This file is indexed.

/usr/include/thunderbird-11.0.1/CheckedInt.h is in thunderbird-dev 11.0.1+build1-0ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is Mozilla code.
 *
 * The Initial Developer of the Original Code is the Mozilla Corporation.
 * Portions created by the Initial Developer are Copyright (C) 2009
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *  Benoit Jacob <bjacob@mozilla.com>
 *  Jeff Muizelaar <jmuizelaar@mozilla.com>
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

#ifndef mozilla_CheckedInt_h
#define mozilla_CheckedInt_h

#include "prtypes.h"

#include <climits>

namespace mozilla {

namespace CheckedInt_internal {

/* we don't want to use std::numeric_limits here because PRInt... types may not support it,
 * depending on the platform, e.g. on certain platforms they use nonstandard built-in types
 */

/*** Step 1: manually record information for all the types that we want to support
 ***/

struct unsupported_type {};

template<typename T> struct integer_type_manually_recorded_info
{
    enum { is_supported = 0 };
    typedef unsupported_type twice_bigger_type;
    typedef unsupported_type unsigned_type;
};


#define CHECKEDINT_REGISTER_SUPPORTED_TYPE(T,_twice_bigger_type,_unsigned_type)  \
template<> struct integer_type_manually_recorded_info<T>       \
{                                                              \
    enum { is_supported = 1 };                                 \
    typedef _twice_bigger_type twice_bigger_type;              \
    typedef _unsigned_type unsigned_type;                      \
    static void TYPE_NOT_SUPPORTED_BY_CheckedInt() {}          \
};

//                                 Type      Twice Bigger Type     Unsigned Type
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt8,   PRInt16,              PRUint8)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint8,  PRUint16,             PRUint8)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt16,  PRInt32,              PRUint16)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint16, PRUint32,             PRUint16)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt32,  PRInt64,              PRUint32)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint32, PRUint64,             PRUint32)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRInt64,  unsupported_type,     PRUint64)
CHECKEDINT_REGISTER_SUPPORTED_TYPE(PRUint64, unsupported_type,     PRUint64)


/*** Step 2: record some info about a given integer type,
 ***         including whether it is supported, whether a twice bigger integer type
 ***         is supported, what that twice bigger type is, and some stuff as found
 ***         in std::numeric_limits (which we don't use because PRInt.. types may
 ***         not support it, if they are defined directly from compiler built-in types).
 ***         We use function names min_value() and max_value() instead of min() and max()
 ***         because of stupid min/max macros in Windows headers.
 ***/

template<typename T> struct is_unsupported_type { enum { answer = 0 }; };
template<> struct is_unsupported_type<unsupported_type> { enum { answer = 1 }; };

template<typename T> struct integer_traits
{
    typedef typename integer_type_manually_recorded_info<T>::twice_bigger_type twice_bigger_type;
    typedef typename integer_type_manually_recorded_info<T>::unsigned_type unsigned_type;

    enum {
        is_supported = integer_type_manually_recorded_info<T>::is_supported,
        twice_bigger_type_is_supported
            = is_unsupported_type<
                  typename integer_type_manually_recorded_info<T>::twice_bigger_type
              >::answer ? 0 : 1,
        size = sizeof(T),
        position_of_sign_bit = CHAR_BIT * size - 1,
        is_signed = (T(-1) > T(0)) ? 0 : 1
    };

    static T min_value()
    {
        // bitwise ops may return a larger type, that's why we cast explicitly to T
        // in C++, left bit shifts on signed values is undefined by the standard unless the shifted value is representable.
        // notice that signed-to-unsigned conversions are always well-defined in the standard,
        // as the value congruent to 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
        // representable.
        return is_signed ? T(unsigned_type(1) << position_of_sign_bit) : T(0);
    }

    static T max_value()
    {
        return ~min_value();
    }
};

/*** Step 3: Implement the actual validity checks --- ideas taken from IntegerLib, code different.
 ***/

