/usr/share/pyshared/numpy/polynomial/chebyshev.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 | """
Objects for dealing with Chebyshev series.
This module provides a number of objects (mostly functions) useful for
dealing with Chebyshev series, including a `Chebyshev` class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).
Constants
---------
- `chebdomain` -- Chebyshev series default domain, [-1,1].
- `chebzero` -- (Coefficients of the) Chebyshev series that evaluates
identically to 0.
- `chebone` -- (Coefficients of the) Chebyshev series that evaluates
identically to 1.
- `chebx` -- (Coefficients of the) Chebyshev series for the identity map,
``f(x) = x``.
Arithmetic
----------
- `chebadd` -- add two Chebyshev series.
- `chebsub` -- subtract one Chebyshev series from another.
- `chebmul` -- multiply two Chebyshev series.
- `chebdiv` -- divide one Chebyshev series by another.
- `chebpow` -- raise a Chebyshev series to an positive integer power
- `chebval` -- evaluate a Chebyshev series at given points.
Calculus
--------
- `chebder` -- differentiate a Chebyshev series.
- `chebint` -- integrate a Chebyshev series.
Misc Functions
--------------
- `chebfromroots` -- create a Chebyshev series with specified roots.
- `chebroots` -- find the roots of a Chebyshev series.
- `chebvander` -- Vandermonde-like matrix for Chebyshev polynomials.
- `chebfit` -- least-squares fit returning a Chebyshev series.
- `chebpts1` -- Chebyshev points of the first kind.
- `chebpts2` -- Chebyshev points of the second kind.
- `chebtrim` -- trim leading coefficients from a Chebyshev series.
- `chebline` -- Chebyshev series representing given straight line.
- `cheb2poly` -- convert a Chebyshev series to a polynomial.
- `poly2cheb` -- convert a polynomial to a Chebyshev series.
Classes
-------
- `Chebyshev` -- A Chebyshev series class.
See also
--------
`numpy.polynomial`
Notes
-----
The implementations of multiplication, division, integration, and
differentiation use the algebraic identities [1]_:
.. math ::
T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.
where
.. math :: x = \\frac{z + z^{-1}}{2}.
These identities allow a Chebyshev series to be expressed as a finite,
symmetric Laurent series. In this module, this sort of Laurent series
is referred to as a "z-series."
References
----------
.. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
(preprint: http://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)
"""
from __future__ import division
__all__ = ['chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline',
'chebadd', 'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow',
'chebval', 'chebder', 'chebint', 'cheb2poly', 'poly2cheb',
'chebfromroots', 'chebvander', 'chebfit', 'chebtrim', 'chebroots',
'chebpts1', 'chebpts2', 'Chebyshev']
import numpy as np
import numpy.linalg as la
import polyutils as pu
import warnings
from polytemplate import polytemplate
chebtrim = pu.trimcoef
#
# A collection of functions for manipulating z-series. These are private
# functions and do minimal error checking.
#
def _cseries_to_zseries(cs) :
"""Covert Chebyshev series to z-series.
Covert a Chebyshev series to the equivalent z-series. The result is
never an empty array. The dtype of the return is the same as that of
the input. No checks are run on the arguments as this routine is for
internal use.
Parameters
----------
cs : 1-d ndarray
Chebyshev coefficients, ordered from low to high
Returns
-------
zs : 1-d ndarray
Odd length symmetric z-series, ordered from low to high.
"""
n = cs.size
zs = np.zeros(2*n-1, dtype=cs.dtype)
zs[n-1:] = cs/2
return zs + zs[::-1]
def _zseries_to_cseries(zs) :
"""Covert z-series to a Chebyshev series.
Covert a z series to the equivalent Chebyshev series. The result is
never an empty array. The dtype of the return is the same as that of
the input. No checks are run on the arguments as this routine is for
internal use.
Parameters
----------
zs : 1-d ndarray
Odd length symmetric z-series, ordered from low to high.
Returns
-------
cs : 1-d ndarray
Chebyshev coefficients, ordered from low to high.
"""
n = (zs.size + 1)//2
cs = zs[n-1:].copy()
cs[1:n] *= 2
return cs
def _zseries_mul(z1, z2) :
"""Multiply two z-series.
Multiply two z-series to produce a z-series.
Parameters
----------
z1, z2 : 1-d ndarray
The arrays must be 1-d but this is not checked.
Returns
-------
product : 1-d ndarray
The product z-series.
