This file is indexed.

/usr/include/thunderbird-11.0.1/nsTArray.h is in thunderbird-dev 11.0.1+build1-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is C++ array template.
 *
 * The Initial Developer of the Original Code is Google Inc.
 * Portions created by the Initial Developer are Copyright (C) 2005
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *  Darin Fisher <darin@meer.net>
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef nsTArray_h__
#define nsTArray_h__

#include <string.h>

#include "prtypes.h"
#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsQuickSort.h"
#include "nsDebug.h"
#include "nsTraceRefcnt.h"
#include "mozilla/Util.h"
#include NEW_H

//
// NB: nsTArray assumes that your "T" can be memmove()d.  This is in
// contrast to STL containers, which follow C++
// construction/destruction rules.
//
// Don't use nsTArray if your "T" can't be memmove()d correctly.
//

//
// nsTArray*Allocators must all use the same |free()|, to allow
// swapping between fallible and infallible variants.  (NS_Free() and
// moz_free() end up calling the same underlying free()).
//

#if defined(MOZALLOC_HAVE_XMALLOC)
struct nsTArrayFallibleAllocator
{
  static void* Malloc(size_t size) {
    return moz_malloc(size);
  }

  static void* Realloc(void* ptr, size_t size) {
    return moz_realloc(ptr, size);
  }

  static void Free(void* ptr) {
    moz_free(ptr);
  }
};

struct nsTArrayInfallibleAllocator
{
  static void* Malloc(size_t size) {
    return moz_xmalloc(size);
  }

  static void* Realloc(void* ptr, size_t size) {
    return moz_xrealloc(ptr, size);
  }

  static void Free(void* ptr) {
    moz_free(ptr);
  }
};

#else

#include <stdlib.h>
struct nsTArrayFallibleAllocator
{
  static void* Malloc(size_t size) {
    return malloc(size);
  }

  static void* Realloc(void* ptr, size_t size) {
    return realloc(ptr, size);
  }

  static void Free(void* ptr) {
    free(ptr);
  }
};
#endif

#if defined(MOZALLOC_HAVE_XMALLOC)
struct nsTArrayDefaultAllocator : public nsTArrayInfallibleAllocator { };
#else
struct nsTArrayDefaultAllocator : public nsTArrayFallibleAllocator { };
#endif

// nsTArray_base stores elements into the space allocated beyond
// sizeof(*this).  This is done to minimize the size of the nsTArray
// object when it is empty.
struct NS_COM_GLUE nsTArrayHeader
{
  static nsTArrayHeader sEmptyHdr;

  PRUint32 mLength;
  PRUint32 mCapacity : 31;
  PRUint32 mIsAutoArray : 1;
};

// This class provides a SafeElementAt method to nsTArray<T*> which does
// not take a second default value parameter.
template <class E, class Derived>
struct nsTArray_SafeElementAtHelper
{
  typedef E*       elem_type;
  typedef PRUint32 index_type;

  // No implementation is provided for these two methods, and that is on
  // purpose, since we don't support these functions on non-pointer type
  // instantiations.
  elem_type& SafeElementAt(index_type i);
  const elem_type& SafeElementAt(index_type i) const;
};

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<E*, Derived>
{
  typedef E*       elem_type;
  typedef PRUint32 index_type;

  elem_type SafeElementAt(index_type i) {
    return static_cast<Derived*> (this)->SafeElementAt(i, nsnull);
  }

  const elem_type SafeElementAt(index_type i) const {
    return static_cast<const Derived*> (this)->SafeElementAt(i, nsnull);
  }
};

// E is the base type that the smart pointer is templated over; the
// smart pointer can act as E*.
template <class E, class Derived>
struct nsTArray_SafeElementAtSmartPtrHelper
{
  typedef E*       elem_type;
  typedef PRUint32 index_type;

  elem_type SafeElementAt(index_type i) {
    return static_cast<Derived*> (this)->SafeElementAt(i, nsnull);
  }

  const elem_type SafeElementAt(index_type i) const {
    return static_cast<const Derived*> (this)->SafeElementAt(i, nsnull);
  }
};

template <class T> class nsCOMPtr;

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsCOMPtr<E>, Derived> :
  public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};

template <class T> class nsRefPtr;

template <class E, class Derived>
struct nsTArray_SafeElementAtHelper<nsRefPtr<E>, Derived> :
  public nsTArray_SafeElementAtSmartPtrHelper<E, Derived>
{
};

//
// This class serves as a base class for nsTArray.  It shouldn't be used
// directly.  It holds common implementation code that does not depend on the
// element type of the nsTArray.
//
template<class Alloc>
class nsTArray_base
{
  // Allow swapping elements with |nsTArray_base|s created using a
  // different allocator.  This is kosher because all allocators use
  // the same free().
  template<class Allocator>
  friend class nsTArray_base;

protected:
  typedef nsTArrayHeader Header;

public:
  typedef PRUint32 size_type;
  typedef PRUint32 index_type;

  // @return The number of elements in the array.
  size_type Length() const {
    return mHdr->mLength;
  }

  // @return True if the array is empty or false otherwise.
  bool IsEmpty() const {
    return Length() == 0;
  }

  // @return The number of elements that can fit in the array without forcing
  // the array to be re-allocated.  The length of an array is always less
  // than or equal to its capacity.
  size_type Capacity() const {
    return mHdr->mCapacity;
  }

#ifdef DEBUG
  void* DebugGetHeader() const {
    return mHdr;
  }
#endif

protected:
  nsTArray_base();

  ~nsTArray_base();

  // Resize the storage if necessary to achieve the requested capacity.
  // @param capacity     The requested number of array elements.
  // @param elemSize     The size of an array element.
  // @return False if insufficient memory is available; true otherwise.
  bool EnsureCapacity(size_type capacity, size_type elemSize);