// bitwise ops may return a larger type, so it's good to use these inline helpers guaranteeing that
// the result is really of type T

template<typename T> inline T has_sign_bit(T x)
{
    // in C++, right bit shifts on negative values is undefined by the standard.
    // notice that signed-to-unsigned conversions are always well-defined in the standard,
    // as the value congruent modulo 2^n as expected. By contrast, unsigned-to-signed is only well-defined if the value is
    // representable. Here the unsigned-to-signed conversion is OK because the value (the result of the shift) is 0 or 1.
    typedef typename integer_traits<T>::unsigned_type unsigned_T;
    return T(unsigned_T(x) >> integer_traits<T>::position_of_sign_bit);
}

template<typename T> inline T binary_complement(T x)
{
    return ~x;
}

template<typename T, typename U,
         bool is_T_signed = integer_traits<T>::is_signed,
         bool is_U_signed = integer_traits<U>::is_signed>
struct is_in_range_impl {};

template<typename T, typename U>
struct is_in_range_impl<T, U, true, true>
{
    static T run(U x)
    {
        return (x <= integer_traits<T>::max_value()) &&
               (x >= integer_traits<T>::min_value());
    }
};

template<typename T, typename U>
struct is_in_range_impl<T, U, false, false>
{
    static T run(U x)
    {
        return x <= integer_traits<T>::max_value();
    }
};

template<typename T, typename U>
struct is_in_range_impl<T, U, true, false>
{
    static T run(U x)
    {
        if (sizeof(T) > sizeof(U))
            return 1;
        else
            return x <= U(integer_traits<T>::max_value());
    }
};

template<typename T, typename U>
struct is_in_range_impl<T, U, false, true>
{
    static T run(U x)
    {
        if (sizeof(T) >= sizeof(U))
            return x >= 0;
        else
            return (x >= 0) && (x <= U(integer_traits<T>::max_value()));
    }
};

template<typename T, typename U> inline T is_in_range(U x)
{
    return is_in_range_impl<T, U>::run(x);
}

template<typename T> inline T is_add_valid(T x, T y, T result)
{
    return integer_traits<T>::is_signed ?
                        // addition is valid if the sign of x+y is equal to either that of x or that of y.
                        // Beware! These bitwise operations can return a larger integer type, if T was a
                        // small type like int8, so we explicitly cast to T.
                        has_sign_bit(binary_complement(T((result^x) & (result^y))))
                    :
                        binary_complement(x) >= y;
}

template<typename T> inline T is_sub_valid(T x, T y, T result)
{
    return integer_traits<T>::is_signed ?
                        // substraction is valid if either x and y have same sign, or x-y and x have same sign
                        has_sign_bit(binary_complement(T((result^x) & (x^y))))
                    :
                        x >= y;
}

template<typename T,
         bool is_signed =  integer_traits<T>::is_signed,
         bool twice_bigger_type_is_supported = integer_traits<T>::twice_bigger_type_is_supported>
struct is_mul_valid_impl {};

template<typename T, bool is_signed>
struct is_mul_valid_impl<T, is_signed, true>
{
    static T run(T x, T y)
    {
        typedef typename integer_traits<T>::twice_bigger_type twice_bigger_type;
        twice_bigger_type product = twice_bigger_type(x) * twice_bigger_type(y);
        return is_in_range<T>(product);
    }
};

template<typename T>
struct is_mul_valid_impl<T, true, false>
{
    static T run(T x, T y)
    {
        const T max_value = integer_traits<T>::max_value();
        const T min_value = integer_traits<T>::min_value();

        if (x == 0 || y == 0) return true;

        if (x > 0) {
            if (y > 0)
                return x <= max_value / y;
            else
                return y >= min_value / x;
        } else {
            if (y > 0)
                return x >= min_value / y;
            else
                return y >= max_value / x;
        }
    }
};

template<typename T>
struct is_mul_valid_impl<T, false, false>
{
    static T run(T x, T y)
    {
        const T max_value = integer_traits<T>::max_value();
        if (x == 0 || y == 0) return true;
        return x <= max_value / y;
    }
};

template<typename T> inline T is_mul_valid(T x, T y, T /*result not used*/)
{
    return is_mul_valid_impl<T>::run(x, y);
}

template<typename T> inline T is_div_valid(T x, T y)
{
    return integer_traits<T>::is_signed ?
                        // keep in mind that min/-1 is invalid because abs(min)>max
                        (y != 0) && (x != integer_traits<T>::min_value() || y != T(-1))
                    :
                        y != 0;
}

