This file is indexed.

/usr/include/thunderbird-11.0.1/nsCoord.h is in thunderbird-dev 11.0.1+build1-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is mozilla.org code.
 *
 * The Initial Developer of the Original Code is
 * Netscape Communications Corporation.
 * Portions created by the Initial Developer are Copyright (C) 1998
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either of the GNU General Public License Version 2 or later (the "GPL"),
 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef NSCOORD_H
#define NSCOORD_H

#include "nsAlgorithm.h"
#include "nscore.h"
#include "nsMathUtils.h"
#include <math.h>
#include <float.h>

#include "nsDebug.h"

/*
 * Basic type used for the geometry classes.
 *
 * Normally all coordinates are maintained in an app unit coordinate
 * space. An app unit is 1/60th of a CSS device pixel, which is, in turn
 * an integer number of device pixels, such at the CSS DPI is as close to
 * 96dpi as possible.
 */

// This controls whether we're using integers or floats for coordinates. We
// want to eventually use floats.
//#define NS_COORD_IS_FLOAT

inline float NS_IEEEPositiveInfinity() {
  union { PRUint32 mPRUint32; float mFloat; } pun;
  pun.mPRUint32 = 0x7F800000;
  return pun.mFloat;
}
inline bool NS_IEEEIsNan(float aF) {
  union { PRUint32 mBits; float mFloat; } pun;
  pun.mFloat = aF;
  return (pun.mBits & 0x7F800000) == 0x7F800000 &&
    (pun.mBits & 0x007FFFFF) != 0;
}

#ifdef NS_COORD_IS_FLOAT
typedef float nscoord;
#define nscoord_MAX NS_IEEEPositiveInfinity()
#else
typedef PRInt32 nscoord;
#define nscoord_MAX nscoord(1 << 30)
#endif

#define nscoord_MIN (-nscoord_MAX)

inline void VERIFY_COORD(nscoord aCoord) {
#ifdef NS_COORD_IS_FLOAT
  NS_ASSERTION(floorf(aCoord) == aCoord,
               "Coords cannot have fractions");
#endif
}

inline nscoord NSToCoordRound(float aValue)
{
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__)
  return NS_lroundup30(aValue);
#else
  return nscoord(floorf(aValue + 0.5f));
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
}

inline nscoord NSToCoordRound(double aValue)
{
#if defined(XP_WIN32) && defined(_M_IX86) && !defined(__GNUC__)
  return NS_lroundup30((float)aValue);
#else
  return nscoord(floor(aValue + 0.5f));
#endif /* XP_WIN32 && _M_IX86 && !__GNUC__ */
}

inline nscoord NSToCoordRoundWithClamp(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
  // Bounds-check before converting out of float, to avoid overflow
  NS_WARN_IF_FALSE(aValue <= nscoord_MAX,
                   "Overflowed nscoord_MAX in conversion to nscoord");
  if (aValue >= nscoord_MAX) {
    return nscoord_MAX;
  }
  NS_WARN_IF_FALSE(aValue >= nscoord_MIN,
                   "Overflowed nscoord_MIN in conversion to nscoord");
  if (aValue <= nscoord_MIN) {
    return nscoord_MIN;
  }
#endif
  return NSToCoordRound(aValue);
}

/**
 * Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
 * appropriate for the signs of aCoord and aScale.  If requireNotNegative is
 * true, this method will enforce that aScale is not negative; use that
 * parametrization to get a check of that fact in debug builds.
 */
inline nscoord _nscoordSaturatingMultiply(nscoord aCoord, float aScale,
                                          bool requireNotNegative) {
  VERIFY_COORD(aCoord);
  if (requireNotNegative) {
    NS_ABORT_IF_FALSE(aScale >= 0.0f,
                      "negative scaling factors must be handled manually");
  }
#ifdef NS_COORD_IS_FLOAT
  return floorf(aCoord * aScale);
#else
  // This one's only a warning because it may be possible to trigger it with
  // valid inputs.
  NS_WARN_IF_FALSE((requireNotNegative
                    ? aCoord > 0
                    : (aCoord > 0) == (aScale > 0))
                   ? floorf(aCoord * aScale) < nscoord_MAX
                   : ceilf(aCoord * aScale) > nscoord_MIN,
                   "nscoord multiplication capped");