  // Resize the storage to the minimum required amount.
  // @param elemSize     The size of an array element.
  // @param elemAlign    The alignment in bytes of an array element.
  void ShrinkCapacity(size_type elemSize, size_t elemAlign);
    
  // This method may be called to resize a "gap" in the array by shifting
  // elements around.  It updates mLength appropriately.  If the resulting
  // array has zero elements, then the array's memory is free'd.
  // @param start        The starting index of the gap.
  // @param oldLen       The current length of the gap.
  // @param newLen       The desired length of the gap.
  // @param elemSize     The size of an array element.
  // @param elemAlign    The alignment in bytes of an array element.
  void ShiftData(index_type start, size_type oldLen, size_type newLen,
                 size_type elemSize, size_t elemAlign);

  // This method increments the length member of the array's header.
  // Note that mHdr may actually be sEmptyHdr in the case where a
  // zero-length array is inserted into our array. But then n should
  // always be 0.
  void IncrementLength(PRUint32 n) {
    NS_ASSERTION(mHdr != EmptyHdr() || n == 0, "bad data pointer");
    mHdr->mLength += n;
  }

  // This method inserts blank slots into the array.
  // @param index the place to insert the new elements. This must be no
  //              greater than the current length of the array.
  // @param count the number of slots to insert
  // @param elementSize the size of an array element.
  // @param elemAlign the alignment in bytes of an array element.
  bool InsertSlotsAt(index_type index, size_type count,
                       size_type elementSize, size_t elemAlign);

protected:
  template<class Allocator>
  bool SwapArrayElements(nsTArray_base<Allocator>& other,
                           size_type elemSize,
                           size_t elemAlign);

  // This is an RAII class used in SwapArrayElements.
  class IsAutoArrayRestorer {
    public:
      IsAutoArrayRestorer(nsTArray_base<Alloc> &array, size_t elemAlign);
      ~IsAutoArrayRestorer();

    private:
      nsTArray_base<Alloc> &mArray;
      size_t mElemAlign;
      bool mIsAuto;
  };

  // Helper function for SwapArrayElements. Ensures that if the array
  // is an nsAutoTArray that it doesn't use the built-in buffer.
  bool EnsureNotUsingAutoArrayBuffer(size_type elemSize);

  // Returns true if this nsTArray is an nsAutoTArray with a built-in buffer.
  bool IsAutoArray() const {
    return mHdr->mIsAutoArray;
  }

  // Returns a Header for the built-in buffer of this nsAutoTArray.
  Header* GetAutoArrayBuffer(size_t elemAlign) {
    NS_ASSERTION(IsAutoArray(), "Should be an auto array to call this");
    return GetAutoArrayBufferUnsafe(elemAlign);
  }
  const Header* GetAutoArrayBuffer(size_t elemAlign) const {
    NS_ASSERTION(IsAutoArray(), "Should be an auto array to call this");
    return GetAutoArrayBufferUnsafe(elemAlign);
  }

  // Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't
  // assert that we are an nsAutoTArray.
  Header* GetAutoArrayBufferUnsafe(size_t elemAlign) {
    return const_cast<Header*>(static_cast<const nsTArray_base<Alloc>*>(this)->
                               GetAutoArrayBufferUnsafe(elemAlign));
  }
  const Header* GetAutoArrayBufferUnsafe(size_t elemAlign) const;

  // Returns true if this is an nsAutoTArray and it currently uses the
  // built-in buffer to store its elements.
  bool UsesAutoArrayBuffer() const;

  // The array's elements (prefixed with a Header).  This pointer is never
  // null.  If the array is empty, then this will point to sEmptyHdr.
  Header *mHdr;

  Header* Hdr() const { 
    return mHdr;
  }

  Header** PtrToHdr() {
    return &mHdr;
  }

  static Header* EmptyHdr() {
    return &Header::sEmptyHdr;
  }
};

//
// This class defines convenience functions for element specific operations.
// Specialize this template if necessary.
//
template<class E>
class nsTArrayElementTraits
{
public:
  // Invoke the default constructor in place.
  static inline void Construct(E *e) {
    // Do NOT call "E()"! That triggers C++ "default initialization"
    // which zeroes out POD ("plain old data") types such as regular
    // ints.  We don't want that because it can be a performance issue
    // and people don't expect it; nsTArray should work like a regular
    // C/C++ array in this respect.
    new (static_cast<void *>(e)) E;
  }
  // Invoke the copy-constructor in place.
  template<class A>
  static inline void Construct(E *e, const A &arg) {
    new (static_cast<void *>(e)) E(arg);
  }
  // Invoke the destructor in place.
  static inline void Destruct(E *e) {
    e->~E();
  }
};

// This class exists because VC6 cannot handle static template functions.
// Otherwise, the Compare method would be defined directly on nsTArray.
template <class E, class Comparator>
class nsQuickSortComparator
{
public:
  typedef E elem_type;
  // This function is meant to be used with the NS_QuickSort function.  It
  // maps the callback API expected by NS_QuickSort to the Comparator API
  // used by nsTArray.  See nsTArray::Sort.
  static int Compare(const void* e1, const void* e2, void *data) {
    const Comparator* c = reinterpret_cast<const Comparator*>(data);
    const elem_type* a = static_cast<const elem_type*>(e1);
    const elem_type* b = static_cast<const elem_type*>(e2);
    return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1);
  }
};

// The default comparator used by nsTArray
template<class A, class B>
class nsDefaultComparator
{
public:
  bool Equals(const A& a, const B& b) const {
    return a == b;
  }
  bool LessThan(const A& a, const B& b) const {
    return a < b;
  }
};

