This file is indexed.

/usr/include/thunderbird-11.0.1/gc/Barrier.h is in thunderbird-dev 11.0.1+build1-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sw=4 et tw=78:
 *
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is SpiderMonkey global object code.
 *
 * The Initial Developer of the Original Code is
 * the Mozilla Foundation.
 * Portions created by the Initial Developer are Copyright (C) 2011
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either of the GNU General Public License Version 2 or later (the "GPL"),
 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef jsgc_barrier_h___
#define jsgc_barrier_h___

#include "jsapi.h"
#include "jscell.h"

#include "js/HashTable.h"

/*
 * A write barrier is a mechanism used by incremental or generation GCs to
 * ensure that every value that needs to be marked is marked. In general, the
 * write barrier should be invoked whenever a write can cause the set of things
 * traced through by the GC to change. This includes:
 *   - writes to object properties
 *   - writes to array slots
 *   - writes to fields like JSObject::lastProp that we trace through
 *   - writes to fields in private data, like JSGenerator::obj
 *   - writes to non-markable fields like JSObject::private that point to
 *     markable data
 * The last category is the trickiest. Even though the private pointers does not
 * point to a GC thing, changing the private pointer may change the set of
 * objects that are traced by the GC. Therefore it needs a write barrier.
 *
 * Every barriered write should have the following form:
 *   <pre-barrier>
 *   obj->field = value; // do the actual write
 *   <post-barrier>
 * The pre-barrier is used for incremental GC and the post-barrier is for
 * generational GC.
 *
 *                               PRE-BARRIER
 *
 * To understand the pre-barrier, let's consider how incremental GC works. The
 * GC itself is divided into "slices". Between each slice, JS code is allowed to
 * run. Each slice should be short so that the user doesn't notice the
 * interruptions. In our GC, the structure of the slices is as follows:
 *
 * 1. ... JS work, which leads to a request to do GC ...
 * 2. [first GC slice, which performs all root marking and possibly more marking]
 * 3. ... more JS work is allowed to run ...
 * 4. [GC mark slice, which runs entirely in drainMarkStack]
 * 5. ... more JS work ...
 * 6. [GC mark slice, which runs entirely in drainMarkStack]
 * 7. ... more JS work ...
 * 8. [GC marking finishes; sweeping done non-incrementally; GC is done]
 * 9. ... JS continues uninterrupted now that GC is finishes ...
 *
 * Of course, there may be a different number of slices depending on how much
 * marking is to be done.
 *
 * The danger inherent in this scheme is that the JS code in steps 3, 5, and 7
 * might change the heap in a way that causes the GC to collect an object that
 * is actually reachable. The write barrier prevents this from happening. We use
 * a variant of incremental GC called "snapshot at the beginning." This approach
 * guarantees the invariant that if an object is reachable in step 2, then we
 * will mark it eventually. The name comes from the idea that we take a
 * theoretical "snapshot" of all reachable objects in step 2; all objects in
 * that snapshot should eventually be marked. (Note that the write barrier
 * verifier code takes an actual snapshot.)
 *
 * The basic correctness invariant of a snapshot-at-the-beginning collector is
 * that any object reachable at the end of the GC (step 9) must either:
 *   (1) have been reachable at the beginning (step 2) and thus in the snapshot
 *   (2) or must have been newly allocated, in steps 3, 5, or 7.
 * To deal with case (2), any objects allocated during an incremental GC are
 * automatically marked black.
 *
 * This strategy is actually somewhat conservative: if an object becomes
 * unreachable between steps 2 and 8, it would be safe to collect it. We won't,
 * mainly for simplicity. (Also, note that the snapshot is entirely
 * theoretical. We don't actually do anything special in step 2 that we wouldn't
 * do in a non-incremental GC.
 *
 * It's the pre-barrier's job to maintain the snapshot invariant. Consider the
 * write "obj->field = value". Let the prior value of obj->field be
 * value0. Since it's possible that value0 may have been what obj->field
 * contained in step 2, when the snapshot was taken, the barrier marks
 * value0. Note that it only does this if we're in the middle of an incremental
 * GC. Since this is rare, the cost of the write barrier is usually just an
 * extra branch.
 *
 * In practice, we implement the pre-barrier differently based on the type of
 * value0. E.g., see JSObject::writeBarrierPre, which is used if obj->field is
 * a JSObject*. It takes value0 as a parameter.
 *
 *                                POST-BARRIER
 *
 * These are not yet implemented. Once we get generational GC, they will allow
 * us to keep track of pointers from non-nursery space into the nursery.
 *
 *                            IMPLEMENTATION DETAILS
 *
 * Since it would be awkward to change every write to memory into a function
 * call, this file contains a bunch of C++ classes and templates that use
 * operator overloading to take care of barriers automatically. In many cases,
 * all that's necessary to make some field be barriered is to replace
 *     Type *field;
 * with
 *     HeapPtr<Type> field;
 * There are also special classes HeapValue and HeapId, which barrier js::Value
 * and jsid, respectively.
 *
 * One additional note: not all object writes need to be barriered. Writes to
 * newly allocated objects do not need a barrier as long as the GC is not
 * allowed to run in between the allocation and the write. In these cases, we
 * use the "obj->field.init(value)" method instead of "obj->field = value".
 * We use the init naming idiom in many places to signify that a field is being
 * assigned for the first time, and that no GCs have taken place between the
 * object allocation and the assignment.
 */