Notes
-----
This is simply convolution. If symmetic/anti-symmetric z-series are
denoted by S/A then the following rules apply:
S*S, A*A -> S
S*A, A*S -> A
"""
return np.convolve(z1, z2)
def _zseries_div(z1, z2) :
"""Divide the first z-series by the second.
Divide `z1` by `z2` and return the quotient and remainder as z-series.
Warning: this implementation only applies when both z1 and z2 have the
same symmetry, which is sufficient for present purposes.
Parameters
----------
z1, z2 : 1-d ndarray
The arrays must be 1-d and have the same symmetry, but this is not
checked.
Returns
-------
(quotient, remainder) : 1-d ndarrays
Quotient and remainder as z-series.
Notes
-----
This is not the same as polynomial division on account of the desired form
of the remainder. If symmetic/anti-symmetric z-series are denoted by S/A
then the following rules apply:
S/S -> S,S
A/A -> S,A
The restriction to types of the same symmetry could be fixed but seems like
uneeded generality. There is no natural form for the remainder in the case
where there is no symmetry.
"""
z1 = z1.copy()
z2 = z2.copy()
len1 = len(z1)
len2 = len(z2)
if len2 == 1 :
z1 /= z2
return z1, z1[:1]*0
elif len1 < len2 :
return z1[:1]*0, z1
else :
dlen = len1 - len2
scl = z2[0]
z2 /= scl
quo = np.empty(dlen + 1, dtype=z1.dtype)
i = 0
j = dlen
while i < j :
r = z1[i]
quo[i] = z1[i]
quo[dlen - i] = r
tmp = r*z2
z1[i:i+len2] -= tmp
z1[j:j+len2] -= tmp
i += 1
j -= 1
r = z1[i]
quo[i] = r
tmp = r*z2
z1[i:i+len2] -= tmp
quo /= scl
rem = z1[i+1:i-1+len2].copy()
return quo, rem
def _zseries_der(zs) :
"""Differentiate a z-series.
The derivative is with respect to x, not z. This is achieved using the
chain rule and the value of dx/dz given in the module notes.
Parameters
----------
zs : z-series
The z-series to differentiate.
Returns
-------
derivative : z-series
The derivative
Notes
-----
The zseries for x (ns) has been multiplied by two in order to avoid
using floats that are incompatible with Decimal and likely other
specialized scalar types. This scaling has been compensated by
multiplying the value of zs by two also so that the two cancels in the
division.
"""
n = len(zs)//2
ns = np.array([-1, 0, 1], dtype=zs.dtype)
zs *= np.arange(-n, n+1)*2
d, r = _zseries_div(zs, ns)
return d
def _zseries_int(zs) :
"""Integrate a z-series.
The integral is with respect to x, not z. This is achieved by a change
of variable using dx/dz given in the module notes.
Parameters
----------
zs : z-series
The z-series to integrate
Returns
-------
integral : z-series
The indefinite integral
Notes
-----
The zseries for x (ns) has been multiplied by two in order to avoid
using floats that are incompatible with Decimal and likely other
specialized scalar types. This scaling has been compensated by
dividing the resulting zs by two.
"""
n = 1 + len(zs)//2
ns = np.array([-1, 0, 1], dtype=zs.dtype)
zs = _zseries_mul(zs, ns)
div = np.arange(-n, n+1)*2
zs[:n] /= div[:n]
zs[n+1:] /= div[n+1:]
zs[n] = 0
return zs
#
# Chebyshev series functions
#
def poly2cheb(pol) :
"""
Convert a polynomial to a Chebyshev series.
Convert an array representing the coefficients of a polynomial (relative
to the "standard" basis) ordered from lowest degree to highest, to an
array of the coefficients of the equivalent Chebyshev series, ordered
from lowest to highest degree.
Parameters
----------
pol : array_like
1-d array containing the polynomial coefficients
Returns
-------
cs : ndarray
1-d array containing the coefficients of the equivalent Chebyshev
series.
See Also
--------
cheb2poly
Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.
Examples
--------
>>> from numpy import polynomial as P
>>> p = P.Polynomial(range(4))
>>> p
Polynomial([ 0., 1., 2., 3.], [-1., 1.])
>>> c = p.convert(kind=P.Chebyshev)
>>> c
Chebyshev([ 1. , 3.25, 1. , 0.75], [-1., 1.])