//
// The templatized array class that dynamically resizes its storage as
// elements are added.  This class is designed to behave a bit like
// std::vector, though note that unlike std::vector, nsTArray doesn't
// follow C++ construction/destruction rules.
//
// The template parameter specifies the type of the elements (elem_type), and
// has the following requirements:
//
//   elem_type MUST define a copy-constructor.
//   elem_type MAY define operator< for sorting.
//   elem_type MAY define operator== for searching.
//
// For methods taking a Comparator instance, the Comparator must be a class
// defining the following methods:
//
//   class Comparator {
//     public:
//       /** @return True if the elements are equals; false otherwise. */
//       bool Equals(const elem_type& a, const Item& b) const;
//
//       /** @return True if (a < b); false otherwise. */
//       bool LessThan(const elem_type& a, const Item& b) const;
//   };
//
// The Equals method is used for searching, and the LessThan method is used
// for sorting.  The |Item| type above can be arbitrary, but must match the
// Item type passed to the sort or search function.
//
// The Alloc template parameter can be used to choose between
// "fallible" and "infallible" nsTArray (if available), defaulting to
// fallible.  If the *fallible* allocator is used, the return value of
// methods that might allocate needs to be checked; Append() is
// one such method.  These return values don't need to be checked if
// the *in*fallible allocator is chosen.  When in doubt, choose the
// infallible allocator.
//
template<class E, class Alloc=nsTArrayDefaultAllocator>
class nsTArray : public nsTArray_base<Alloc>,
                 public nsTArray_SafeElementAtHelper<E, nsTArray<E, Alloc> >
{
public:
  typedef nsTArray_base<Alloc>           base_type;
  typedef typename base_type::size_type  size_type;
  typedef typename base_type::index_type index_type;
  typedef E                              elem_type;
  typedef nsTArray<E, Alloc>             self_type;
  typedef nsTArrayElementTraits<E>       elem_traits;
  typedef nsTArray_SafeElementAtHelper<E, self_type> safeelementat_helper_type;

  using safeelementat_helper_type::SafeElementAt;
  using base_type::EmptyHdr;

  // A special value that is used to indicate an invalid or unknown index
  // into the array.
  enum {
    NoIndex = index_type(-1)
  };

  using base_type::Length;

  //
  // Finalization method
  //

  ~nsTArray() { Clear(); }

  //
  // Initialization methods
  //

  nsTArray() {}

  // Initialize this array and pre-allocate some number of elements.
  explicit nsTArray(size_type capacity) {
    SetCapacity(capacity);
  }

  // The array's copy-constructor performs a 'deep' copy of the given array.
  // @param other  The array object to copy.
  nsTArray(const self_type& other) {
    AppendElements(other);
  }

  template<typename Allocator>
  nsTArray(const nsTArray<E, Allocator>& other) {
    AppendElements(other);
  }

  // The array's assignment operator performs a 'deep' copy of the given
  // array.  It is optimized to reuse existing storage if possible.
  // @param other  The array object to copy.
  nsTArray& operator=(const self_type& other) {
    ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
    return *this;
  }

  // Return true if this array has the same length and the same
  // elements as |other|.
  bool operator==(const self_type& other) const {
    size_type len = Length();
    if (len != other.Length())
      return false;

    // XXX std::equal would be as fast or faster here
    for (index_type i = 0; i < len; ++i)
      if (!(operator[](i) == other[i]))
        return false;

    return true;
  }

  // Return true if this array does not have the same length and the same
  // elements as |other|.
  bool operator!=(const self_type& other) const {
    return !operator==(other);
  }

  template<typename Allocator>
  nsTArray& operator=(const nsTArray<E, Allocator>& other) {
    ReplaceElementsAt(0, Length(), other.Elements(), other.Length());
    return *this;
  }

  // @return The amount of memory used by this nsTArray, excluding
  // sizeof(*this).
  size_t SizeOfExcludingThis(nsMallocSizeOfFun mallocSizeOf) const {
    if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr())
      return 0;
    return mallocSizeOf(this->Hdr(), 
                        sizeof(nsTArrayHeader) +
                        this->Capacity() * sizeof(elem_type));
  }

  // @return The amount of memory used by this nsTArray, including
  // sizeof(*this).
  size_t SizeOfIncludingThis(nsMallocSizeOfFun mallocSizeOf) const {
    return mallocSizeOf(this, sizeof(nsTArray)) +
           SizeOfExcludingThis(mallocSizeOf);
  }

  //
  // Accessor methods
  //

  // This method provides direct access to the array elements.
  // @return A pointer to the first element of the array.  If the array is
  // empty, then this pointer must not be dereferenced.
  elem_type* Elements() {
    return reinterpret_cast<elem_type *>(Hdr() + 1);
  }

  // This method provides direct, readonly access to the array elements.
  // @return A pointer to the first element of the array.  If the array is
  // empty, then this pointer must not be dereferenced.
  const elem_type* Elements() const {
    return reinterpret_cast<const elem_type *>(Hdr() + 1);
  }
    
  // This method provides direct access to the i'th element of the array.
  // The given index must be within the array bounds.
  // @param i  The index of an element in the array.
  // @return   A reference to the i'th element of the array.
  elem_type& ElementAt(index_type i) {
    NS_ASSERTION(i < Length(), "invalid array index");
    return Elements()[i];
  }

  // This method provides direct, readonly access to the i'th element of the
  // array.  The given index must be within the array bounds.
  // @param i  The index of an element in the array.
  // @return   A const reference to the i'th element of the array.
  const elem_type& ElementAt(index_type i) const {
    NS_ASSERTION(i < Length(), "invalid array index");
    return Elements()[i];
  }

