setf extension ".wav"))
          (t
           (setf extension ".snd")))
    (setf *default-sound-file* 
      (strcat (string-downcase user) "-temp" extension))
    (format t "Default sound file is ~A.~%" *default-sound-file*)))


;; CONTROL-WARP -- apply a warp function to a control function
;; 
(defun control-warp (warp-fn control &optional wrate)
  (cond (wrate
     (snd-resamplev control *control-srate*
            (snd-inverse warp-fn (local-to-global 0) wrate)))
    (t
     (snd-compose control
              (snd-inverse warp-fn (local-to-global 0) *control-srate*)))))


;; (cue sound)
;;    Cues the given sound; that is, it applies the current *WARP*, *LOUD*,
;; *START*, and *STOP* values to the argument.  The logical start time is at
;; local time 0.
(defun cue (sound)
  (cond ((arrayp sound)
     (let* ((len (length sound))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i)
              (cue-sound (aref sound i))))
        result))
    (t
     (cue-sound sound))))

(defun cue-sound (sound)
  (snd-xform sound
         (snd-srate sound)
         (local-to-global 0) *START* *STOP* (db-to-linear (get-loud))))

;; (sound sound)
;;    Same as (cue sound), except also warps the sound.
;; Note that the *WARP* can change the pitch of the
;; sound as a result of resampling.
;; Here's the derivation for the warping code:
;; *WARP* is a triple: (d s f) which denotes that the warp from local to
;; global time is: f(st+d)
;; We need to compose sound with the inverse of this to get a function
;; of global time
;; Let f-1 be the inverse of f.  Then the inverse of f(st+d) is 
;; (f-1(t) - d)/s
;; The composition gives us: (snd-compose sound (f-1(t) - d)/s)
;; Eliminate the 1/s term by changing the sample rate of sound:
;;  = (snd-compose (snd-scale-srate sound s) (f-1(t) - d))
;; Eliminate the -d term by shifting f before taking the inverse:
;;  = (snd-compose (scale-srate sound s) ((inverse f) - d))
;;  = (snd-compose (scale-srate sound s) (inverse f(t + d)))
;;  = (snd-compose (scale-srate sound s) (inverse (shift f -d)))
;; snd-inverse takes a time and sample rate.  For time, use zero.
;; The sample rate of inverse determines the final sample rate of
;; this function, so use *SOUND-SRATE*:
;;  = (snd-compose (scale-srate sound s) (snd-inverse (shift-time f (- d))
;;                                              0 *SOUND-SRATE*))
;;
(defun nyq:sound (sound)
   (cond ((null (warp-function *WARP*))
      (snd-xform sound (/ (snd-srate sound) (warp-stretch *WARP*))
             (local-to-global 0)
             *START* *STOP* (db-to-linear (get-loud))))
     (t
      (snd-compose (scale-srate sound (warp-stretch *WARP*))
               (snd-inverse (shift-time (warp-function *WARP*)
                        (- (warp-time *WARP*)))
                    0 *SOUND-SRATE*)))))

(defun nyq:sound-of-array (sound)
  (let* ((n (length sound))
         (s (make-array n)))
    (dotimes (i n)
      (setf (aref s i) (nyq:sound (aref sound i))))
    s))


(defun sound (sound)
  (cond ((arrayp sound)
     (nyq:sound-of-array sound))
    (t
     (nyq:sound sound))))


;; (SCALE-SRATE SOUND SCALE)
;; multiplies the sample rate by scale
(defun scale-srate (sound scale)
  (let ((new-srate (* scale (snd-srate sound))))
    (snd-xform sound new-srate (snd-time sound) 
           MIN-START-TIME MAX-STOP-TIME 1.0)))


;; (SHIFT-TIME SOUND SHIFT)
;; shift the time of a function by SHIFT, i.e. if SOUND is f(t),
;; then (shift-time SOUND SHIFT) is f(t - SHIFT).  Note that if
;; you look at plots, the shifted sound will move *right* when SHIFT
;; is positive.  
(defun shift-time (sound shift)
  (snd-xform sound (snd-srate sound) (+ (snd-t0 sound) shift)
         MIN-START-TIME MAX-STOP-TIME 1.0))


