This file is indexed.

/usr/share/pyshared/numpy/oldnumeric/ma.py is in python-numpy 1:1.6.1-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
"""MA: a facility for dealing with missing observations
MA is generally used as a numpy.array look-alike.
by Paul F. Dubois.

Copyright 1999, 2000, 2001 Regents of the University of California.
Released for unlimited redistribution.
Adapted for numpy_core 2005 by Travis Oliphant and
(mainly) Paul Dubois.

"""
import types, sys

import numpy.core.umath as umath
import numpy.core.fromnumeric as fromnumeric
from numpy.core.numeric import newaxis, ndarray, inf
from numpy.core.fromnumeric import amax, amin
from numpy.core.numerictypes import bool_, typecodes
import numpy.core.numeric as numeric
import warnings

if sys.version_info[0] >= 3:
    from functools import reduce

# Ufunc domain lookup for __array_wrap__
ufunc_domain = {}
# Ufunc fills lookup for __array__
ufunc_fills = {}

MaskType = bool_
nomask = MaskType(0)
divide_tolerance = 1.e-35

class MAError (Exception):
    def __init__ (self, args=None):
        "Create an exception"

        # The .args attribute must be a tuple.
        if not isinstance(args, tuple):
            args = (args,)
        self.args = args
    def __str__(self):
        "Calculate the string representation"
        return str(self.args[0])
    __repr__ = __str__

class _MaskedPrintOption:
    "One instance of this class, masked_print_option, is created."
    def __init__ (self, display):
        "Create the masked print option object."
        self.set_display(display)
        self._enabled = 1

    def display (self):
        "Show what prints for masked values."
        return self._display

    def set_display (self, s):
        "set_display(s) sets what prints for masked values."
        self._display = s

    def enabled (self):
        "Is the use of the display value enabled?"
        return self._enabled

    def enable(self, flag=1):
        "Set the enabling flag to flag."
        self._enabled = flag

    def __str__ (self):
        return str(self._display)

    __repr__ = __str__

#if you single index into a masked location you get this object.
masked_print_option = _MaskedPrintOption('--')

# Use single element arrays or scalars.
default_real_fill_value = 1.e20
default_complex_fill_value = 1.e20 + 0.0j
default_character_fill_value = '-'
default_integer_fill_value = 999999
default_object_fill_value = '?'

def default_fill_value (obj):
    "Function to calculate default fill value for an object."
    if isinstance(obj, types.FloatType):
        return default_real_fill_value
    elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType):
        return default_integer_fill_value
    elif isinstance(obj, types.StringType):
        return default_character_fill_value
    elif isinstance(obj, types.ComplexType):
        return default_complex_fill_value
    elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
        x = obj.dtype.char
        if x in typecodes['Float']:
            return default_real_fill_value
        if x in typecodes['Integer']:
            return default_integer_fill_value
        if x in typecodes['Complex']:
            return default_complex_fill_value
        if x in typecodes['Character']:
            return default_character_fill_value
        if x in typecodes['UnsignedInteger']:
            return umath.absolute(default_integer_fill_value)
        return default_object_fill_value
    else:
        return default_object_fill_value

def minimum_fill_value (obj):
    "Function to calculate default fill value suitable for taking minima."
    if isinstance(obj, types.FloatType):
        return numeric.inf
    elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType):
        return sys.maxint
    elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
        x = obj.dtype.char
        if x in typecodes['Float']:
            return numeric.inf
        if x in typecodes['Integer']:
            return sys.maxint
        if x in typecodes['UnsignedInteger']:
            return sys.maxint
    else:
        raise TypeError, 'Unsuitable type for calculating minimum.'

def maximum_fill_value (obj):
    "Function to calculate default fill value suitable for taking maxima."
    if isinstance(obj, types.FloatType):
        return -inf
    elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType):
        return -sys.maxint
    elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
        x = obj.dtype.char
        if x in typecodes['Float']:
            return -inf
        if x in typecodes['Integer']:
            return -sys.maxint
        if x in typecodes['UnsignedInteger']:
            return 0
    else:
        raise TypeError, 'Unsuitable type for calculating maximum.'