  // This method provides direct access to the i'th element of the array in
  // a bounds safe manner. If the requested index is out of bounds the
  // provided default value is returned.
  // @param i  The index of an element in the array.
  // @param def The value to return if the index is out of bounds.
  elem_type& SafeElementAt(index_type i, elem_type& def) {
    return i < Length() ? Elements()[i] : def;
  }

  // This method provides direct access to the i'th element of the array in
  // a bounds safe manner. If the requested index is out of bounds the
  // provided default value is returned.
  // @param i  The index of an element in the array.
  // @param def The value to return if the index is out of bounds.
  const elem_type& SafeElementAt(index_type i, const elem_type& def) const {
    return i < Length() ? Elements()[i] : def;
  }

  // Shorthand for ElementAt(i)
  elem_type& operator[](index_type i) {
    return ElementAt(i);
  }

  // Shorthand for ElementAt(i)
  const elem_type& operator[](index_type i) const {
    return ElementAt(i);
  }

  //
  // Search methods
  //

  // This method searches for the first element in this array that is equal
  // to the given element.
  // @param item   The item to search for.
  // @param comp   The Comparator used to determine element equality.
  // @return       true if the element was found.
  template<class Item, class Comparator>
  bool Contains(const Item& item, const Comparator& comp) const {
    return IndexOf(item, 0, comp) != NoIndex;
  }

  // This method searches for the first element in this array that is equal
  // to the given element.  This method assumes that 'operator==' is defined
  // for elem_type.
  // @param item   The item to search for.
  // @return       true if the element was found.
  template<class Item>
  bool Contains(const Item& item) const {
    return IndexOf(item) != NoIndex;
  }

  // This method searches for the offset of the first element in this
  // array that is equal to the given element.
  // @param item   The item to search for.
  // @param start  The index to start from.
  // @param comp   The Comparator used to determine element equality.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item, class Comparator>
  index_type IndexOf(const Item& item, index_type start,
                     const Comparator& comp) const {
    const elem_type* iter = Elements() + start, *end = Elements() + Length();
    for (; iter != end; ++iter) {
      if (comp.Equals(*iter, item))
        return index_type(iter - Elements());
    }
    return NoIndex;
  }

  // This method searches for the offset of the first element in this
  // array that is equal to the given element.  This method assumes
  // that 'operator==' is defined for elem_type.
  // @param item   The item to search for.
  // @param start  The index to start from.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item>
  index_type IndexOf(const Item& item, index_type start = 0) const {
    return IndexOf(item, start, nsDefaultComparator<elem_type, Item>());
  }

  // This method searches for the offset of the last element in this
  // array that is equal to the given element.
  // @param item   The item to search for.
  // @param start  The index to start from.  If greater than or equal to the
  //               length of the array, then the entire array is searched.
  // @param comp   The Comparator used to determine element equality.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item, class Comparator>
  index_type LastIndexOf(const Item& item, index_type start,
                         const Comparator& comp) const {
    if (start >= Length())
      start = Length() - 1;
    const elem_type* end = Elements() - 1, *iter = end + start + 1;
    for (; iter != end; --iter) {
      if (comp.Equals(*iter, item))
        return index_type(iter - Elements());
    }
    return NoIndex;
  }

  // This method searches for the offset of the last element in this
  // array that is equal to the given element.  This method assumes
  // that 'operator==' is defined for elem_type.
  // @param item   The item to search for.
  // @param start  The index to start from.  If greater than or equal to the
  //               length of the array, then the entire array is searched.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item>
  index_type LastIndexOf(const Item& item,
                         index_type start = NoIndex) const {
    return LastIndexOf(item, start, nsDefaultComparator<elem_type, Item>());
  }

  // This method searches for the offset for the element in this array
  // that is equal to the given element. The array is assumed to be sorted.
  // @param item   The item to search for.
  // @param comp   The Comparator used.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item, class Comparator>
  index_type BinaryIndexOf(const Item& item, const Comparator& comp) const {
    index_type low = 0, high = Length();
    while (high > low) {
      index_type mid = (high + low) >> 1;
      if (comp.Equals(ElementAt(mid), item))
        return mid;
      if (comp.LessThan(ElementAt(mid), item))
        low = mid + 1;
      else
        high = mid;
    }
    return NoIndex;
  }

  // This method searches for the offset for the element in this array
  // that is equal to the given element. The array is assumed to be sorted.
  // This method assumes that 'operator==' and 'operator<' are defined.
  // @param item   The item to search for.
  // @return       The index of the found element or NoIndex if not found.
  template<class Item>
  index_type BinaryIndexOf(const Item& item) const {
    return BinaryIndexOf(item, nsDefaultComparator<elem_type, Item>());
  }

  //
  // Mutation methods
  //

  // This method replaces a range of elements in this array.
  // @param start     The starting index of the elements to replace.
  // @param count     The number of elements to replace.  This may be zero to
  //                  insert elements without removing any existing elements.
  // @param array     The values to copy into this array.  Must be non-null,
  //                  and these elements must not already exist in the array
  //                  being modified.
  // @param arrayLen  The number of values to copy into this array.
  // @return          A pointer to the new elements in the array, or null if
  //                  the operation failed due to insufficient memory.
  template<class Item>
  elem_type *ReplaceElementsAt(index_type start, size_type count,
                               const Item* array, size_type arrayLen) {
    // Adjust memory allocation up-front to catch errors.
    if (!this->EnsureCapacity(Length() + arrayLen - count, sizeof(elem_type)))
      return nsnull;
    DestructRange(start, count);
    this->ShiftData(start, count, arrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    AssignRange(start, arrayLen, array);
    return Elements() + start;
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *ReplaceElementsAt(index_type start, size_type count,
                               const nsTArray<Item>& array) {
    return ReplaceElementsAt(start, count, array.Elements(), array.Length());
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *ReplaceElementsAt(index_type start, size_type count,
                               const Item& item) {
    return ReplaceElementsAt(start, count, &item, 1);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *ReplaceElementAt(index_type index, const Item& item) {
    return ReplaceElementsAt(index, 1, item, 1);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *InsertElementsAt(index_type index, const Item* array,
                              size_type arrayLen) {
    return ReplaceElementsAt(index, 0, array, arrayLen);
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *InsertElementsAt(index_type index, const nsTArray<Item>& array) {
    return ReplaceElementsAt(index, 0, array.Elements(), array.Length());
  }