// this is just to shut up msvc warnings about negating unsigned ints.
template<typename T, bool is_signed = integer_traits<T>::is_signed>
struct opposite_if_signed_impl
{
    static T run(T x) { return -x; }
};
template<typename T>
struct opposite_if_signed_impl<T, false>
{
    static T run(T x) { return x; }
};
template<typename T>
inline T opposite_if_signed(T x) { return opposite_if_signed_impl<T>::run(x); }



} // end namespace CheckedInt_internal


/*** Step 4: Now define the CheckedInt class.
 ***/

/** \class CheckedInt
  * \brief Integer wrapper class checking for integer overflow and other errors
  * \param T the integer type to wrap. Can be any of PRInt8, PRUint8, PRInt16, PRUint16,
  *          PRInt32, PRUint32, PRInt64, PRUint64.
  *
  * This class implements guarded integer arithmetic. Do a computation, check that
  * valid() returns true, you then have a guarantee that no problem, such as integer overflow,
  * happened during this computation.
  *
  * The arithmetic operators in this class are guaranteed not to crash your app
  * in case of a division by zero.
  *
  * For example, suppose that you want to implement a function that computes (x+y)/z,
  * that doesn't crash if z==0, and that reports on error (divide by zero or integer overflow).
  * You could code it as follows:
    \code
    bool compute_x_plus_y_over_z(PRInt32 x, PRInt32 y, PRInt32 z, PRInt32 *result)
    {
        CheckedInt<PRInt32> checked_result = (CheckedInt<PRInt32>(x) + y) / z;
        *result = checked_result.value();
        return checked_result.valid();
    }
    \endcode
  *
  * Implicit conversion from plain integers to checked integers is allowed. The plain integer
  * is checked to be in range before being casted to the destination type. This means that the following
  * lines all compile, and the resulting CheckedInts are correctly detected as valid or invalid:
  * \code
    CheckedInt<PRUint8> x(1);   // 1 is of type int, is found to be in range for PRUint8, x is valid
    CheckedInt<PRUint8> x(-1);  // -1 is of type int, is found not to be in range for PRUint8, x is invalid
    CheckedInt<PRInt8> x(-1);   // -1 is of type int, is found to be in range for PRInt8, x is valid
    CheckedInt<PRInt8> x(PRInt16(1000)); // 1000 is of type PRInt16, is found not to be in range for PRInt8, x is invalid
    CheckedInt<PRInt32> x(PRUint32(3123456789)); // 3123456789 is of type PRUint32, is found not to be in range
                                             // for PRInt32, x is invalid
  * \endcode
  * Implicit conversion from
  * checked integers to plain integers is not allowed. As shown in the
  * above example, to get the value of a checked integer as a normal integer, call value().
  *
  * Arithmetic operations between checked and plain integers is allowed; the result type
  * is the type of the checked integer.
  *
  * Checked integers of different types cannot be used in the same arithmetic expression.
  *
  * There are convenience typedefs for all PR integer types, of the following form (these are just 2 examples):
    \code
    typedef CheckedInt<PRInt32> CheckedInt32;
    typedef CheckedInt<PRUint16> CheckedUint16;
    \endcode
  */
template<typename T>
class CheckedInt
{
protected:
    T mValue;
    T mIsValid; // stored as a T to limit the number of integer conversions when
                // evaluating nested arithmetic expressions.