def set_fill_value (a, fill_value):
    "Set fill value of a if it is a masked array."
    if isMaskedArray(a):
        a.set_fill_value (fill_value)

def getmask (a):
    """Mask of values in a; could be nomask.
       Returns nomask if a is not a masked array.
       To get an array for sure use getmaskarray."""
    if isinstance(a, MaskedArray):
        return a.raw_mask()
    else:
        return nomask

def getmaskarray (a):
    """Mask of values in a; an array of zeros if mask is nomask
     or not a masked array, and is a byte-sized integer.
     Do not try to add up entries, for example.
    """
    m = getmask(a)
    if m is nomask:
        return make_mask_none(shape(a))
    else:
        return m

def is_mask (m):
    """Is m a legal mask? Does not check contents, only type.
    """
    try:
        return m.dtype.type is MaskType
    except AttributeError:
        return False

def make_mask (m, copy=0, flag=0):
    """make_mask(m, copy=0, flag=0)
       return m as a mask, creating a copy if necessary or requested.
       Can accept any sequence of integers or nomask. Does not check
       that contents must be 0s and 1s.
       if flag, return nomask if m contains no true elements.
    """
    if m is nomask:
        return nomask
    elif isinstance(m, ndarray):
        if m.dtype.type is MaskType:
            if copy:
                result = numeric.array(m, dtype=MaskType, copy=copy)
            else:
                result = m
        else:
            result = m.astype(MaskType)
    else:
        result = filled(m, True).astype(MaskType)

    if flag and not fromnumeric.sometrue(fromnumeric.ravel(result)):
        return nomask
    else:
        return result

def make_mask_none (s):
    "Return a mask of all zeros of shape s."
    result = numeric.zeros(s, dtype=MaskType)
    result.shape = s
    return result

def mask_or (m1, m2):
    """Logical or of the mask candidates m1 and m2, treating nomask as false.
       Result may equal m1 or m2 if the other is nomask.
     """
    if m1 is nomask: return make_mask(m2)
    if m2 is nomask: return make_mask(m1)
    if m1 is m2 and is_mask(m1): return m1
    return make_mask(umath.logical_or(m1, m2))

def filled (a, value = None):
    """a as a contiguous numeric array with any masked areas replaced by value
    if value is None or the special element "masked", get_fill_value(a)
    is used instead.

    If a is already a contiguous numeric array, a itself is returned.

    filled(a) can be used to be sure that the result is numeric when
    passing an object a to other software ignorant of MA, in particular to
    numeric itself.
    """
    if isinstance(a, MaskedArray):
        return a.filled(value)
    elif isinstance(a, ndarray) and a.flags['CONTIGUOUS']:
        return a
    elif isinstance(a, types.DictType):
        return numeric.array(a, 'O')
    else:
        return numeric.array(a)

def get_fill_value (a):
    """
    The fill value of a, if it has one; otherwise, the default fill value
    for that type.
    """
    if isMaskedArray(a):
        result = a.fill_value()
    else:
        result = default_fill_value(a)
    return result

def common_fill_value (a, b):
    "The common fill_value of a and b, if there is one, or None"
    t1 = get_fill_value(a)
    t2 = get_fill_value(b)
    if t1 == t2: return t1
    return None

# Domain functions return 1 where the argument(s) are not in the domain.
class domain_check_interval:
    "domain_check_interval(a,b)(x) = true where x < a or y > b"
    def __init__(self, y1, y2):
        "domain_check_interval(a,b)(x) = true where x < a or y > b"
        self.y1 = y1
        self.y2 = y2

    def __call__ (self, x):
        "Execute the call behavior."
        return umath.logical_or(umath.greater (x, self.y2),
                                   umath.less(x, self.y1)
                                  )

class domain_tan:
    "domain_tan(eps) = true where abs(cos(x)) < eps)"
    def __init__(self, eps):
        "domain_tan(eps) = true where abs(cos(x)) < eps)"
        self.eps = eps

    def __call__ (self, x):
        "Execute the call behavior."
        return umath.less(umath.absolute(umath.cos(x)), self.eps)

class domain_greater:
    "domain_greater(v)(x) = true where x <= v"
    def __init__(self, critical_value):
        "domain_greater(v)(x) = true where x <= v"
        self.critical_value = critical_value

    def __call__ (self, x):
        "Execute the call behavior."
        return umath.less_equal (x, self.critical_value)