namespace js {

/*
 * Ideally, we would like to make the argument to functions like MarkShape be a
 * HeapPtr<const js::Shape>. That would ensure that we don't forget to
 * barrier any fields that we mark through. However, that would prohibit us from
 * passing in a derived class like HeapPtr<js::EmptyShape>.
 *
 * To overcome the problem, we make the argument to MarkShape be a
 * MarkablePtr<const js::Shape>. And we allow conversions from HeapPtr<T>
 * to MarkablePtr<U> as long as T can be converted to U.
 */
template<class T>
class MarkablePtr
{
  public:
    T *value;

    explicit MarkablePtr(T *value) : value(value) {}
};

template<class T, typename Unioned = uintptr_t>
class HeapPtr
{
    union {
        T *value;
        Unioned other;
    };

  public:
    HeapPtr() : value(NULL) {}
    explicit HeapPtr(T *v) : value(v) { post(); }
    explicit HeapPtr(const HeapPtr<T> &v) : value(v.value) { post(); }

    ~HeapPtr() { pre(); }

    /* Use this to install a ptr into a newly allocated object. */
    void init(T *v) {
        value = v;
        post();
    }

    /* Use to set the pointer to NULL. */
    void clear() {
	pre();
	value = NULL;
    }

    /* Use this if the automatic coercion to T* isn't working. */
    T *get() const { return value; }

    /*
     * Use these if you want to change the value without invoking the barrier.
     * Obviously this is dangerous unless you know the barrier is not needed.
     */
    T **unsafeGet() { return &value; }
    void unsafeSet(T *v) { value = v; }

    Unioned *unsafeGetUnioned() { return &other; }

    HeapPtr<T, Unioned> &operator=(T *v) {
        pre();
        value = v;
        post();
        return *this;
    }

    HeapPtr<T, Unioned> &operator=(const HeapPtr<T> &v) {
        pre();
        value = v.value;
        post();
        return *this;
    }

    T &operator*() const { return *value; }
    T *operator->() const { return value; }

    operator T*() const { return value; }

    /*
     * This coerces to MarkablePtr<U> as long as T can coerce to U. See the
     * comment for MarkablePtr above.
     */
    template<class U>
    operator MarkablePtr<U>() const { return MarkablePtr<U>(value); }

  private:
    void pre() { T::writeBarrierPre(value); }
    void post() { T::writeBarrierPost(value, (void *)&value); }

    /* Make this friend so it can access pre() and post(). */
    template<class T1, class T2>
    friend inline void
    BarrieredSetPair(JSCompartment *comp,
                     HeapPtr<T1> &v1, T1 *val1,
                     HeapPtr<T2> &v2, T2 *val2);
};

/*
 * This is a hack for RegExpStatics::updateFromMatch. It allows us to do two
 * barriers with only one branch to check if we're in an incremental GC.
 */
template<class T1, class T2>
static inline void
BarrieredSetPair(JSCompartment *comp,
                 HeapPtr<T1> &v1, T1 *val1,
                 HeapPtr<T2> &v2, T2 *val2)
{
    if (T1::needWriteBarrierPre(comp)) {
        v1.pre();
        v2.pre();
    }
    v1.unsafeSet(val1);
    v2.unsafeSet(val2);
    v1.post();
    v2.post();
}

typedef HeapPtr<JSObject> HeapPtrObject;
typedef HeapPtr<JSFunction> HeapPtrFunction;
typedef HeapPtr<JSString> HeapPtrString;
typedef HeapPtr<JSScript> HeapPtrScript;
typedef HeapPtr<Shape> HeapPtrShape;
typedef HeapPtr<BaseShape> HeapPtrBaseShape;
typedef HeapPtr<types::TypeObject> HeapPtrTypeObject;
typedef HeapPtr<JSXML> HeapPtrXML;

/* Useful for hashtables with a HeapPtr as key. */
template<class T>
struct HeapPtrHasher
{
    typedef HeapPtr<T> Key;
    typedef T *Lookup;

    static HashNumber hash(Lookup obj) { return DefaultHasher<T *>::hash(obj); }
    static bool match(const Key &k, Lookup l) { return k.get() == l; }
};