;; (NYQ:SOUND-TO-ARRAY SOUND N) - duplicate SOUND to N channels
;;
(defun nyq:sound-to-array (sound n)
  (let ((result (make-array n)))
    (dotimes (i n)
      (setf (aref result i) sound))
    result))


;; (control sound)
;;    Same as (sound sound), except this is used for control signals.  
;;    This code is identical to sound.
(setfn control sound)


;; (cue-file string)
;;    Loads a sound file with the given name, returning a sound which is
;; transformed to the current environment.
(defun cue-file (name)
    (cue (force-srate *SOUND-SRATE* (s-read name))))


;; (env t1 t2 t4 l1 l2 l3 &optional duration)
;; Creates a 4-phase envelope.
;;	tN is the duration of phase N, and lN is the final level of
;;	phase N.  t3 is implied by the duration, and l4 is 0.0.
;;	If dur is not supplied, then 1.0 is assumed.  The envelope
;;	duration is the product of dur, *STRETCH*, and *SUSTAIN*.  If 
;;	t1 + t2 + 2ms + t4 > duration, then a two-phase envelope is
;;	substituted that has an attack/release time ratio = t1/t4.
;;	The sample rate of the returned sound is *CONTROL-SRATE*.
;;
;; Time transformation: the envelope is not warped; the start time and
;; stop times are warped to global time.  Then the value of *SUSTAIN* at
;; the begining of the envelope is used to determing absolute duration.
;; Since PWL is ultimately called to create the envelope, we must use
;; ABS-ENV to prevent any further transforms inside PWL.  We use
;; (AT global-start ...) inside ABS-ENV so that the final result has 
;; the proper starting time.
;;
(defun env (t1 t2 t4 l1 l2 l3 &optional (duration 1.0))
  (let (actual-dur min-dur ratio t3
    (actual-dur (get-duration duration)))
    (setf min-dur (+ t1 t2 t4 0.002))
    (cond ((< actual-dur min-dur)
       (setf ratio (/ t1 (float (+ t1 t4))))
       (setf t1 (* ratio actual-dur))
       (setf t2 (- actual-dur t1))
       (setf t3 0.0)
       (setf t4 0.0)
       (setf l2 0.0)
       (setf l3 0.0))
      (t
       (setf t3 (- actual-dur t1 t2 t4))))
    (set-logical-stop
      (abs-env (at *rslt*
                   (pwl t1 l1 (+ t1 t2) l2 (- actual-dur t4) l3 actual-dur)))
      duration)))


(defun gate (sound lookahead risetime falltime floor threshold)
    (cond ((< lookahead risetime)
           (break "lookahead must be greater than risetime in GATE function"))
          ((or (< risetime 0) (< falltime 0) (< floor 0))
           (break "risetime, falltime, and floor must all be positive in GATE function"))
          (t
           (let ((s
              (snd-gate (seq (cue sound) (abs-env (s-rest lookahead)))
                    lookahead risetime falltime floor threshold)))
             (snd-xform s (snd-srate s) (snd-t0 sound) 
            (+ (snd-t0 sound) lookahead) MAX-STOP-TIME 1.0)))))


;; (osc-note step &optional duration env sust volume sound)
;;   Creates a note using table-lookup osc, but with an envelope.
;; The ENV parameter may be a parameter list for the env function,
;; or it may be a sound.
;;
(defun osc-note (pitch &optional (duration 1.0) 
               (env-spec '(0.02 0.1 0.3 1.0 .8 .7))
               (volume 0.0)
               (table *TABLE*))
  (set-logical-stop
   (mult (loud volume (osc pitch duration table))
     (if (listp env-spec)
       (apply 'env env-spec)
       env-spec))
   duration))


;; force-srate -- resample snd if necessary to get sample rate
;
(defun force-srate (sr snd)
  (cond ((not (numberp sr))
     (error "force-srate: SR should be a number")))
  (cond ((arrayp snd)
     (let* ((len (length snd))
        (result (make-array len)))
       (dotimes (i len)
            (setf (aref result i) 
              (force-srate sr (aref snd i))))
       result))
    (t
     (let ((snd-sr (snd-srate snd)))
       (cond ((> sr snd-sr) (snd-up sr snd))
         ((< sr snd-sr) (snd-down sr snd))
         (t snd))))))