>>> P.poly2cheb(range(4))
array([ 1. , 3.25, 1. , 0.75])
"""
[pol] = pu.as_series([pol])
deg = len(pol) - 1
res = 0
for i in range(deg, -1, -1) :
res = chebadd(chebmulx(res), pol[i])
return res
def cheb2poly(cs) :
"""
Convert a Chebyshev series to a polynomial.
Convert an array representing the coefficients of a Chebyshev series,
ordered from lowest degree to highest, to an array of the coefficients
of the equivalent polynomial (relative to the "standard" basis) ordered
from lowest to highest degree.
Parameters
----------
cs : array_like
1-d array containing the Chebyshev series coefficients, ordered
from lowest order term to highest.
Returns
-------
pol : ndarray
1-d array containing the coefficients of the equivalent polynomial
(relative to the "standard" basis) ordered from lowest order term
to highest.
See Also
--------
poly2cheb
Notes
-----
The easy way to do conversions between polynomial basis sets
is to use the convert method of a class instance.
Examples
--------
>>> from numpy import polynomial as P
>>> c = P.Chebyshev(range(4))
>>> c
Chebyshev([ 0., 1., 2., 3.], [-1., 1.])
>>> p = c.convert(kind=P.Polynomial)
>>> p
Polynomial([ -2., -8., 4., 12.], [-1., 1.])
>>> P.cheb2poly(range(4))
array([ -2., -8., 4., 12.])
"""
from polynomial import polyadd, polysub, polymulx
[cs] = pu.as_series([cs])
n = len(cs)
if n < 3:
return cs
else:
c0 = cs[-2]
c1 = cs[-1]
# i is the current degree of c1
for i in range(n - 1, 1, -1) :
tmp = c0
c0 = polysub(cs[i - 2], c1)
c1 = polyadd(tmp, polymulx(c1)*2)
return polyadd(c0, polymulx(c1))
#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#
# Chebyshev default domain.
chebdomain = np.array([-1,1])
# Chebyshev coefficients representing zero.
chebzero = np.array([0])
# Chebyshev coefficients representing one.
chebone = np.array([1])
# Chebyshev coefficients representing the identity x.
chebx = np.array([0,1])
def chebline(off, scl) :
"""
Chebyshev series whose graph is a straight line.
Parameters
----------
off, scl : scalars
The specified line is given by ``off + scl*x``.
Returns
-------
y : ndarray
This module's representation of the Chebyshev series for
``off + scl*x``.
See Also
--------
polyline
Examples
--------
>>> import numpy.polynomial.chebyshev as C
>>> C.chebline(3,2)
array([3, 2])
>>> C.chebval(-3, C.chebline(3,2)) # should be -3
-3.0
"""
if scl != 0 :
return np.array([off,scl])
else :
return np.array([off])
def chebfromroots(roots) :
"""
Generate a Chebyshev series with the given roots.
Return the array of coefficients for the C-series whose roots (a.k.a.
"zeros") are given by *roots*. The returned array of coefficients is
ordered from lowest order "term" to highest, and zeros of multiplicity
greater than one must be included in *roots* a number of times equal
to their multiplicity (e.g., if `2` is a root of multiplicity three,
then [2,2,2] must be in *roots*).
Parameters
----------
roots : array_like
Sequence containing the roots.
Returns
-------
out : ndarray
1-d array of the C-series' coefficients, ordered from low to
high. If all roots are real, ``out.dtype`` is a float type;
otherwise, ``out.dtype`` is a complex type, even if all the
coefficients in the result are real (see Examples below).
See Also
--------
polyfromroots
Notes
-----
What is returned are the :math:`c_i` such that:
.. math::
\\sum_{i=0}^{n} c_i*T_i(x) = \\prod_{i=0}^{n} (x - roots[i])
where ``n == len(roots)`` and :math:`T_i(x)` is the `i`-th Chebyshev
(basis) polynomial over the domain `[-1,1]`. Note that, unlike
`polyfromroots`, due to the nature of the C-series basis set, the
above identity *does not* imply :math:`c_n = 1` identically (see
Examples).
Examples
--------
>>> import numpy.polynomial.chebyshev as C
>>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
array([ 0. , -0.25, 0. , 0.25])
>>> j = complex(0,1)
>>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
array([ 1.5+0.j, 0.0+0.j, 0.5+0.j])
"""
if len(roots) == 0 :
return np.ones(1)
else :
[roots] = pu.as_series([roots], trim=False)
prd = np.array([1], dtype=roots.dtype)
for r in roots:
prd = chebsub(chebmulx(prd), r*prd)
return prd
def chebadd(c1, c2):
"""
Add one Chebyshev series to another.