class domain_greater_equal:
    "domain_greater_equal(v)(x) = true where x < v"
    def __init__(self, critical_value):
        "domain_greater_equal(v)(x) = true where x < v"
        self.critical_value = critical_value

    def __call__ (self, x):
        "Execute the call behavior."
        return umath.less (x, self.critical_value)

class masked_unary_operation:
    def __init__ (self, aufunc, fill=0, domain=None):
        """ masked_unary_operation(aufunc, fill=0, domain=None)
            aufunc(fill) must be defined
            self(x) returns aufunc(x)
            with masked values where domain(x) is true or getmask(x) is true.
        """
        self.f = aufunc
        self.fill = fill
        self.domain = domain
        self.__doc__ = getattr(aufunc, "__doc__", str(aufunc))
        self.__name__ = getattr(aufunc, "__name__", str(aufunc))
        ufunc_domain[aufunc] = domain
        ufunc_fills[aufunc] = fill,

    def __call__ (self, a, *args, **kwargs):
        "Execute the call behavior."
# numeric tries to return scalars rather than arrays when given scalars.
        m = getmask(a)
        d1 = filled(a, self.fill)
        if self.domain is not None:
            m = mask_or(m, self.domain(d1))
        result = self.f(d1, *args, **kwargs)
        return masked_array(result, m)

    def __str__ (self):
        return "Masked version of " + str(self.f)


class domain_safe_divide:
    def __init__ (self, tolerance=divide_tolerance):
        self.tolerance = tolerance
    def __call__ (self, a, b):
        return umath.absolute(a) * self.tolerance >= umath.absolute(b)

class domained_binary_operation:
    """Binary operations that have a domain, like divide. These are complicated
       so they are a separate class. They have no reduce, outer or accumulate.
    """
    def __init__ (self, abfunc, domain, fillx=0, filly=0):
        """abfunc(fillx, filly) must be defined.
           abfunc(x, filly) = x for all x to enable reduce.
        """
        self.f = abfunc
        self.domain = domain
        self.fillx = fillx
        self.filly = filly
        self.__doc__ = getattr(abfunc, "__doc__", str(abfunc))
        self.__name__ = getattr(abfunc, "__name__", str(abfunc))
        ufunc_domain[abfunc] = domain
        ufunc_fills[abfunc] = fillx, filly

    def __call__(self, a, b):
        "Execute the call behavior."
        ma = getmask(a)
        mb = getmask(b)
        d1 = filled(a, self.fillx)
        d2 = filled(b, self.filly)
        t = self.domain(d1, d2)

        if fromnumeric.sometrue(t, None):
            d2 = where(t, self.filly, d2)
            mb = mask_or(mb, t)
        m = mask_or(ma, mb)
        result =  self.f(d1, d2)
        return masked_array(result, m)

    def __str__ (self):
        return "Masked version of " + str(self.f)

class masked_binary_operation:
    def __init__ (self, abfunc, fillx=0, filly=0):
        """abfunc(fillx, filly) must be defined.
           abfunc(x, filly) = x for all x to enable reduce.
        """
        self.f = abfunc
        self.fillx = fillx
        self.filly = filly
        self.__doc__ = getattr(abfunc, "__doc__", str(abfunc))
        ufunc_domain[abfunc] = None
        ufunc_fills[abfunc] = fillx, filly

    def __call__ (self, a, b, *args, **kwargs):
        "Execute the call behavior."
        m = mask_or(getmask(a), getmask(b))
        d1 = filled(a, self.fillx)
        d2 = filled(b, self.filly)
        result = self.f(d1, d2, *args, **kwargs)
        if isinstance(result, ndarray) \
               and m.ndim != 0 \
               and m.shape != result.shape:
            m = mask_or(getmaskarray(a), getmaskarray(b))
        return masked_array(result, m)

    def reduce (self, target, axis=0, dtype=None):
        """Reduce target along the given axis with this function."""
        m = getmask(target)
        t = filled(target, self.filly)
        if t.shape == ():
            t = t.reshape(1)
            if m is not nomask:
                m = make_mask(m, copy=1)
                m.shape = (1,)
        if m is nomask:
            t = self.f.reduce(t, axis)
        else:
            t = masked_array (t, m)
            # XXX: "or t.dtype" below is a workaround for what appears
            # XXX: to be a bug in reduce.
            t = self.f.reduce(filled(t, self.filly), axis,
                              dtype=dtype or t.dtype)
            m = umath.logical_and.reduce(m, axis)
        if isinstance(t, ndarray):
            return masked_array(t, m, get_fill_value(target))
        elif m:
            return masked
        else:
            return t