(defun force-srates (srs snd)
  (cond ((and (numberp srs) (soundp snd))
     (force-srate srs snd))
    ((and (arrayp srs) (arrayp snd))
     (let* ((len (length snd))
        (result (make-array len)))
       (dotimes (i len)
            (setf (aref result i) 
              (force-srate (aref srs i) (aref snd i))))
       result))
    (t (error "arguments not compatible"))))


;; (breakpoints-convert (t1 x1 t2 x2 ... tn) t0)
;;   converts times to sample numbers and scales amplitudes
;;   t0 is the global (after warping) start time
;;
;; NOTE: there were some stack overflow problems with the original
;; recursive version (in comments now), so it was rewritten as an
;; iteration.
;;
(defun breakpoints-convert (list t0)
  (prog (sample-count result sust (last-count 0))
    (setf sust (get-sustain))
 loop
    (setf sample-count 
      (truncate (+ 0.5 (* (- (local-to-global (* (car list) sust)) t0)
                 *control-srate*))))
    ; now we have a new sample count to put into result list
    ; make sure result is non-decreasing
    (cond ((< sample-count last-count)
       (setf sample-count last-count)))
    (setf last-count sample-count)
    (push sample-count result)
    (cond ((cdr list)
       (setf list (cdr list))
       (push (float (car list)) result)))
    (setf list (cdr list))
    (cond (list
       (go loop)))
    (return (reverse result))))

      
 
;; (pwl t1 l1 t2 l2 ... tn)
;;   Creates a piece-wise linear envelope from breakpoint data.
;;
(defun pwl (&rest breakpoints) (pwl-list breakpoints))

(defun pwlr (&rest breakpoints) (pwlr-list breakpoints))

;; (breakpoints-relative list)
;;  converts list, which has the form (value dur value dur value ...)
;;  into the form (value time value time value ...)
;;  the list may have an even or odd length
;;
(defun breakpoints-relative (breakpoints)
  (prog (result (sum 0.0))
 loop
     (cond (breakpoints
        (push (car breakpoints) result)
        (setf breakpoints (cdr breakpoints))
        (cond (breakpoints
           (setf sum (+ sum (car breakpoints)))
           (push sum result)
           (setf breakpoints (cdr breakpoints))
           (go loop)))))
     (return (reverse result))))


(defun breakpoints-relative (breakpoints)
  (prog (result (sum 0.0))
 loop
    (setf sum (+ sum (car breakpoints)))
    (push sum result)
    (cond ((cdr breakpoints)
       (setf breakpoints (cdr breakpoints))
       (push (car breakpoints) result)))
    (setf breakpoints (cdr breakpoints))
    (cond (breakpoints
       (go loop)))
    (return (reverse result))))


(defun pwlr-list (breakpoints)
  (pwl-list (breakpoints-relative breakpoints)))

(defun pwl-list (breakpoints)
  (let ((t0 (local-to-global 0)))
    (snd-pwl t0 *control-srate* (breakpoints-convert breakpoints t0))))

;; (pwlv l1 t1 l2 t2 ... ln)
;; Creates a piece-wise linear envelope from breakpoint data;
;; the function initial and final values are explicit
;;
(defun pwlv (&rest breakpoints)
  ;use pwl, modify breakpoints with initial and final changes
  ;need to put initial time of 0, and final time of 0
  (pwlv-list breakpoints))

(defun pwlv-list (breakpoints)
    (pwl-list (cons 0.0 (append breakpoints '(0.0)))))

(defun pwlvr (&rest breakpoints) (pwlvr-list breakpoints))

(defun pwlvr-list (breakpoints)
  (pwlr-list (cons 0.0 (append breakpoints '(0.0)))))

(defun pwe (&rest breakpoints)
  (pwe-list breakpoints))

(defun pwe-list (breakpoints)
  (pwev-list (cons 1.0 (append breakpoints '(1.0)))))

(defun pwer (&rest breakpoints) (pwer-list breakpoints))