Returns the sum of two Chebyshev series `c1` + `c2`. The arguments
are sequences of coefficients ordered from lowest order term to
highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Array representing the Chebyshev series of their sum.
See Also
--------
chebsub, chebmul, chebdiv, chebpow
Notes
-----
Unlike multiplication, division, etc., the sum of two Chebyshev series
is a Chebyshev series (without having to "reproject" the result onto
the basis set) so addition, just like that of "standard" polynomials,
is simply "component-wise."
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebadd(c1,c2)
array([ 4., 4., 4.])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if len(c1) > len(c2) :
c1[:c2.size] += c2
ret = c1
else :
c2[:c1.size] += c1
ret = c2
return pu.trimseq(ret)
def chebsub(c1, c2):
"""
Subtract one Chebyshev series from another.
Returns the difference of two Chebyshev series `c1` - `c2`. The
sequences of coefficients are from lowest order term to highest, i.e.,
[1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of Chebyshev series coefficients representing their difference.
See Also
--------
chebadd, chebmul, chebdiv, chebpow
Notes
-----
Unlike multiplication, division, etc., the difference of two Chebyshev
series is a Chebyshev series (without having to "reproject" the result
onto the basis set) so subtraction, just like that of "standard"
polynomials, is simply "component-wise."
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebsub(c1,c2)
array([-2., 0., 2.])
>>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
array([ 2., 0., -2.])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if len(c1) > len(c2) :
c1[:c2.size] -= c2
ret = c1
else :
c2 = -c2
c2[:c1.size] += c1
ret = c2
return pu.trimseq(ret)
def chebmulx(cs):
"""Multiply a Chebyshev series by x.
Multiply the polynomial `cs` by x, where x is the independent
variable.
Parameters
----------
cs : array_like
1-d array of Chebyshev series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Array representing the result of the multiplication.
Notes
-----
.. versionadded:: 1.5.0
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
# The zero series needs special treatment
if len(cs) == 1 and cs[0] == 0:
return cs
prd = np.empty(len(cs) + 1, dtype=cs.dtype)
prd[0] = cs[0]*0
prd[1] = cs[0]
if len(cs) > 1:
tmp = cs[1:]/2
prd[2:] = tmp
prd[0:-2] += tmp
return prd
def chebmul(c1, c2):
"""
Multiply one Chebyshev series by another.
Returns the product of two Chebyshev series `c1` * `c2`. The arguments
are sequences of coefficients, from lowest order "term" to highest,
e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of Chebyshev series coefficients representing their product.
See Also
--------
chebadd, chebsub, chebdiv, chebpow
Notes
-----
In general, the (polynomial) product of two C-series results in terms
that are not in the Chebyshev polynomial basis set. Thus, to express
the product as a C-series, it is typically necessary to "re-project"
the product onto said basis set, which typically produces
"un-intuitive" (but correct) results; see Examples section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebmul(c1,c2) # multiplication requires "reprojection"
array([ 6.5, 12. , 12. , 4. , 1.5])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
z1 = _cseries_to_zseries(c1)
z2 = _cseries_to_zseries(c2)
prd = _zseries_mul(z1, z2)
ret = _zseries_to_cseries(prd)
return pu.trimseq(ret)
def chebdiv(c1, c2):
"""
Divide one Chebyshev series by another.
Returns the quotient-with-remainder of two Chebyshev series
`c1` / `c2`. The arguments are sequences of coefficients from lowest
order "term" to highest, e.g., [1,2,3] represents the series
``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
c1, c2 : array_like
1-d arrays of Chebyshev series coefficients ordered from low to
high.
Returns
-------
[quo, rem] : ndarrays
Of Chebyshev series coefficients representing the quotient and
remainder.
See Also
--------
chebadd, chebsub, chebmul, chebpow
Notes
-----
In general, the (polynomial) division of one C-series by another
results in quotient and remainder terms that are not in the Chebyshev
polynomial basis set. Thus, to express these results as C-series, it
is typically necessary to "re-project" the results onto said basis
set, which typically produces "un-intuitive" (but correct) results;
see Examples section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
(array([ 3.]), array([-8., -4.]))
>>> c2 = (0,1,2,3)
>>> C.chebdiv(c2,c1) # neither "intuitive"
(array([ 0., 2.]), array([-2., -4.]))