    template<typename U>
    CheckedInt(U value, T isValid) : mValue(value), mIsValid(isValid)
    {
        CheckedInt_internal::integer_type_manually_recorded_info<T>
            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
    }

public:
    /** Constructs a checked integer with given \a value. The checked integer is initialized as valid or invalid
      * depending on whether the \a value is in range.
      *
      * This constructor is not explicit. Instead, the type of its argument is a separate template parameter,
      * ensuring that no conversion is performed before this constructor is actually called.
      * As explained in the above documentation for class CheckedInt, this constructor checks that its argument is
      * valid.
      */
    template<typename U>
    CheckedInt(U value)
        : mValue(T(value)),
          mIsValid(CheckedInt_internal::is_in_range<T>(value))
    {
        CheckedInt_internal::integer_type_manually_recorded_info<T>
            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
    }

    /** Constructs a valid checked integer with initial value 0 */
    CheckedInt() : mValue(0), mIsValid(1)
    {
        CheckedInt_internal::integer_type_manually_recorded_info<T>
            ::TYPE_NOT_SUPPORTED_BY_CheckedInt();
    }

    /** \returns the actual value */
    T value() const { return mValue; }

    /** \returns true if the checked integer is valid, i.e. is not the result
      * of an invalid operation or of an operation involving an invalid checked integer
      */
    bool valid() const
    {
        return bool(mIsValid);
    }

    /** \returns the sum. Checks for overflow. */
    template<typename U> friend CheckedInt<U> operator +(const CheckedInt<U>& lhs, const CheckedInt<U>& rhs);
    /** Adds. Checks for overflow. \returns self reference */
    template<typename U> CheckedInt& operator +=(U rhs);
    /** \returns the difference. Checks for overflow. */
    template<typename U> friend CheckedInt<U> operator -(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
    /** Substracts. Checks for overflow. \returns self reference */
    template<typename U> CheckedInt& operator -=(U rhs);
    /** \returns the product. Checks for overflow. */
    template<typename U> friend CheckedInt<U> operator *(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
    /** Multiplies. Checks for overflow. \returns self reference */
    template<typename U> CheckedInt& operator *=(U rhs);
    /** \returns the quotient. Checks for overflow and for divide-by-zero. */
    template<typename U> friend CheckedInt<U> operator /(const CheckedInt<U>& lhs, const CheckedInt<U> &rhs);
    /** Divides. Checks for overflow and for divide-by-zero. \returns self reference */
    template<typename U> CheckedInt& operator /=(U rhs);

    /** \returns the opposite value. Checks for overflow. */
    CheckedInt operator -() const
    {
        // circumvent msvc warning about - applied to unsigned int.
        // if we're unsigned, the only valid case anyway is 0 in which case - is a no-op.
        T result = CheckedInt_internal::opposite_if_signed(value());
        /* give the compiler a good chance to perform RVO */
        return CheckedInt(result,
                          mIsValid & CheckedInt_internal::is_sub_valid(T(0), value(), result));
    }

    /** \returns true if the left and right hand sides are valid and have the same value. */
    bool operator ==(const CheckedInt& other) const
    {
        return bool(mIsValid & other.mIsValid & (value() == other.mValue));
    }

    /** prefix ++ */
    CheckedInt& operator++()
    {
        *this = *this + 1;
        return *this;
    }

    /** postfix ++ */
    CheckedInt operator++(int)
    {
        CheckedInt tmp = *this;
        *this = *this + 1;
        return tmp;
    }

    /** prefix -- */
    CheckedInt& operator--()
    {
        *this = *this - 1;
        return *this;
    }

    /** postfix -- */
    CheckedInt operator--(int)
    {
        CheckedInt tmp = *this;
        *this = *this - 1;
        return tmp;
    }

private:
    /** operator!= is disabled. Indeed, (a!=b) should be the same as !(a==b) but that
      * would mean that if a or b is invalid, (a!=b) is always true, which is very tricky.
      */
    template<typename U>
    bool operator !=(U other) const { return !(*this == other); }
};