(defun pwer-list (breakpoints)
  (pwe-list (breakpoints-relative breakpoints)))

(defun pwev (&rest breakpoints)
  (pwev-list breakpoints))

(defun pwev-list (breakpoints)
  (let ((lis (breakpoints-log breakpoints)))
    (s-exp (pwl-list lis))))

(defun pwevr (&rest breakpoints) (pwevr-list breakpoints))

(defun pwevr-list (breakpoints)
  (pwev-list (cdr (breakpoints-relative (cons 0.0 breakpoints)))))


(defun breakpoints-log (breakpoints)
  (prog ((result '(0.0)) val tim)
loop
    (cond (breakpoints
       (setf val (float (car breakpoints)))
       (setf breakpoints (cdr breakpoints))
       (cond (breakpoints
          (setf tim (car breakpoints))
          (setf breakpoints (cdr breakpoints))))
       (setf result (cons tim (cons (log val) result)))
       (cond ((null breakpoints)
          (return (reverse result))))
       (go loop))
      (t
       (error "Expected odd number of elements in breakpoint list")))))


;; SOUND-WARP -- apply warp function to a sound
;; 
(defun sound-warp (warp-fn signal &optional wrate)
  (cond (wrate
     (snd-resamplev signal *sound-srate*
            (snd-inverse warp-fn (local-to-global 0) wrate)))
    (t
     (snd-compose signal 
              (snd-inverse warp-fn (local-to-global 0) *sound-srate*)))))

(defun snd-extent (sound maxsamples) 
    (list (snd-t0 sound)
      (+ (snd-t0 sound) (/ (snd-length sound maxsamples)
                   (snd-srate sound)))))

(setfn snd-flatten snd-length)

;; (maketable sound)
;;   Creates a table for osc, lfo, etc. by assuming that the samples
;;   in sound represent one period.  The sound must start at time 0.

(defun maketable (sound)
  (list sound
    (hz-to-step 
     (/ 1.0
        (cadr (snd-extent sound 1000000))))
    T))


;(defmacro endTime (sound)
;   `(get-logical-stop ,sound))


;(defmacro beginTime (sound)
;   `(car (snd-extent ,sound)))


; simple stereo pan: as where goes from 0 to 1, sound
; is linearly panned from left to right
;
(defun pan (sound where)
  (vector (mult sound (sum 1 (mult -1 where)))
      (mult sound where)))


(defun prod (&rest snds)
  (cond ((null snds)
     (snd-zero (local-to-global 0) *sound-srate*))
    ((null (cdr snds))
     (car snds))
    ((null (cddr snds))
     (nyq:prod2 (car snds) (cadr snds)))
    (t
     (nyq:prod2 (car snds) (apply #'prod (cdr snds))))))

(setfn mult prod)


;; (NYQ:PROD-OF-ARRAYS S1 S2) - form pairwise products
;
(defun nyq:prod-of-arrays (s1 s2)
  (let* ((n (length s1))
     (p (make-array n)))
    (cond ((/= n (length s2))
       (error "unequal number of channels in prod")))
    (dotimes (i n)
      (setf (aref p i) (nyq:prod2 (aref s1 i) (aref s2 i))))
    p))


; nyq:prod2 - multiply two arguments
; 
(defun nyq:prod2 (s1 s2)
  (setf s1 (nyq:coerce-to s1 s2))
  (setf s2 (nyq:coerce-to s2 s1))
  (cond ((arrayp s1)
     (nyq:prod-of-arrays s1 s2))
    (t
     (nyq:prod-2-sounds s1 s2))))


; (PROD-2-SOUNDS S1 S2) - multiply two sound arguments
; 
(defun nyq:prod-2-sounds (s1 s2)
  (cond ((numberp s1)
     (cond ((numberp s2)
        (* s1 s2))
           (t
        (scale s1 s2))))
    ((numberp s2)
     (scale s2 s1))
    (t
     (let ((s1sr (snd-srate s1))
           (s2sr (snd-srate s2)))
;    (display "nyq:prod-2-sounds" s1sr s2sr)
        (cond ((> s1sr s2sr)
           (snd-prod s1 (snd-up s1sr s2)))
          ((< s1sr s2sr)
           (snd-prod (snd-up s2sr s1) s2))
          (t
           (snd-prod s1 s2)))))))