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if c2[-1] == 0 :
raise ZeroDivisionError()
lc1 = len(c1)
lc2 = len(c2)
if lc1 < lc2 :
return c1[:1]*0, c1
elif lc2 == 1 :
return c1/c2[-1], c1[:1]*0
else :
z1 = _cseries_to_zseries(c1)
z2 = _cseries_to_zseries(c2)
quo, rem = _zseries_div(z1, z2)
quo = pu.trimseq(_zseries_to_cseries(quo))
rem = pu.trimseq(_zseries_to_cseries(rem))
return quo, rem
def chebpow(cs, pow, maxpower=16) :
"""Raise a Chebyshev series to a power.
Returns the Chebyshev series `cs` raised to the power `pow`. The
arguement `cs` is a sequence of coefficients ordered from low to high.
i.e., [1,2,3] is the series ``T_0 + 2*T_1 + 3*T_2.``
Parameters
----------
cs : array_like
1d array of chebyshev series coefficients ordered from low to
high.
pow : integer
Power to which the series will be raised
maxpower : integer, optional
Maximum power allowed. This is mainly to limit growth of the series
to umanageable size. Default is 16
Returns
-------
coef : ndarray
Chebyshev series of power.
See Also
--------
chebadd, chebsub, chebmul, chebdiv
Examples
--------
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
power = int(pow)
if power != pow or power < 0 :
raise ValueError("Power must be a non-negative integer.")
elif maxpower is not None and power > maxpower :
raise ValueError("Power is too large")
elif power == 0 :
return np.array([1], dtype=cs.dtype)
elif power == 1 :
return cs
else :
# This can be made more efficient by using powers of two
# in the usual way.
zs = _cseries_to_zseries(cs)
prd = zs
for i in range(2, power + 1) :
prd = np.convolve(prd, zs)
return _zseries_to_cseries(prd)
def chebder(cs, m=1, scl=1) :
"""
Differentiate a Chebyshev series.
Returns the series `cs` differentiated `m` times. At each iteration the
result is multiplied by `scl` (the scaling factor is for use in a linear
change of variable). The argument `cs` is the sequence of coefficients
from lowest order "term" to highest, e.g., [1,2,3] represents the series
``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
cs: array_like
1-d array of Chebyshev series coefficients ordered from low to high.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
Each differentiation is multiplied by `scl`. The end result is
multiplication by ``scl**m``. This is for use in a linear change of
variable. (Default: 1)
Returns
-------
der : ndarray
Chebyshev series of the derivative.
See Also
--------
chebint
Notes
-----
In general, the result of differentiating a C-series needs to be
"re-projected" onto the C-series basis set. Thus, typically, the
result of this function is "un-intuitive," albeit correct; see Examples
section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> cs = (1,2,3,4)
>>> C.chebder(cs)
array([ 14., 12., 24.])
>>> C.chebder(cs,3)
array([ 96.])
>>> C.chebder(cs,scl=-1)
array([-14., -12., -24.])
>>> C.chebder(cs,2,-1)
array([ 12., 96.])
"""
cnt = int(m)
if cnt != m:
raise ValueError, "The order of derivation must be integer"
if cnt < 0 :
raise ValueError, "The order of derivation must be non-negative"
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if cnt == 0:
return cs
elif cnt >= len(cs):
return cs[:1]*0
else :
zs = _cseries_to_zseries(cs)
for i in range(cnt):
zs = _zseries_der(zs)*scl
return _zseries_to_cseries(zs)
def chebint(cs, m=1, k=[], lbnd=0, scl=1):
"""
Integrate a Chebyshev series.
Returns, as a C-series, the input C-series `cs`, integrated `m` times
from `lbnd` to `x`. At each iteration the resulting series is
**multiplied** by `scl` and an integration constant, `k`, is added.
The scaling factor is for use in a linear change of variable. ("Buyer
beware": note that, depending on what one is doing, one may want `scl`
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument `cs` is a sequence of
coefficients, from lowest order C-series "term" to highest, e.g.,
[1,2,3] represents the series :math:`T_0(x) + 2T_1(x) + 3T_2(x)`.
Parameters
----------
cs : array_like
1-d array of C-series coefficients, ordered from low to high.
m : int, optional
Order of integration, must be positive. (Default: 1)
k : {[], list, scalar}, optional
Integration constant(s). The value of the first integral at zero
is the first value in the list, the value of the second integral
at zero is the second value, etc. If ``k == []`` (the default),
all constants are set to zero. If ``m == 1``, a single scalar can
be given instead of a list.
lbnd : scalar, optional
The lower bound of the integral. (Default: 0)
scl : scalar, optional
Following each integration the result is *multiplied* by `scl`
before the integration constant is added. (Default: 1)
Returns
-------
S : ndarray
C-series coefficients of the integral.