#define CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP)               \
template<typename T>                                          \
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs) \
{                                                                     \
    T x = lhs.mValue;                                                \
    T y = rhs.mValue;                                                \
    T result = x OP y;                                                \
    T is_op_valid                                                     \
        = CheckedInt_internal::is_##NAME##_valid(x, y, result);       \
    /* give the compiler a good chance to perform RVO */              \
    return CheckedInt<T>(result,                                      \
                         lhs.mIsValid & rhs.mIsValid & is_op_valid);  \
}

CHECKEDINT_BASIC_BINARY_OPERATOR(add, +)
CHECKEDINT_BASIC_BINARY_OPERATOR(sub, -)
CHECKEDINT_BASIC_BINARY_OPERATOR(mul, *)

// division can't be implemented by CHECKEDINT_BASIC_BINARY_OPERATOR
// because if rhs == 0, we are not allowed to even try to compute the quotient.
template<typename T>
inline CheckedInt<T> operator /(const CheckedInt<T> &lhs, const CheckedInt<T> &rhs)
{
    T x = lhs.mValue;
    T y = rhs.mValue;
    T is_op_valid = CheckedInt_internal::is_div_valid(x, y);
    T result = is_op_valid ? (x / y) : 0;
    /* give the compiler a good chance to perform RVO */
    return CheckedInt<T>(result,
                         lhs.mIsValid & rhs.mIsValid & is_op_valid);
}

// implement cast_to_CheckedInt<T>(x), making sure that
//  - it allows x to be either a CheckedInt<T> or any integer type that can be casted to T
//  - if x is already a CheckedInt<T>, we just return a reference to it, instead of copying it (optimization)

template<typename T, typename U>
struct cast_to_CheckedInt_impl
{
    typedef CheckedInt<T> return_type;
    static CheckedInt<T> run(U u) { return u; }
};

template<typename T>
struct cast_to_CheckedInt_impl<T, CheckedInt<T> >
{
    typedef const CheckedInt<T>& return_type;
    static const CheckedInt<T>& run(const CheckedInt<T>& u) { return u; }
};

template<typename T, typename U>
inline typename cast_to_CheckedInt_impl<T, U>::return_type
cast_to_CheckedInt(U u)
{
    return cast_to_CheckedInt_impl<T, U>::run(u);
}

#define CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
template<typename T>                                          \
template<typename U>                                          \
CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U rhs)    \
{                                                             \
    *this = *this OP cast_to_CheckedInt<T>(rhs);                 \
    return *this;                                             \
}                                                             \
template<typename T, typename U>                              \
inline CheckedInt<T> operator OP(const CheckedInt<T> &lhs, U rhs) \
{                                                             \
    return lhs OP cast_to_CheckedInt<T>(rhs);                    \
}                                                             \
template<typename T, typename U>                              \
inline CheckedInt<T> operator OP(U lhs, const CheckedInt<T> &rhs) \
{                                                             \
    return cast_to_CheckedInt<T>(lhs) OP rhs;                    \
}

CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)

template<typename T, typename U>
inline bool operator ==(const CheckedInt<T> &lhs, U rhs)
{
    return lhs == cast_to_CheckedInt<T>(rhs);
}

template<typename T, typename U>
inline bool operator ==(U  lhs, const CheckedInt<T> &rhs)
{
    return cast_to_CheckedInt<T>(lhs) == rhs;
}

// convenience typedefs.
// the use of a macro here helps make sure that we don't let a typo slip into some of these.
#define CHECKEDINT_MAKE_TYPEDEF(Type) \
typedef CheckedInt<PR##Type> Checked##Type;

CHECKEDINT_MAKE_TYPEDEF(Int8)
CHECKEDINT_MAKE_TYPEDEF(Uint8)
CHECKEDINT_MAKE_TYPEDEF(Int16)
CHECKEDINT_MAKE_TYPEDEF(Uint16)
CHECKEDINT_MAKE_TYPEDEF(Int32)
CHECKEDINT_MAKE_TYPEDEF(Uint32)
CHECKEDINT_MAKE_TYPEDEF(Int64)
CHECKEDINT_MAKE_TYPEDEF(Uint64)

} // end namespace mozilla

#endif /* mozilla_CheckedInt_h */