;; RAMP -- linear ramp from 0 to x
;;
(defun ramp (&optional (x 1))
  (let* ((duration (get-duration x)))
    (set-logical-stop
      (warp-abs nil
        (at *rslt*
          (sustain-abs 1
                       (pwl duration 1 (+ duration (/ *control-srate*))))))
      x)))


(defun resample (snd rate)
  (cond ((arrayp snd)
     (let* ((len (length snd))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i)
              (snd-resample (aref snd i) rate)))
        result))
    (t
     (snd-resample snd rate))))


(defun scale (amt snd)
  (cond ((arrayp snd)
     (let* ((len (length snd))
        (result (make-array len)))
        (dotimes (i len)
        (setf (aref result i) (snd-scale amt (aref snd i))))
        result))
    (t
     (snd-scale amt snd))))


(setfn s-print-tree snd-print-tree)

;; (PEAK sound-expression number-of-samples) - find peak amplitude
;
; NOTE: this used to be called s-max
;
(defmacro peak (expression maxlen)
   `(snd-max ',expression ,maxlen))

;; (S-MAX S1 S2) - return maximum of S1, S2
;
(defun s-max (s1 s2)
  (setf s1 (nyq:coerce-to s1 s2))
  (setf s2 (nyq:coerce-to s2 s1))
  (cond ((arrayp s1)
     (nyq:max-of-arrays s1 s2))
    (t
     (nyq:max-2-sounds s1 s2))))

(defun nyq:max-of-arrays (s1 s2)
  (let* ((n (length s1))
     (p (make-array n)))
    (cond ((/= n (length s2))
       (error "unequal number of channels in max")))
    (dotimes (i n)
      (setf (aref p i) (s-max (aref s1 i) (aref s2 i))))
    p))

(defun nyq:max-2-sounds (s1 s2)
  (cond ((numberp s1)
         (cond ((numberp s2)
                (max s1 s2))
               (t
                (snd-maxv s2
                          (snd-const s1 (local-to-global 0.0)
                                     (snd-srate s2) (get-duration 1.0))))))
        ((numberp s2)
         (snd-maxv s1 (snd-const s2 (local-to-global 0.0)
                   (snd-srate s1) (get-duration 1.0))))
        (t
         (let ((s1sr (snd-srate s1))
               (s2sr (snd-srate s2)))
            (cond ((> s1sr s2sr)
                   (snd-maxv s1 (snd-up s1sr s2)))
                  ((< s1sr s2sr)
                   (snd-maxv (snd-up s2sr s1) s2))
                  (t
                   (snd-maxv s1 s2)))))))

(defun s-min (s1 s2)
  (setf s1 (nyq:coerce-to s1 s2))
  (setf s2 (nyq:coerce-to s2 s1))
  (cond ((arrayp s1)
         (nyq:min-of-arrays s1 s2))
        (t
         (nyq:min-2-sounds s1 s2))))

(defun nyq:min-of-arrays (s1 s2)
  (let* ((n (length s1))
     (p (make-array n)))
    (cond ((/= n (length s2))
       (error "unequal number of channels in max")))
    (dotimes (i n)
      (setf (aref p i) (s-min (aref s1 i) (aref s2 i))))
    p))

(defun nyq:min-2-sounds (s1 s2)
  (cond ((numberp s1)
         (cond ((numberp s2)
                (min s1 s2))
               (t
                (snd-minv s2
                          (snd-const s1 (local-to-global 0.0)
                                     (snd-srate s2) (get-duration 1.0))))))
        ((numberp s2)
         (snd-minv s1 (snd-const s2 (local-to-global 0.0)
                   (snd-srate s1) (get-duration 1.0))))
       (t
        (let ((s1sr (snd-srate s1))
              (s2sr (snd-srate s2)))
          (cond ((> s1sr s2sr)
                 (snd-minv s1 (snd-up s1sr s2)))
                ((< s1sr s2sr)
                 (snd-minv (snd-up s2sr s1) s2))
               (t
                (snd-minv s1 s2)))))))