  // A variation on the ReplaceElementsAt method defined above.
  template<class Item>
  elem_type *InsertElementAt(index_type index, const Item& item) {
    return ReplaceElementsAt(index, 0, &item, 1);
  }

  // Insert a new element without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly inserted element, or null on OOM.
  elem_type* InsertElementAt(index_type index) {
    if (!this->EnsureCapacity(Length() + 1, sizeof(elem_type)))
      return nsnull;
    this->ShiftData(index, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    elem_type *elem = Elements() + index;
    elem_traits::Construct(elem);
    return elem;
  }

  // This method searches for the least index of the greatest
  // element less than or equal to |item|.  If |item| is inserted at
  // this index, the array will remain sorted.  True is returned iff
  // this index is also equal to |item|.  In this case, the returned
  // index may point to the start of multiple copies of |item|.
  // @param item   The item to search for.
  // @param comp   The Comparator used.
  // @outparam idx The index of greatest element <= to |item|
  // @return       True iff |item == array[*idx]|.
  // @precondition The array is sorted
  template<class Item, class Comparator>
  bool
  GreatestIndexLtEq(const Item& item,
                    const Comparator& comp,
                    index_type* idx NS_OUTPARAM) const {
    // Nb: we could replace all the uses of "BinaryIndexOf" with this
    // function, but BinaryIndexOf will be oh-so-slightly faster so
    // it's not strictly desired to do.

    // invariant: low <= [idx] < high
    index_type low = 0, high = Length();
    while (high > low) {
      index_type mid = (high + low) >> 1;
      if (comp.Equals(ElementAt(mid), item)) {
        // we might have the array [..., 2, 4, 4, 4, 4, 4, 5, ...]
        // and be searching for "4". it's arbitrary where mid ends
        // up here, so we back it up to the first instance to maintain
        // the "least index ..." we promised above.
        do {
          --mid;
        } while (NoIndex != mid && comp.Equals(ElementAt(mid), item));
        *idx = ++mid;
        return true;
      }
      if (comp.LessThan(ElementAt(mid), item))
        // invariant: low <= idx < high
        low = mid + 1;
      else
        // invariant: low <= idx < high
        high = mid;
    }
    // low <= idx < high, so insert at high ("shifting" high up by
    // 1) to maintain invariant.
    // (or insert at low, since low==high; just a matter of taste here.)
    *idx = high;
    return false;
  }

  // A variation on the GreatestIndexLtEq method defined above.
  template<class Item, class Comparator>
  bool
  GreatestIndexLtEq(const Item& item,
                    index_type& idx,
                    const Comparator& comp) const {
    return GreatestIndexLtEq(item, comp, &idx);
  }

  // A variation on the GreatestIndexLtEq method defined above.
  template<class Item>
  bool
  GreatestIndexLtEq(const Item& item,
                    index_type& idx) const {
    return GreatestIndexLtEq(item, nsDefaultComparator<elem_type, Item>(), &idx);
  }

  // Inserts |item| at such an index to guarantee that if the array
  // was previously sorted, it will remain sorted after this
  // insertion.
  template<class Item, class Comparator>
  elem_type *InsertElementSorted(const Item& item, const Comparator& comp) {
    index_type index;
    GreatestIndexLtEq(item, comp, &index);
    return InsertElementAt(index, item);
  }

  // A variation on the InsertElementSorted metod defined above.
  template<class Item>
  elem_type *InsertElementSorted(const Item& item) {
    return InsertElementSorted(item, nsDefaultComparator<elem_type, Item>());
  }

  // This method appends elements to the end of this array.
  // @param array     The elements to append to this array.
  // @param arrayLen  The number of elements to append to this array.
  // @return          A pointer to the new elements in the array, or null if
  //                  the operation failed due to insufficient memory.
  template<class Item>
  elem_type *AppendElements(const Item* array, size_type arrayLen) {
    if (!this->EnsureCapacity(Length() + arrayLen, sizeof(elem_type)))
      return nsnull;
    index_type len = Length();
    AssignRange(len, arrayLen, array);
    this->IncrementLength(arrayLen);
    return Elements() + len;
  }

  // A variation on the AppendElements method defined above.
  template<class Item, class Allocator>
  elem_type *AppendElements(const nsTArray<Item, Allocator>& array) {
    return AppendElements(array.Elements(), array.Length());
  }

  // A variation on the AppendElements method defined above.
  template<class Item>
  elem_type *AppendElement(const Item& item) {
    return AppendElements(&item, 1);
  }

  // Append new elements without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly appended elements, or null on OOM.
  elem_type *AppendElements(size_type count) {
    if (!this->EnsureCapacity(Length() + count, sizeof(elem_type)))
      return nsnull;
    elem_type *elems = Elements() + Length();
    size_type i;
    for (i = 0; i < count; ++i) {
      elem_traits::Construct(elems + i);
    }
    this->IncrementLength(count);
    return elems;
  }