  float product = aCoord * aScale;
  if (requireNotNegative ? aCoord > 0 : (aCoord > 0) == (aScale > 0))
    return NSToCoordRoundWithClamp(NS_MIN<float>(nscoord_MAX, product));
  return NSToCoordRoundWithClamp(NS_MAX<float>(nscoord_MIN, product));
#endif
}

/**
 * Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
 * appropriate for the sign of aCoord.  This method requires aScale to not be
 * negative; use this method when you know that aScale should never be
 * negative to get a sanity check of that invariant in debug builds.
 */
inline nscoord NSCoordSaturatingNonnegativeMultiply(nscoord aCoord, float aScale) {
  return _nscoordSaturatingMultiply(aCoord, aScale, true);
}

/**
 * Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
 * appropriate for the signs of aCoord and aScale.
 */
inline nscoord NSCoordSaturatingMultiply(nscoord aCoord, float aScale) {
  return _nscoordSaturatingMultiply(aCoord, aScale, false);
}

inline nscoord NSCoordMultiply(nscoord aCoord, PRInt32 aScale) {
  VERIFY_COORD(aCoord);
  return aCoord * aScale;
}

inline nscoord NSCoordDivide(nscoord aCoord, float aVal) {
  VERIFY_COORD(aCoord);
#ifdef NS_COORD_IS_FLOAT
  return floorf(aCoord/aVal);
#else
  return (PRInt32)(aCoord/aVal);
#endif
}

inline nscoord NSCoordDivide(nscoord aCoord, PRInt32 aVal) {
  VERIFY_COORD(aCoord);
#ifdef NS_COORD_IS_FLOAT
  return floorf(aCoord/aVal);
#else
  return aCoord/aVal;
#endif
}

/**
 * Returns a + b, capping the sum to nscoord_MAX.
 *
 * This function assumes that neither argument is nscoord_MIN.
 *
 * Note: If/when we start using floats for nscoords, this function won't be as
 * necessary.  Normal float addition correctly handles adding with infinity,
 * assuming we aren't adding nscoord_MIN. (-infinity)
 */
inline nscoord
NSCoordSaturatingAdd(nscoord a, nscoord b)
{
  VERIFY_COORD(a);
  VERIFY_COORD(b);
  NS_ASSERTION(a != nscoord_MIN && b != nscoord_MIN,
               "NSCoordSaturatingAdd got nscoord_MIN as argument");

#ifdef NS_COORD_IS_FLOAT
  // Float math correctly handles a+b, given that neither is -infinity.
  return a + b;
#else
  if (a == nscoord_MAX || b == nscoord_MAX) {
    // infinity + anything = anything + infinity = infinity
    return nscoord_MAX;
  } else {
    // a + b = a + b
    NS_ASSERTION(a < nscoord_MAX && b < nscoord_MAX,
                 "Doing nscoord addition with values > nscoord_MAX");
    NS_ASSERTION((PRInt64)a + (PRInt64)b > (PRInt64)nscoord_MIN,
                 "nscoord addition will reach or pass nscoord_MIN");
    // This one's only a warning because the NS_MIN below means that
    // we'll handle this case correctly.
    NS_WARN_IF_FALSE((PRInt64)a + (PRInt64)b < (PRInt64)nscoord_MAX,
                     "nscoord addition capped to nscoord_MAX");

    // Cap the result, just in case we're dealing with numbers near nscoord_MAX
    return NS_MIN(nscoord_MAX, a + b);
  }
#endif
}