(defun snd-minv (s1 s2)
  (scale -1.0 (snd-maxv (scale -1.0 s1) (scale -1.0 s2))))

; sequence macros SEQ and SEQREP are now in seq.lsp:
; 
(load "seq" :verbose NIL)


; set-logical-stop - modify the sound and return it, time is shifted and
;			 stretched
(defun set-logical-stop (snd tim)
  (let ((d (local-to-global tim)))
    (multichan-expand #'set-logical-stop-abs snd d)))


; set-logical-stop-abs - modify the sound and return it
; 
(defun set-logical-stop-abs (snd tim) (snd-set-logical-stop snd tim) snd)


(defmacro simrep (pair sound)
  `(let (_snds)
     (dotimes ,pair (push ,sound _snds))
     (sim-list _snds)))

(defun sim (&rest snds)
  (sim-list snds))

(setfn sum sim)

(defun sim-list (snds)
  (cond ((null snds)
         (snd-zero (local-to-global 0) *sound-srate*))
        ((null (cdr snds))
         (car snds))
        ((null (cddr snds))
         (nyq:add2 (car snds) (cadr snds)))
        (t
         (nyq:add2 (car snds) (sim-list (cdr snds))))))


(defun s-rest (&optional (dur 1.0) (chans 1))
  (let ((d (get-duration dur))
        r)
    (cond ((= chans 1)
           (snd-const 0.0 *rslt* *SOUND-SRATE* d))
          (t
           (setf r (make-array chans))
           (dotimes (i chans)
             (setf (aref r i) (snd-const 0.0 *rslt* *SOUND-SRATE* d)))
           r))))


(defun tempo (warpfn)
  (slope (snd-inverse warpfn (local-to-global 0) *control-srate*)))



;; (SUM-OF-ARRAYS S1 S2) - add multichannel sounds
; 
; result has as many channels the largest of s1, s2
; corresponding channels are added, extras are copied
; 
(defun sum-of-arrays (s1 s2)
  (let* ((n1 (length s1))
     (n2 (length s2))
     (n (min n1 n2))
     (m (max n1 n2))
     (result (make-array m))
     (big-s (if (> n1 n2) s1 s2)))
    
    (dotimes (i n)
      (setf (aref result i) (nyq:add-2-sounds (aref s1 i) (aref s2 i))))
    (dotimes (i (- m n))
      (setf (aref result (+ n i)) (aref big-s (+ n i))))
    result))


;; (WARP fn behavior) - warp behavior according to fn
;;
;; fn is a map from behavior time to local time, and *WARP* expresses
;; a map from local to global time.
;; To produce a new *WARP* for the environment, we want to compose the
;; effect of the current *WARP* with fn.  Note that fn is also a behavior.
;; It is evaluated in the current environment first, then it is used to
;; modify the environment seen by behavior.
;; *WARP* is a triple: (d s f) denoting the function f(st+d).
;; Letting g represent the new warp function fn, we want f(st+d) o g, or
;; f(s*g(t) + d) in the form (d' s' f').
;; Let's do this one step at a time:
;; f(s*g(t) + d) = f(scale(s, g) + d)
;;               = (shift f -d)(scale(s, g))
;;               = (snd-compose (shift-time f (- d)) (scale s g))
;;
;; If f in NIL, it denotes the identity mapping f(t)=t, so we can
;; simplify:
;; f(scale(s, g) + d) = scale(s, g) + d
;;                    = (snd-offset (scale s g) d)

(defmacro warp (x s)
 `(progv '(*WARP*) (list 
            (list 0.0 1.0
              (if (warp-function *WARP*)
                  (snd-compose (shift-time (warp-function *WARP*) 
                               (- (warp-time *WARP*)))
                       (scale (warp-stretch *WARP*) 
                          (must-be-sound ,x)))
                  (snd-offset (scale (warp-stretch *WARP*) 
                         (must-be-sound ,x))
                      (warp-time *WARP*)))))
     ,s))


(defmacro warp-abs (x s)
 `(progv '(*WARP*) (list (list 0.0 1.0 ,x))
     ,s))