  // Append a new element without copy-constructing. This is useful to avoid
  // temporaries.
  // @return A pointer to the newly appended element, or null on OOM.
  elem_type *AppendElement() {
    return AppendElements(1);
  }

  // Move all elements from another array to the end of this array without 
  // calling copy constructors or destructors.
  // @return A pointer to the newly appended elements, or null on OOM.
  template<class Item, class Allocator>
  elem_type *MoveElementsFrom(nsTArray<Item, Allocator>& array) {
    NS_PRECONDITION(&array != this, "argument must be different array");
    index_type len = Length();
    index_type otherLen = array.Length();
    if (!this->EnsureCapacity(len + otherLen, sizeof(elem_type)))
      return nsnull;
    memcpy(Elements() + len, array.Elements(), otherLen * sizeof(elem_type));
    this->IncrementLength(otherLen);      
    array.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
    return Elements() + len;
  }

  // This method removes a range of elements from this array.
  // @param start  The starting index of the elements to remove.
  // @param count  The number of elements to remove.
  void RemoveElementsAt(index_type start, size_type count) {
    NS_ASSERTION(count == 0 || start < Length(), "Invalid start index");
    NS_ASSERTION(start + count <= Length(), "Invalid length");
    DestructRange(start, count);
    this->ShiftData(start, count, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  // A variation on the RemoveElementsAt method defined above.
  void RemoveElementAt(index_type index) {
    RemoveElementsAt(index, 1);
  }

  // A variation on the RemoveElementsAt method defined above.
  void Clear() {
    RemoveElementsAt(0, Length());
  }

  // This helper function combines IndexOf with RemoveElementAt to "search
  // and destroy" the first element that is equal to the given element.
  // @param item  The item to search for.
  // @param comp  The Comparator used to determine element equality.
  // @return true if the element was found
  template<class Item, class Comparator>
  bool RemoveElement(const Item& item, const Comparator& comp) {
    index_type i = IndexOf(item, 0, comp);
    if (i == NoIndex)
      return false;

    RemoveElementAt(i);
    return true;
  }

  // A variation on the RemoveElement method defined above that assumes
  // that 'operator==' is defined for elem_type.
  template<class Item>
  bool RemoveElement(const Item& item) {
    return RemoveElement(item, nsDefaultComparator<elem_type, Item>());
  }

  // This helper function combines GreatestIndexLtEq with
  // RemoveElementAt to "search and destroy" the first element that
  // is equal to the given element.
  // @param item  The item to search for.
  // @param comp  The Comparator used to determine element equality.
  // @return true if the element was found
  template<class Item, class Comparator>
  bool RemoveElementSorted(const Item& item, const Comparator& comp) {
    index_type index;
    bool found = GreatestIndexLtEq(item, comp, &index);
    if (found)
      RemoveElementAt(index);
    return found;
  }

  // A variation on the RemoveElementSorted method defined above.
  template<class Item>
  bool RemoveElementSorted(const Item& item) {
    return RemoveElementSorted(item, nsDefaultComparator<elem_type, Item>());
  }

  // This method causes the elements contained in this array and the given
  // array to be swapped.
  template<class Allocator>
  bool SwapElements(nsTArray<E, Allocator>& other) {
    return this->SwapArrayElements(other, sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  //
  // Allocation
  //

  // This method may increase the capacity of this array object by the
  // specified amount.  This method may be called in advance of several
  // AppendElement operations to minimize heap re-allocations.  This method
  // will not reduce the number of elements in this array.
  // @param capacity  The desired capacity of this array.
  // @return True if the operation succeeded; false if we ran out of memory
  bool SetCapacity(size_type capacity) {
    return this->EnsureCapacity(capacity, sizeof(elem_type));
  }

  // This method modifies the length of the array.  If the new length is
  // larger than the existing length of the array, then new elements will be
  // constructed using elem_type's default constructor.  Otherwise, this call
  // removes elements from the array (see also RemoveElementsAt).
  // @param newLen  The desired length of this array.
  // @return        True if the operation succeeded; false otherwise.
  // See also TruncateLength if the new length is guaranteed to be
  // smaller than the old.
  bool SetLength(size_type newLen) {
    size_type oldLen = Length();
    if (newLen > oldLen) {
      return InsertElementsAt(oldLen, newLen - oldLen) != nsnull;
    }
      
    TruncateLength(newLen);
    return true;
  }

  // This method modifies the length of the array, but may only be
  // called when the new length is shorter than the old.  It can
  // therefore be called when elem_type has no default constructor,
  // unlike SetLength.  It removes elements from the array (see also
  // RemoveElementsAt).
  // @param newLen  The desired length of this array.
  void TruncateLength(size_type newLen) {
    size_type oldLen = Length();
    NS_ABORT_IF_FALSE(newLen <= oldLen,
                      "caller should use SetLength instead");
    RemoveElementsAt(newLen, oldLen - newLen);
  }

  // This method ensures that the array has length at least the given
  // length.  If the current length is shorter than the given length,
  // then new elements will be constructed using elem_type's default
  // constructor.
  // @param minLen  The desired minimum length of this array.
  // @return        True if the operation succeeded; false otherwise.
  bool EnsureLengthAtLeast(size_type minLen) {
    size_type oldLen = Length();
    if (minLen > oldLen) {
      return InsertElementsAt(oldLen, minLen - oldLen) != nsnull;
    }
    return true;
  }

  // This method inserts elements into the array, constructing
  // them using elem_type's default constructor.
  // @param index the place to insert the new elements. This must be no
  //              greater than the current length of the array.
  // @param count the number of elements to insert
  elem_type *InsertElementsAt(index_type index, size_type count) {
    if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
      return nsnull;
    }