/**
 * Returns a - b, gracefully handling cases involving nscoord_MAX.
 * This function assumes that neither argument is nscoord_MIN.
 *
 * The behavior is as follows:
 *
 *  a)  infinity - infinity -> infMinusInfResult
 *  b)  N - infinity        -> 0  (unexpected -- triggers NOTREACHED)
 *  c)  infinity - N        -> infinity
 *  d)  N1 - N2             -> N1 - N2
 *
 * Note: For float nscoords, cases (c) and (d) are handled by normal float
 * math.  We still need to explicitly specify the behavior for cases (a)
 * and (b), though.  (Under normal float math, those cases would return NaN
 * and -infinity, respectively.)
 */
inline nscoord 
NSCoordSaturatingSubtract(nscoord a, nscoord b, 
                          nscoord infMinusInfResult)
{
  VERIFY_COORD(a);
  VERIFY_COORD(b);
  NS_ASSERTION(a != nscoord_MIN && b != nscoord_MIN,
               "NSCoordSaturatingSubtract got nscoord_MIN as argument");

  if (b == nscoord_MAX) {
    if (a == nscoord_MAX) {
      // case (a)
      return infMinusInfResult;
    } else {
      // case (b)
      NS_NOTREACHED("Attempted to subtract [n - nscoord_MAX]");
      return 0;
    }
  } else {
#ifdef NS_COORD_IS_FLOAT
    // case (c) and (d) for floats.  (float math handles both)
    return a - b;
#else
    if (a == nscoord_MAX) {
      // case (c) for integers
      return nscoord_MAX;
    } else {
      // case (d) for integers
      NS_ASSERTION(a < nscoord_MAX && b < nscoord_MAX,
                   "Doing nscoord subtraction with values > nscoord_MAX");
      NS_ASSERTION((PRInt64)a - (PRInt64)b > (PRInt64)nscoord_MIN,
                   "nscoord subtraction will reach or pass nscoord_MIN");
      // This one's only a warning because the NS_MIN below means that
      // we'll handle this case correctly.
      NS_WARN_IF_FALSE((PRInt64)a - (PRInt64)b < (PRInt64)nscoord_MAX,
                       "nscoord subtraction capped to nscoord_MAX");

      // Cap the result, in case we're dealing with numbers near nscoord_MAX
      return NS_MIN(nscoord_MAX, a - b);
    }
  }
#endif
}
/** compare against a nscoord "b", which might be unconstrained
  * "a" must not be unconstrained.
  * Every number is smaller than a unconstrained one
  */
inline bool
NSCoordLessThan(nscoord a,nscoord b)
{
  NS_ASSERTION(a != nscoord_MAX, 
               "This coordinate should be constrained");
  return ((a < b) || (b == nscoord_MAX));
}

/** compare against a nscoord "b", which might be unconstrained
  * "a" must not be unconstrained
  * No number is larger than a unconstrained one.
  */
inline bool
NSCoordGreaterThan(nscoord a,nscoord b)
{
  NS_ASSERTION(a != nscoord_MAX, 
               "This coordinate should be constrained");
  return ((a > b) && (b != nscoord_MAX));
}

/**
 * Convert an nscoord to a PRInt32. This *does not* do rounding because
 * coords are never fractional. They can be out of range, so this does
 * clamp out of bounds coord values to PR_INT32_MIN and PR_INT32_MAX.
 */
inline PRInt32 NSCoordToInt(nscoord aCoord) {
  VERIFY_COORD(aCoord);
#ifdef NS_COORD_IS_FLOAT
  NS_ASSERTION(!NS_IEEEIsNan(aCoord), "NaN encountered in int conversion");
  if (aCoord < -2147483648.0f) {
    // -2147483648 is the smallest 32-bit signed integer that can be
    // exactly represented as a float
    return PR_INT32_MIN;
  } else if (aCoord > 2147483520.0f) {
    // 2147483520 is the largest 32-bit signed integer that can be
    // exactly represented as an IEEE float
    return PR_INT32_MAX;
  } else {
    return (PRInt32)aCoord;
  }
#else
  return aCoord;
#endif
}

inline float NSCoordToFloat(nscoord aCoord) {
  VERIFY_COORD(aCoord);
#ifdef NS_COORD_IS_FLOAT
  NS_ASSERTION(!NS_IEEEIsNan(aCoord), "NaN encountered in float conversion");
#endif
  return (float)aCoord;
}

