/usr/share/pyshared/numpy/polynomial/polyutils.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | """
Utililty objects for the polynomial modules.
This module provides: error and warning objects; a polynomial base class;
and some routines used in both the `polynomial` and `chebyshev` modules.
Error objects
-------------
- `PolyError` -- base class for this sub-package's errors.
- `PolyDomainError` -- raised when domains are "mismatched."
Warning objects
---------------
- `RankWarning` -- raised by a least-squares fit when a rank-deficient
matrix is encountered.
Base class
----------
- `PolyBase` -- The base class for the `Polynomial` and `Chebyshev`
classes.
Functions
---------
- `as_series` -- turns a list of array_likes into 1-D arrays of common
type.
- `trimseq` -- removes trailing zeros.
- `trimcoef` -- removes trailing coefficients that are less than a given
magnitude (thereby removing the corresponding terms).
- `getdomain` -- returns a domain appropriate for a given set of abscissae.
- `mapdomain` -- maps points between domains.
- `mapparms` -- parameters of the linear map between domains.
"""
from __future__ import division
__all__ = ['RankWarning', 'PolyError', 'PolyDomainError', 'PolyBase',
'as_series', 'trimseq', 'trimcoef', 'getdomain', 'mapdomain',
'mapparms']
import warnings
import numpy as np
import sys
#
# Warnings and Exceptions
#
class RankWarning(UserWarning) :
"""Issued by chebfit when the design matrix is rank deficient."""
pass
class PolyError(Exception) :
"""Base class for errors in this module."""
pass
class PolyDomainError(PolyError) :
"""Issued by the generic Poly class when two domains don't match.
This is raised when an binary operation is passed Poly objects with
different domains.
"""
pass
#
# Base class for all polynomial types
#
class PolyBase(object) :
pass
#
# We need the any function for python < 2.5
#
if sys.version_info[:2] < (2,5) :
def any(iterable) :
for element in iterable:
if element :
return True
return False
#
# Helper functions to convert inputs to 1d arrays
#
def trimseq(seq) :
"""Remove small Poly series coefficients.
Parameters
----------
seq : sequence
Sequence of Poly series coefficients. This routine fails for
empty sequences.
Returns
-------
series : sequence
Subsequence with trailing zeros removed. If the resulting sequence
would be empty, return the first element. The returned sequence may
or may not be a view.
Notes
-----
Do not lose the type info if the sequence contains unknown objects.
"""
if len(seq) == 0 :
return seq
else :
for i in range(len(seq) - 1, -1, -1) :
if seq[i] != 0 :
break
return seq[:i+1]
def as_series(alist, trim=True) :
"""
Return argument as a list of 1-d arrays.
The returned list contains array(s) of dtype double, complex double, or
object. A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
raises a Value Error if it is not first reshaped into either a 1-d or 2-d
array.
Parameters
----------
a : array_like
A 1- or 2-d array_like
trim : boolean, optional
When True, trailing zeros are removed from the inputs.
When False, the inputs are passed through intact.
Returns
-------
[a1, a2,...] : list of 1d-arrays
A copy of the input data as a list of 1-d arrays.
Raises
------
ValueError :
Raised when `as_series` cannot convert its input to 1-d arrays, or at
least one of the resulting arrays is empty.
Examples
--------
>>> from numpy import polynomial as P
>>> a = np.arange(4)
>>> P.as_series(a)
[array([ 0.]), array([ 1.]), array([ 2.]), array([ 3.])]
>>> b = np.arange(6).reshape((2,3))
>>> P.as_series(b)
[array([ 0., 1., 2.]), array([ 3., 4., 5.])]
"""
arrays = [np.array(a, ndmin=1, copy=0) for a in alist]
if min([a.size for a in arrays]) == 0 :
raise ValueError("Coefficient array is empty")
if any([a.ndim != 1 for a in arrays]) :
raise ValueError("Coefficient array is not 1-d")
if trim :
arrays = [trimseq(a) for a in arrays]
if any([a.dtype == np.dtype(object) for a in arrays]) :
ret = []
for a in arrays :
if a.dtype != np.dtype(object) :
tmp = np.empty(len(a), dtype=np.dtype(object))
tmp[:] = a[:]
ret.append(tmp)
else :
ret.append(a.copy())
else :
try :
dtype = np.common_type(*arrays)
except :
raise ValueError("Coefficient arrays have no common type")
ret = [np.array(a, copy=1, dtype=dtype) for a in arrays]
return ret
def trimcoef(c, tol=0) :
"""
Remove "small" "trailing" coefficients from a polynomial.
"Small" means "small in absolute value" and is controlled by the
parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
both the 3-rd and 4-th order coefficients would be "trimmed."
Parameters
----------
c : array_like
1-d array of coefficients, ordered from lowest order to highest.
tol : number, optional
Trailing (i.e., highest order) elements with absolute value less
than or equal to `tol` (default value is zero) are removed.
Returns
-------
trimmed : ndarray
1-d array with trailing zeros removed. If the resulting series
would be empty, a series containing a single zero is returned.