    // Initialize the extra array elements
    elem_type *iter = Elements() + index, *end = iter + count;
    for (; iter != end; ++iter) {
      elem_traits::Construct(iter);
    }

    return Elements() + index;
  }

  // This method inserts elements into the array, constructing them
  // elem_type's copy constructor (or whatever one-arg constructor
  // happens to match the Item type).
  // @param index the place to insert the new elements. This must be no
  //              greater than the current length of the array.
  // @param count the number of elements to insert.
  // @param item the value to use when constructing the new elements.
  template<class Item>
  elem_type *InsertElementsAt(index_type index, size_type count,
                              const Item& item) {
    if (!base_type::InsertSlotsAt(index, count, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
      return nsnull;
    }

    // Initialize the extra array elements
    elem_type *iter = Elements() + index, *end = iter + count;
    for (; iter != end; ++iter) {
      elem_traits::Construct(iter, item);
    }

    return Elements() + index;
  }

  // This method may be called to minimize the memory used by this array.
  void Compact() {
    ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type));
  }

  //
  // Sorting
  //

  // This method sorts the elements of the array.  It uses the LessThan
  // method defined on the given Comparator object to collate elements.
  // @param comp The Comparator used to collate elements.
  template<class Comparator>
  void Sort(const Comparator& comp) {
    NS_QuickSort(Elements(), Length(), sizeof(elem_type),
                 nsQuickSortComparator<elem_type, Comparator>::Compare,
                 const_cast<Comparator*>(&comp));
  }

  // A variation on the Sort method defined above that assumes that
  // 'operator<' is defined for elem_type.
  void Sort() {
    Sort(nsDefaultComparator<elem_type, elem_type>());
  }

  //
  // Binary Heap
  //

  // Sorts the array into a binary heap.
  // @param comp The Comparator used to create the heap
  template<class Comparator>
  void MakeHeap(const Comparator& comp) {
    if (!Length()) {
      return;
    }
    index_type index = (Length() - 1) / 2;
    do {
      SiftDown(index, comp);
    } while (index--);
  }

  // A variation on the MakeHeap method defined above.
  void MakeHeap() {
    MakeHeap(nsDefaultComparator<elem_type, elem_type>());
  }

  // Adds an element to the heap
  // @param item The item to add
  // @param comp The Comparator used to sift-up the item
  template<class Item, class Comparator>
  elem_type *PushHeap(const Item& item, const Comparator& comp) {
    if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) {
      return nsnull;
    }
    // Sift up the new node
    elem_type *elem = Elements();
    index_type index = Length() - 1;
    index_type parent_index = (index - 1) / 2;
    while (index && comp.LessThan(elem[parent_index], item)) {
      elem[index] = elem[parent_index];
      index = parent_index;
      parent_index = (index - 1) / 2;
    }
    elem[index] = item;
    return &elem[index];
  }

  // A variation on the PushHeap method defined above.
  template<class Item>
  elem_type *PushHeap(const Item& item) {
    return PushHeap(item, nsDefaultComparator<elem_type, Item>());
  }

  // Delete the root of the heap and restore the heap
  // @param comp The Comparator used to restore the heap
  template<class Comparator>
  void PopHeap(const Comparator& comp) {
    if (!Length()) {
      return;
    }
    index_type last_index = Length() - 1;
    elem_type *elem = Elements();
    elem[0] = elem[last_index];
    TruncateLength(last_index);
    if (Length()) {
      SiftDown(0, comp);
    }
  }

  // A variation on the PopHeap method defined above.
  void PopHeap() {
    PopHeap(nsDefaultComparator<elem_type, elem_type>());
  }

protected:
  using base_type::Hdr;
  using base_type::ShrinkCapacity;

  // This method invokes elem_type's destructor on a range of elements.
  // @param start  The index of the first element to destroy.
  // @param count  The number of elements to destroy.
  void DestructRange(index_type start, size_type count) {
    elem_type *iter = Elements() + start, *end = iter + count;
    for (; iter != end; ++iter) {
      elem_traits::Destruct(iter);
    }
  }

  // This method invokes elem_type's copy-constructor on a range of elements.
  // @param start   The index of the first element to construct.
  // @param count   The number of elements to construct. 
  // @param values  The array of elements to copy. 
  template<class Item>
  void AssignRange(index_type start, size_type count,
                   const Item *values) {
    elem_type *iter = Elements() + start, *end = iter + count;
    for (; iter != end; ++iter, ++values) {
      elem_traits::Construct(iter, *values);
    }
  }

  // This method sifts an item down to its proper place in a binary heap
  // @param index The index of the node to start sifting down from
  // @param comp  The Comparator used to sift down
  template<class Comparator>
  void SiftDown(index_type index, const Comparator& comp) {
    elem_type *elem = Elements();
    elem_type item = elem[index];
    index_type end = Length() - 1;
    while ((index * 2) < end) {
      const index_type left = (index * 2) + 1;
      const index_type right = (index * 2) + 2;
      const index_type parent_index = index;
      if (comp.LessThan(item, elem[left])) {
        if (left < end &&
            comp.LessThan(elem[left], elem[right])) {
          index = right;
        } else {
          index = left;
        }
      } else if (left < end &&
                 comp.LessThan(item, elem[right])) {
        index = right;
      } else {
        break;
      }
      elem[parent_index] = elem[index];
    }
    elem[index] = item;
  }
};

//
// Convenience subtypes of nsTArray.
//
template<class E>
class FallibleTArray : public nsTArray<E, nsTArrayFallibleAllocator>
{
public:
  typedef nsTArray<E, nsTArrayFallibleAllocator>   base_type;
  typedef typename base_type::size_type            size_type;