Raises
------
ValueError
If ``m < 1``, ``len(k) > m``, ``np.isscalar(lbnd) == False``, or
``np.isscalar(scl) == False``.
See Also
--------
chebder
Notes
-----
Note that the result of each integration is *multiplied* by `scl`.
Why is this important to note? Say one is making a linear change of
variable :math:`u = ax + b` in an integral relative to `x`. Then
:math:`dx = du/a`, so one will need to set `scl` equal to :math:`1/a`
- perhaps not what one would have first thought.
Also note that, in general, the result of integrating a C-series needs
to be "re-projected" onto the C-series basis set. Thus, typically,
the result of this function is "un-intuitive," albeit correct; see
Examples section below.
Examples
--------
>>> from numpy.polynomial import chebyshev as C
>>> cs = (1,2,3)
>>> C.chebint(cs)
array([ 0.5, -0.5, 0.5, 0.5])
>>> C.chebint(cs,3)
array([ 0.03125 , -0.1875 , 0.04166667, -0.05208333, 0.01041667,
0.00625 ])
>>> C.chebint(cs, k=3)
array([ 3.5, -0.5, 0.5, 0.5])
>>> C.chebint(cs,lbnd=-2)
array([ 8.5, -0.5, 0.5, 0.5])
>>> C.chebint(cs,scl=-2)
array([-1., 1., -1., -1.])
"""
cnt = int(m)
if not np.iterable(k):
k = [k]
if cnt != m:
raise ValueError, "The order of integration must be integer"
if cnt < 0 :
raise ValueError, "The order of integration must be non-negative"
if len(k) > cnt :
raise ValueError, "Too many integration constants"
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if cnt == 0:
return cs
k = list(k) + [0]*(cnt - len(k))
for i in range(cnt) :
n = len(cs)
cs *= scl
if n == 1 and cs[0] == 0:
cs[0] += k[i]
else:
zs = _cseries_to_zseries(cs)
zs = _zseries_int(zs)
cs = _zseries_to_cseries(zs)
cs[0] += k[i] - chebval(lbnd, cs)
return cs
def chebval(x, cs):
"""Evaluate a Chebyshev series.
If `cs` is of length `n`, this function returns :
``p(x) = cs[0]*T_0(x) + cs[1]*T_1(x) + ... + cs[n-1]*T_{n-1}(x)``
If x is a sequence or array then p(x) will have the same shape as x.
If r is a ring_like object that supports multiplication and addition
by the values in `cs`, then an object of the same type is returned.
Parameters
----------
x : array_like, ring_like
Array of numbers or objects that support multiplication and
addition with themselves and with the elements of `cs`.
cs : array_like
1-d array of Chebyshev coefficients ordered from low to high.
Returns
-------
values : ndarray, ring_like
If the return is an ndarray then it has the same shape as `x`.
See Also
--------
chebfit
Examples
--------
Notes
-----
The evaluation uses Clenshaw recursion, aka synthetic division.
Examples
--------
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if isinstance(x, tuple) or isinstance(x, list) :
x = np.asarray(x)
if len(cs) == 1 :
c0 = cs[0]
c1 = 0
elif len(cs) == 2 :
c0 = cs[0]
c1 = cs[1]
else :
x2 = 2*x
c0 = cs[-2]
c1 = cs[-1]
for i in range(3, len(cs) + 1) :
tmp = c0
c0 = cs[-i] - c1
c1 = tmp + c1*x2
return c0 + c1*x
def chebvander(x, deg) :
"""Vandermonde matrix of given degree.
Returns the Vandermonde matrix of degree `deg` and sample points `x`.
This isn't a true Vandermonde matrix because `x` can be an arbitrary
ndarray and the Chebyshev polynomials aren't powers. If ``V`` is the
returned matrix and `x` is a 2d array, then the elements of ``V`` are
``V[i,j,k] = T_k(x[i,j])``, where ``T_k`` is the Chebyshev polynomial
of degree ``k``.
Parameters
----------
x : array_like
Array of points. The values are converted to double or complex
doubles. If x is scalar it is converted to a 1D array.
deg : integer
Degree of the resulting matrix.
Returns
-------
vander : Vandermonde matrix.
The shape of the returned matrix is ``x.shape + (deg+1,)``. The last
index is the degree.