/*
 * Coord Rounding Functions
 */
inline nscoord NSToCoordFloor(float aValue)
{
  return nscoord(floorf(aValue));
}

inline nscoord NSToCoordFloor(double aValue)
{
  return nscoord(floor(aValue));
}

inline nscoord NSToCoordFloorClamped(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
  // Bounds-check before converting out of float, to avoid overflow
  NS_WARN_IF_FALSE(aValue <= nscoord_MAX,
                   "Overflowed nscoord_MAX in conversion to nscoord");
  if (aValue >= nscoord_MAX) {
    return nscoord_MAX;
  }
  NS_WARN_IF_FALSE(aValue >= nscoord_MIN,
                   "Overflowed nscoord_MIN in conversion to nscoord");
  if (aValue <= nscoord_MIN) {
    return nscoord_MIN;
  }
#endif
  return NSToCoordFloor(aValue);
}

inline nscoord NSToCoordCeil(float aValue)
{
  return nscoord(ceilf(aValue));
}

inline nscoord NSToCoordCeil(double aValue)
{
  return nscoord(ceil(aValue));
}

inline nscoord NSToCoordCeilClamped(float aValue)
{
#ifndef NS_COORD_IS_FLOAT
  // Bounds-check before converting out of float, to avoid overflow
  NS_WARN_IF_FALSE(aValue <= nscoord_MAX,
                   "Overflowed nscoord_MAX in conversion to nscoord");
  if (aValue >= nscoord_MAX) {
    return nscoord_MAX;
  }
  NS_WARN_IF_FALSE(aValue >= nscoord_MIN,
                   "Overflowed nscoord_MIN in conversion to nscoord");
  if (aValue <= nscoord_MIN) {
    return nscoord_MIN;
  }
#endif
  return NSToCoordCeil(aValue);
}

inline nscoord NSToCoordCeilClamped(double aValue)
{
#ifndef NS_COORD_IS_FLOAT
  // Bounds-check before converting out of double, to avoid overflow
  NS_WARN_IF_FALSE(aValue <= nscoord_MAX,
                   "Overflowed nscoord_MAX in conversion to nscoord");
  if (aValue >= nscoord_MAX) {
    return nscoord_MAX;
  }
  NS_WARN_IF_FALSE(aValue >= nscoord_MIN,
                   "Overflowed nscoord_MIN in conversion to nscoord");
  if (aValue <= nscoord_MIN) {
    return nscoord_MIN;
  }
#endif
  return NSToCoordCeil(aValue);
}

/*
 * Int Rounding Functions
 */
inline PRInt32 NSToIntFloor(float aValue)
{
  return PRInt32(floorf(aValue));
}

inline PRInt32 NSToIntCeil(float aValue)
{
  return PRInt32(ceilf(aValue));
}

inline PRInt32 NSToIntRound(float aValue)
{
  return NS_lroundf(aValue);
}

inline PRInt32 NSToIntRound(double aValue)
{
  return NS_lround(aValue);
}

inline PRInt32 NSToIntRoundUp(float aValue)
{
  return PRInt32(floorf(aValue + 0.5f));
}

inline PRInt32 NSToIntRoundUp(double aValue)
{
  return PRInt32(floor(aValue + 0.5));
}