;; MULTICHAN-EXPAND -- construct and return array according to args
;;
;; arrays are used in Nyquist to represent multiple channels
;; if any argument is an array, make sure all array arguments
;; have the same length.  Then, construct a multichannel result
;; by calling fn once for each channel.  The arguments passed to
;; fn for the i'th channel are either the i'th element of an array
;; argument, or just a copy of a non-array argument.
;;
(defun multichan-expand (fn &rest args)
  (let (len newlen result) ; len is a flag as well as a count
    (dolist (a args)
        (cond ((arrayp a)
           (setf newlen (length a))
           (cond ((and len (/= len newlen))
              (error (format nil "In ~A, two arguments are vectors of differing length." fn))))
           (setf len newlen))))
    (cond (len
       (setf result (make-array len))
       ; for each channel, call fn with args
       (dotimes (i len)
           (setf (aref result i)
             (apply fn
            (mapcar
                #'(lambda (a)
                ; take i'th entry or replicate:
                (cond ((arrayp a) (aref a i))
                      (t a)))
                args))))
       result)
      (t
       (apply fn args)))))


;; SELECT-IMPLEMENTATION-? -- apply an implementation according to args
;;
;; There is a different Nyquist primitive for each combination of 
;; constant (NUMBERP) and time-variable (SOUNDP) arguments.  E.g.
;; a filter with fixed parameters differs from one with varying
;; parameters.  In most cases, the user just calls one function,
;; and the arguments are decoded here:


;; SELECT-IMPLEMENTATION-1-1 -- 1 sound arg, 1 selector
;;
(defun select-implementation-1-1 (fns snd sel1 &rest others)
  (if (numberp sel1)
    (apply (aref fns 0) (cons snd (cons sel1 others)))
    (apply (aref fns 1) (cons snd (cons sel1 others)))))


;; SELECT-IMPLEMENTATION-1-2 -- 1 sound arg, 2 selectors
;;
;; choose implemenation according to args 2 and 3
;;
(defun select-implementation-1-2 (fns snd sel1 sel2 &rest others)
  (if (numberp sel2)
    (if (numberp sel1)
      (apply (aref fns 0) (cons snd (cons sel1 (cons sel2 others))))
      (apply (aref fns 1) (cons snd (cons sel1 (cons sel2 others)))))
    (if (numberp sel1)
      (apply (aref fns 2) (cons snd (cons sel1 (cons sel2 others))))
      (apply (aref fns 3) (cons snd (cons sel1 (cons sel2 others)))))))

;; some waveforms

(setf *saw-table* (pwlvr -1 1 1))		; eh, creepy way to get 2205 samples.
(setf *saw-table* (list *saw-table* (hz-to-step 1) T))

(setf *tri-table* (pwlvr -1 0.5 1 0.5 -1))
(setf *tri-table* (list *tri-table* (hz-to-step 1) T))

(setf *id-shape*  (pwlvr -1 2 1 .01 1))	            ; identity
(setf *step-shape* (seq (const -1) (const 1 1.01)))  ; hard step at zero

(defun exp-dec (hold halfdec length)
  (let* ((target (expt 0.5 (/ length halfdec)))
     (expenv (pwev 1 hold 1 length target)))
    expenv)
)

;;; operations on sounds

(defun diff (x &optional y)
  (cond (y (sum x (prod -1 y)))
        (t (prod -1 x))))

; compare-shape is a shape table -- origin 1.
(defun compare (x y &optional (compare-shape *step-shape*))
  (let ((xydiff (diff x y)))
    (shape xydiff compare-shape 1)))

;;; oscs

(defun osc-saw (hz) (hzosc hz *saw-table*))
(defun osc-tri (hz) (hzosc hz *tri-table*))

; bias is [-1, 1] pulse width.  sound or scalar.
; hz is a sound or scalar
(defun osc-pulse (hz bias &optional (compare-shape *step-shape*))
  (compare bias (osc-tri hz) compare-shape))
  
;;; tapped delays

;(tapv snd offset vardelay maxdelay)
(setfn tapv snd-tapv) ;; linear interpolation
(setfn tapf snd-tapf) ;; no interpolation