"""
ideg = int(deg)
if ideg != deg:
raise ValueError("deg must be integer")
if ideg < 0:
raise ValueError("deg must be non-negative")
x = np.array(x, copy=0, ndmin=1) + 0.0
v = np.empty((ideg + 1,) + x.shape, dtype=x.dtype)
# Use forward recursion to generate the entries.
v[0] = x*0 + 1
if ideg > 0 :
x2 = 2*x
v[1] = x
for i in range(2, ideg + 1) :
v[i] = v[i-1]*x2 - v[i-2]
return np.rollaxis(v, 0, v.ndim)
def chebfit(x, y, deg, rcond=None, full=False, w=None):
"""
Least squares fit of Chebyshev series to data.
Fit a Chebyshev series ``p(x) = p[0] * T_{0}(x) + ... + p[deg] *
T_{deg}(x)`` of degree `deg` to points `(x, y)`. Returns a vector of
coefficients `p` that minimises the squared error.
Parameters
----------
x : array_like, shape (M,)
x-coordinates of the M sample points ``(x[i], y[i])``.
y : array_like, shape (M,) or (M, K)
y-coordinates of the sample points. Several data sets of sample
points sharing the same x-coordinates can be fitted at once by
passing in a 2D-array that contains one dataset per column.
deg : int
Degree of the fitting polynomial
rcond : float, optional
Relative condition number of the fit. Singular values smaller than
this relative to the largest singular value will be ignored. The
default value is len(x)*eps, where eps is the relative precision of
the float type, about 2e-16 in most cases.
full : bool, optional
Switch determining nature of return value. When it is False (the
default) just the coefficients are returned, when True diagnostic
information from the singular value decomposition is also returned.
w : array_like, shape (`M`,), optional
Weights. If not None, the contribution of each point
``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
weights are chosen so that the errors of the products ``w[i]*y[i]``
all have the same variance. The default value is None.
.. versionadded:: 1.5.0
Returns
-------
coef : ndarray, shape (M,) or (M, K)
Chebyshev coefficients ordered from low to high. If `y` was 2-D,
the coefficients for the data in column k of `y` are in column
`k`.
[residuals, rank, singular_values, rcond] : present when `full` = True
Residuals of the least-squares fit, the effective rank of the
scaled Vandermonde matrix and its singular values, and the
specified value of `rcond`. For more details, see `linalg.lstsq`.
Warns
-----
RankWarning
The rank of the coefficient matrix in the least-squares fit is
deficient. The warning is only raised if `full` = False. The
warnings can be turned off by
>>> import warnings
>>> warnings.simplefilter('ignore', RankWarning)
See Also
--------
chebval : Evaluates a Chebyshev series.
chebvander : Vandermonde matrix of Chebyshev series.
polyfit : least squares fit using polynomials.
linalg.lstsq : Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline : Computes spline fits.
Notes
-----
The solution are the coefficients ``c[i]`` of the Chebyshev series
``T(x)`` that minimizes the squared error
``E = \\sum_j |y_j - T(x_j)|^2``.
This problem is solved by setting up as the overdetermined matrix
equation
``V(x)*c = y``,
where ``V`` is the Vandermonde matrix of `x`, the elements of ``c`` are
the coefficients to be solved for, and the elements of `y` are the
observed values. This equation is then solved using the singular value
decomposition of ``V``.
If some of the singular values of ``V`` are so small that they are
neglected, then a `RankWarning` will be issued. This means that the
coeficient values may be poorly determined. Using a lower order fit
will usually get rid of the warning. The `rcond` parameter can also be
set to a value smaller than its default, but the resulting fit may be
spurious and have large contributions from roundoff error.
Fits using Chebyshev series are usually better conditioned than fits
using power series, but much can depend on the distribution of the
sample points and the smoothness of the data. If the quality of the fit
is inadequate splines may be a good alternative.