  FallibleTArray() {}
  explicit FallibleTArray(size_type capacity) : base_type(capacity) {}
  FallibleTArray(const FallibleTArray& other) : base_type(other) {}
};

#ifdef MOZALLOC_HAVE_XMALLOC
template<class E>
class InfallibleTArray : public nsTArray<E, nsTArrayInfallibleAllocator>
{
public:
  typedef nsTArray<E, nsTArrayInfallibleAllocator> base_type;
  typedef typename base_type::size_type            size_type;
 
  InfallibleTArray() {}
  explicit InfallibleTArray(size_type capacity) : base_type(capacity) {}
  InfallibleTArray(const InfallibleTArray& other) : base_type(other) {}
};
#endif

template<class TArrayBase, PRUint32 N>
class nsAutoArrayBase : public TArrayBase
{
public:
  typedef TArrayBase base_type;
  typedef typename base_type::Header Header;
  typedef typename base_type::elem_type elem_type;

protected:
  nsAutoArrayBase() {
    Init();
  }

  // We need this constructor because nsAutoTArray and friends all have
  // implicit copy-constructors.  If we don't have this method, those
  // copy-constructors will call nsAutoArrayBase's implicit copy-constructor,
  // which won't call Init() and set up the auto buffer!
  nsAutoArrayBase(const TArrayBase &aOther) {
    Init();
    AppendElements(aOther);
  }

private:
  // nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer
  // to mAutoBuf.
  template<class Allocator>
  friend class nsTArray_base;

  void Init() {
    // We can't handle alignments greater than 8; see
    // nsTArray_base::UsesAutoArrayBuffer().
    PR_STATIC_ASSERT(MOZ_ALIGNOF(elem_type) <= 8);

    *base_type::PtrToHdr() = reinterpret_cast<Header*>(&mAutoBuf);
    base_type::Hdr()->mLength = 0;
    base_type::Hdr()->mCapacity = N;
    base_type::Hdr()->mIsAutoArray = 1;

    NS_ASSERTION(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) ==
                 reinterpret_cast<Header*>(&mAutoBuf),
                 "GetAutoArrayBuffer needs to be fixed");
  }

  // Declare mAutoBuf aligned to the maximum of the header's alignment and
  // elem_type's alignment.  We need to use a union rather than
  // MOZ_ALIGNED_DECL because GCC is picky about what goes into
  // __attribute__((aligned(foo))).
  union {
    char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)];
    mozilla::AlignedElem<PR_MAX(MOZ_ALIGNOF(Header), MOZ_ALIGNOF(elem_type))> mAlign;
  };
};

template<class E, PRUint32 N, class Alloc=nsTArrayDefaultAllocator>
class nsAutoTArray : public nsAutoArrayBase<nsTArray<E, Alloc>, N>
{
  typedef nsAutoArrayBase<nsTArray<E, Alloc>, N> Base;

public:
  nsAutoTArray() {}

  template<typename Allocator>
  nsAutoTArray(const nsTArray<E, Allocator>& other) {
    Base::AppendElements(other);
  }
};

// Assert that nsAutoTArray doesn't have any extra padding inside.
//
// It's important that the data stored in this auto array takes up a multiple of
// 8 bytes; e.g. nsAutoTArray<PRUint32, 1> wouldn't work.  Since nsAutoTArray
// contains a pointer, its size must be a multiple of alignof(void*).  (This is
// because any type may be placed into an array, and there's no padding between
// elements of an array.)  The compiler pads the end of the structure to
// enforce this rule.
//
// If we used nsAutoTArray<PRUint32, 1> below, this assertion would fail on a
// 64-bit system, where the compiler inserts 4 bytes of padding at the end of
// the auto array to make its size a multiple of alignof(void*) == 8 bytes.

PR_STATIC_ASSERT(sizeof(nsAutoTArray<PRUint32, 2>) ==
                 sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(PRUint32) * 2);

template<class E, PRUint32 N>
class AutoFallibleTArray : public nsAutoArrayBase<FallibleTArray<E>, N>
{
  typedef nsAutoArrayBase<FallibleTArray<E>, N> Base;

public:
  AutoFallibleTArray() {}

  template<typename Allocator>
  AutoFallibleTArray(const nsTArray<E, Allocator>& other) {
    Base::AppendElements(other);
  }
};

#if defined(MOZALLOC_HAVE_XMALLOC)
template<class E, PRUint32 N>
class AutoInfallibleTArray : public nsAutoArrayBase<InfallibleTArray<E>, N>
{
  typedef nsAutoArrayBase<InfallibleTArray<E>, N> Base;

public:
  AutoInfallibleTArray() {}

  template<typename Allocator>
  AutoInfallibleTArray(const nsTArray<E, Allocator>& other) {
    Base::AppendElements(other);
  }
};
#endif

// specializations for N = 0. this makes the inheritance model easier for
// templated users of nsAutoTArray.
template<class E>
class nsAutoTArray<E, 0, nsTArrayDefaultAllocator> :
  public nsAutoArrayBase< nsTArray<E, nsTArrayDefaultAllocator>, 0>
{
public:
  nsAutoTArray() {}
};

template<class E>
class AutoFallibleTArray<E, 0> :
  public nsAutoArrayBase< FallibleTArray<E>, 0>
{
public:
  AutoFallibleTArray() {}
};

#if defined(MOZALLOC_HAVE_XMALLOC)
template<class E>
class AutoInfallibleTArray<E, 0> :
  public nsAutoArrayBase< InfallibleTArray<E>, 0>
{
public:
  AutoInfallibleTArray() {}
};
#endif
 
// Definitions of nsTArray methods
#include "nsTArray-inl.h"

#endif  // nsTArray_h__