/* 
 * App Unit/Pixel conversions
 */
inline nscoord NSFloatPixelsToAppUnits(float aPixels, float aAppUnitsPerPixel)
{
  return NSToCoordRoundWithClamp(aPixels * aAppUnitsPerPixel);
}

inline nscoord NSIntPixelsToAppUnits(PRInt32 aPixels, PRInt32 aAppUnitsPerPixel)
{
  // The cast to nscoord makes sure we don't overflow if we ever change
  // nscoord to float
  nscoord r = aPixels * (nscoord)aAppUnitsPerPixel;
  VERIFY_COORD(r);
  return r;
}

inline float NSAppUnitsToFloatPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
{
  return (float(aAppUnits) / aAppUnitsPerPixel);
}

inline double NSAppUnitsToDoublePixels(nscoord aAppUnits, nscoord aAppUnitsPerPixel)
{
  return (double(aAppUnits) / double(aAppUnitsPerPixel));
}

inline double NSAppUnitsToDoublePixels(nscoord aAppUnits, double aAppUnitsPerPixel)
{
  return (double(aAppUnits) / aAppUnitsPerPixel);
}

inline PRInt32 NSAppUnitsToIntPixels(nscoord aAppUnits, float aAppUnitsPerPixel)
{
  return NSToIntRound(float(aAppUnits) / aAppUnitsPerPixel);
}

inline float NSCoordScale(nscoord aCoord, PRInt32 aFromAPP, PRInt32 aToAPP)
{
  return (NSCoordToFloat(aCoord) * aToAPP) / aFromAPP;
}

/// handy constants
#define TWIPS_PER_POINT_INT           20
#define TWIPS_PER_POINT_FLOAT         20.0f
#define POINTS_PER_INCH_INT           72
#define POINTS_PER_INCH_FLOAT         72.0f
#define CM_PER_INCH_FLOAT             2.54f
#define MM_PER_INCH_FLOAT             25.4f

/* 
 * Twips/unit conversions
 */
inline float NSUnitsToTwips(float aValue, float aPointsPerUnit)
{
  return aValue * aPointsPerUnit * TWIPS_PER_POINT_FLOAT;
}

inline float NSTwipsToUnits(float aTwips, float aUnitsPerPoint)
{
  return (aTwips * (aUnitsPerPoint / TWIPS_PER_POINT_FLOAT));
}

/// Unit conversion macros
//@{
#define NS_POINTS_TO_TWIPS(x)         NSUnitsToTwips((x), 1.0f)
#define NS_INCHES_TO_TWIPS(x)         NSUnitsToTwips((x), POINTS_PER_INCH_FLOAT)                      // 72 points per inch

#define NS_MILLIMETERS_TO_TWIPS(x)    NSUnitsToTwips((x), (POINTS_PER_INCH_FLOAT * 0.03937f))
#define NS_CENTIMETERS_TO_TWIPS(x)    NSUnitsToTwips((x), (POINTS_PER_INCH_FLOAT * 0.3937f))

#define NS_PICAS_TO_TWIPS(x)          NSUnitsToTwips((x), 12.0f)                      // 12 points per pica

#define NS_POINTS_TO_INT_TWIPS(x)     NSToIntRound(NS_POINTS_TO_TWIPS(x))
#define NS_INCHES_TO_INT_TWIPS(x)     NSToIntRound(NS_INCHES_TO_TWIPS(x))

#define NS_TWIPS_TO_POINTS(x)         NSTwipsToUnits((x), 1.0f)
#define NS_TWIPS_TO_INCHES(x)         NSTwipsToUnits((x), 1.0f / POINTS_PER_INCH_FLOAT)

#define NS_TWIPS_TO_MILLIMETERS(x)    NSTwipsToUnits((x), 1.0f / (POINTS_PER_INCH_FLOAT * 0.03937f))
#define NS_TWIPS_TO_CENTIMETERS(x)    NSTwipsToUnits((x), 1.0f / (POINTS_PER_INCH_FLOAT * 0.3937f))

#define NS_TWIPS_TO_PICAS(x)          NSTwipsToUnits((x), 1.0f / 12.0f)
//@}

#endif /* NSCOORD_H */