References
----------
.. [1] Wikipedia, "Curve fitting",
http://en.wikipedia.org/wiki/Curve_fitting
Examples
--------
"""
order = int(deg) + 1
x = np.asarray(x) + 0.0
y = np.asarray(y) + 0.0
# check arguments.
if deg < 0 :
raise ValueError, "expected deg >= 0"
if x.ndim != 1:
raise TypeError, "expected 1D vector for x"
if x.size == 0:
raise TypeError, "expected non-empty vector for x"
if y.ndim < 1 or y.ndim > 2 :
raise TypeError, "expected 1D or 2D array for y"
if len(x) != len(y):
raise TypeError, "expected x and y to have same length"
# set up the least squares matrices
lhs = chebvander(x, deg)
rhs = y
if w is not None:
w = np.asarray(w) + 0.0
if w.ndim != 1:
raise TypeError, "expected 1D vector for w"
if len(x) != len(w):
raise TypeError, "expected x and w to have same length"
# apply weights
if rhs.ndim == 2:
lhs *= w[:, np.newaxis]
rhs *= w[:, np.newaxis]
else:
lhs *= w[:, np.newaxis]
rhs *= w
# set rcond
if rcond is None :
rcond = len(x)*np.finfo(x.dtype).eps
# scale the design matrix and solve the least squares equation
scl = np.sqrt((lhs*lhs).sum(0))
c, resids, rank, s = la.lstsq(lhs/scl, rhs, rcond)
c = (c.T/scl).T
# warn on rank reduction
if rank != order and not full:
msg = "The fit may be poorly conditioned"
warnings.warn(msg, pu.RankWarning)
if full :
return c, [resids, rank, s, rcond]
else :
return c
def chebroots(cs):
"""
Compute the roots of a Chebyshev series.
Return the roots (a.k.a "zeros") of the C-series represented by `cs`,
which is the sequence of the C-series' coefficients from lowest order
"term" to highest, e.g., [1,2,3] represents the C-series
``T_0 + 2*T_1 + 3*T_2``.
Parameters
----------
cs : array_like
1-d array of C-series coefficients ordered from low to high.
Returns
-------
out : ndarray
Array of the roots. If all the roots are real, then so is the
dtype of ``out``; otherwise, ``out``'s dtype is complex.
See Also
--------
polyroots
Notes
-----
Algorithm(s) used:
Remember: because the C-series basis set is different from the
"standard" basis set, the results of this function *may* not be what
one is expecting.
Examples
--------
>>> import numpy.polynomial as P
>>> import numpy.polynomial.chebyshev as C
>>> P.polyroots((-1,1,-1,1)) # x^3 - x^2 + x - 1 has two complex roots
array([ -4.99600361e-16-1.j, -4.99600361e-16+1.j, 1.00000e+00+0.j])
>>> C.chebroots((-1,1,-1,1)) # T3 - T2 + T1 - T0 has only real roots
array([ -5.00000000e-01, 2.60860684e-17, 1.00000000e+00])
"""
# cs is a trimmed copy
[cs] = pu.as_series([cs])
if len(cs) <= 1 :
return np.array([], dtype=cs.dtype)
if len(cs) == 2 :
return np.array([-cs[0]/cs[1]])
n = len(cs) - 1
cs /= cs[-1]
cmat = np.zeros((n,n), dtype=cs.dtype)
cmat[1, 0] = 1
for i in range(1, n):
cmat[i - 1, i] = .5
if i != n - 1:
cmat[i + 1, i] = .5
else:
cmat[:, i] -= cs[:-1]*.5
roots = la.eigvals(cmat)
roots.sort()
return roots
def chebpts1(npts):
"""Chebyshev points of the first kind.
Chebyshev points of the first kind are the set ``{cos(x_k)}``,
where ``x_k = pi*(k + .5)/npts`` for k in ``range(npts}``.
Parameters
----------
npts : int
Number of sample points desired.
Returns
-------
pts : ndarray
The Chebyshev points of the second kind.
Notes
-----
.. versionadded:: 1.5.0
"""
_npts = int(npts)
if _npts != npts:
raise ValueError("npts must be integer")
if _npts < 1:
raise ValueError("npts must be >= 1")
x = np.linspace(-np.pi, 0, _npts, endpoint=False) + np.pi/(2*_npts)
return np.cos(x)
def chebpts2(npts):
"""Chebyshev points of the second kind.
Chebyshev points of the second kind are the set ``{cos(x_k)}``,
where ``x_k = pi*/(npts - 1)`` for k in ``range(npts}``.
Parameters
----------
npts : int
Number of sample points desired.
Returns
-------
pts : ndarray
The Chebyshev points of the second kind.
Notes
-----
.. versionadded:: 1.5.0
"""
_npts = int(npts)
if _npts != npts:
raise ValueError("npts must be integer")
if _npts < 2:
raise ValueError("npts must be >= 2")
x = np.linspace(-np.pi, 0, _npts)
return np.cos(x)
#
# Chebyshev series class
#
exec polytemplate.substitute(name='Chebyshev', nick='cheb', domain='[-1,1]')
|