/* Specialized hashing policy for HeapPtrs. */
template <class T>
struct DefaultHasher< HeapPtr<T> >: HeapPtrHasher<T> { };

class HeapValue
{
    Value value;

  public:
    explicit HeapValue() : value(UndefinedValue()) {}
    explicit inline HeapValue(const Value &v);
    explicit inline HeapValue(const HeapValue &v);

    inline ~HeapValue();

    inline void init(const Value &v);

    inline HeapValue &operator=(const Value &v);
    inline HeapValue &operator=(const HeapValue &v);

    /*
     * This is a faster version of operator=. Normally, operator= has to
     * determine the compartment of the value before it can decide whether to do
     * the barrier. If you already know the compartment, it's faster to pass it
     * in.
     */
    inline void set(JSCompartment *comp, const Value &v);

    const Value &get() const { return value; }
    operator const Value &() const { return value; }

    bool isMarkable() const { return value.isMarkable(); }
    bool isMagic(JSWhyMagic why) const { return value.isMagic(why); }
    bool isUndefined() const { return value.isUndefined(); }
    bool isObject() const { return value.isObject(); }
    bool isGCThing() const { return value.isGCThing(); }
    bool isTrue() const { return value.isTrue(); }
    bool isFalse() const { return value.isFalse(); }
    bool isInt32() const { return value.isInt32(); }
    bool isNull() const { return value.isNull(); }

    JSObject &toObject() const { return value.toObject(); }
    JSObject *toObjectOrNull() const { return value.toObjectOrNull(); }
    void *toGCThing() const { return value.toGCThing(); }
    double toDouble() const { return value.toDouble(); }
    int32_t toInt32() const { return value.toInt32(); }
    JSString *toString() const { return value.toString(); }
    bool toBoolean() const { return value.toBoolean(); }
    double toNumber() const { return value.toNumber(); }

    JSGCTraceKind gcKind() const { return value.gcKind(); }

    inline void boxNonDoubleFrom(JSValueType type, uint64_t *out);

    uint64_t asRawBits() const { return value.asRawBits(); }

#ifdef DEBUG
    JSWhyMagic whyMagic() const { return value.whyMagic(); }
#endif

    static inline void writeBarrierPre(const Value &v);
    static inline void writeBarrierPost(const Value &v, void *addr);

    static inline void writeBarrierPre(JSCompartment *comp, const Value &v);
    static inline void writeBarrierPost(JSCompartment *comp, const Value &v, void *addr);

  private:
    inline void pre();
    inline void post();

    inline void pre(JSCompartment *comp);
    inline void post(JSCompartment *comp);
};

static inline const Value *
Valueify(const HeapValue *array)
{
    JS_ASSERT(sizeof(HeapValue) == sizeof(Value));
    return (const Value *)array;
}

class HeapValueArray
{
    HeapValue *array;

  public:
    HeapValueArray(HeapValue *array) : array(array) {}

    operator const Value *() const { return Valueify(array); }
    operator HeapValue *() const { return array; }

    HeapValueArray operator +(int offset) const { return HeapValueArray(array + offset); }
    HeapValueArray operator +(uint32_t offset) const { return HeapValueArray(array + offset); }
};

class HeapId
{
    jsid value;

  public:
    explicit HeapId() : value(JSID_VOID) {}
    explicit inline HeapId(jsid id);

    inline ~HeapId();

    inline void init(jsid id);

    inline HeapId &operator=(jsid id);
    inline HeapId &operator=(const HeapId &v);

    bool operator==(jsid id) const { return value == id; }
    bool operator!=(jsid id) const { return value != id; }

    jsid get() const { return value; }
    operator jsid() const { return value; }

  private:
    inline void pre();
    inline void post();

    HeapId(const HeapId &v);
};

/*
 * Incremental GC requires that weak pointers have read barriers. This is mostly
 * an issue for empty shapes stored in JSCompartment. The problem happens when,
 * during an incremental GC, some JS code stores one of the compartment's empty
 * shapes into an object already marked black. Normally, this would not be a
 * problem, because the empty shape would have been part of the initial snapshot
 * when the GC started. However, since this is a weak pointer, it isn't. So we
 * may collect the empty shape even though a live object points to it. To fix
 * this, we mark these empty shapes black whenever they get read out.
 */
template<class T>
class ReadBarriered
{
    T *value;

  public:
    ReadBarriered(T *value) : value(value) {}

    T *get() const {
        if (!value)
            return NULL;
        T::readBarrier(value);
        return value;
    }

    operator T*() const { return get(); }

    T *unsafeGet() { return value; }

    void set(T *v) { value = v; }

    operator bool() { return !!value; }

    template<class U>
    operator MarkablePtr<U>() const { return MarkablePtr<U>(value); }
};

}

#endif /* jsgc_barrier_h___ */