Raises
------
ValueError
If `tol` < 0
See Also
--------
trimseq
Examples
--------
>>> from numpy import polynomial as P
>>> P.trimcoef((0,0,3,0,5,0,0))
array([ 0., 0., 3., 0., 5.])
>>> P.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
array([ 0.])
>>> i = complex(0,1) # works for complex
>>> P.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
array([ 0.0003+0.j , 0.0010-0.001j])
"""
if tol < 0 :
raise ValueError("tol must be non-negative")
[c] = as_series([c])
[ind] = np.where(np.abs(c) > tol)
if len(ind) == 0 :
return c[:1]*0
else :
return c[:ind[-1] + 1].copy()
def getdomain(x) :
"""
Return a domain suitable for given abscissae.
Find a domain suitable for a polynomial or Chebyshev series
defined at the values supplied.
Parameters
----------
x : array_like
1-d array of abscissae whose domain will be determined.
Returns
-------
domain : ndarray
1-d array containing two values. If the inputs are complex, then
the two returned points are the lower left and upper right corners
of the smallest rectangle (aligned with the axes) in the complex
plane containing the points `x`. If the inputs are real, then the
two points are the ends of the smallest interval containing the
points `x`.
See Also
--------
mapparms, mapdomain
Examples
--------
>>> from numpy.polynomial import polyutils as pu
>>> points = np.arange(4)**2 - 5; points
array([-5, -4, -1, 4])
>>> pu.getdomain(points)
array([-5., 4.])
>>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
>>> pu.getdomain(c)
array([-1.-1.j, 1.+1.j])
"""
[x] = as_series([x], trim=False)
if x.dtype.char in np.typecodes['Complex'] :
rmin, rmax = x.real.min(), x.real.max()
imin, imax = x.imag.min(), x.imag.max()
return np.array((complex(rmin, imin), complex(rmax, imax)))
else :
return np.array((x.min(), x.max()))
def mapparms(old, new) :
"""
Linear map parameters between domains.
Return the parameters of the linear map ``offset + scale*x`` that maps
`old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.
Parameters
----------
old, new : array_like
Domains. Each domain must (successfully) convert to a 1-d array
containing precisely two values.
Returns
-------
offset, scale : scalars
The map ``L(x) = offset + scale*x`` maps the first domain to the
second.
See Also
--------
getdomain, mapdomain
Notes
-----
Also works for complex numbers, and thus can be used to calculate the
parameters required to map any line in the complex plane to any other
line therein.
Examples
--------
>>> from numpy import polynomial as P
>>> P.mapparms((-1,1),(-1,1))
(0.0, 1.0)
>>> P.mapparms((1,-1),(-1,1))
(0.0, -1.0)
>>> i = complex(0,1)
>>> P.mapparms((-i,-1),(1,i))
((1+1j), (1+0j))
"""
oldlen = old[1] - old[0]
newlen = new[1] - new[0]
off = (old[1]*new[0] - old[0]*new[1])/oldlen
scl = newlen/oldlen
return off, scl
def mapdomain(x, old, new) :
"""
Apply linear map to input points.
The linear map ``offset + scale*x`` that maps the domain `old` to
the domain `new` is applied to the points `x`.
Parameters
----------
x : array_like
Points to be mapped. If `x` is a subtype of ndarray the subtype
will be preserved.
old, new : array_like
The two domains that determine the map. Each must (successfully)
convert to 1-d arrays containing precisely two values.
Returns
-------
x_out : ndarray
Array of points of the same shape as `x`, after application of the
linear map between the two domains.
See Also
--------
getdomain, mapparms
Notes
-----
Effectively, this implements:
.. math ::
x\\_out = new[0] + m(x - old[0])
where
.. math ::
m = \\frac{new[1]-new[0]}{old[1]-old[0]}
Examples
--------
>>> from numpy import polynomial as P
>>> old_domain = (-1,1)
>>> new_domain = (0,2*np.pi)
>>> x = np.linspace(-1,1,6); x
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. ])
>>> x_out = P.mapdomain(x, old_domain, new_domain); x_out
array([ 0. , 1.25663706, 2.51327412, 3.76991118, 5.02654825,
6.28318531])
>>> x - P.mapdomain(x_out, new_domain, old_domain)
array([ 0., 0., 0., 0., 0., 0.])
Also works for complex numbers (and thus can be used to map any line in
the complex plane to any other line therein).
>>> i = complex(0,1)
>>> old = (-1 - i, 1 + i)
>>> new = (-1 + i, 1 - i)
>>> z = np.linspace(old[0], old[1], 6); z
array([-1.0-1.j , -0.6-0.6j, -0.2-0.2j, 0.2+0.2j, 0.6+0.6j, 1.0+1.j ])
>>> new_z = P.mapdomain(z, old, new); new_z
array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j, 0.2-0.2j, 0.6-0.6j, 1.0-1.j ])
"""
x = np.asanyarray(x)
off, scl = mapparms(old, new)
return off + scl*x
|