    def outer (self, a, b):
        "Return the function applied to the outer product of a and b."
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = logical_or.outer(ma, mb)
        d = self.f.outer(filled(a, self.fillx), filled(b, self.filly))
        return masked_array(d, m)

    def accumulate (self, target, axis=0):
        """Accumulate target along axis after filling with y fill value."""
        t = filled(target, self.filly)
        return masked_array (self.f.accumulate (t, axis))
    def __str__ (self):
        return "Masked version of " + str(self.f)

sqrt = masked_unary_operation(umath.sqrt, 0.0, domain_greater_equal(0.0))
log = masked_unary_operation(umath.log, 1.0, domain_greater(0.0))
log10 = masked_unary_operation(umath.log10, 1.0, domain_greater(0.0))
exp = masked_unary_operation(umath.exp)
conjugate = masked_unary_operation(umath.conjugate)
sin = masked_unary_operation(umath.sin)
cos = masked_unary_operation(umath.cos)
tan = masked_unary_operation(umath.tan, 0.0, domain_tan(1.e-35))
arcsin = masked_unary_operation(umath.arcsin, 0.0, domain_check_interval(-1.0, 1.0))
arccos = masked_unary_operation(umath.arccos, 0.0, domain_check_interval(-1.0, 1.0))
arctan = masked_unary_operation(umath.arctan)
# Missing from numeric
arcsinh = masked_unary_operation(umath.arcsinh)
arccosh = masked_unary_operation(umath.arccosh, 1.0, domain_greater_equal(1.0))
arctanh = masked_unary_operation(umath.arctanh, 0.0, domain_check_interval(-1.0+1e-15, 1.0-1e-15))
sinh = masked_unary_operation(umath.sinh)
cosh = masked_unary_operation(umath.cosh)
tanh = masked_unary_operation(umath.tanh)
absolute = masked_unary_operation(umath.absolute)
fabs = masked_unary_operation(umath.fabs)
negative = masked_unary_operation(umath.negative)

def nonzero(a):
    """returns the indices of the elements of a which are not zero
    and not masked
    """
    return numeric.asarray(filled(a, 0).nonzero())

around = masked_unary_operation(fromnumeric.round_)
floor = masked_unary_operation(umath.floor)
ceil = masked_unary_operation(umath.ceil)
logical_not = masked_unary_operation(umath.logical_not)

add = masked_binary_operation(umath.add)
subtract = masked_binary_operation(umath.subtract)
subtract.reduce = None
multiply = masked_binary_operation(umath.multiply, 1, 1)
divide = domained_binary_operation(umath.divide, domain_safe_divide(), 0, 1)
true_divide = domained_binary_operation(umath.true_divide, domain_safe_divide(), 0, 1)
floor_divide = domained_binary_operation(umath.floor_divide, domain_safe_divide(), 0, 1)
remainder = domained_binary_operation(umath.remainder, domain_safe_divide(), 0, 1)
fmod = domained_binary_operation(umath.fmod, domain_safe_divide(), 0, 1)
hypot = masked_binary_operation(umath.hypot)
arctan2 = masked_binary_operation(umath.arctan2, 0.0, 1.0)
arctan2.reduce = None
equal = masked_binary_operation(umath.equal)
equal.reduce = None
not_equal = masked_binary_operation(umath.not_equal)
not_equal.reduce = None
less_equal = masked_binary_operation(umath.less_equal)
less_equal.reduce = None
greater_equal = masked_binary_operation(umath.greater_equal)
greater_equal.reduce = None
less = masked_binary_operation(umath.less)
less.reduce = None
greater = masked_binary_operation(umath.greater)
greater.reduce = None
logical_and = masked_binary_operation(umath.logical_and)
alltrue = masked_binary_operation(umath.logical_and, 1, 1).reduce
logical_or = masked_binary_operation(umath.logical_or)
sometrue = logical_or.reduce
logical_xor = masked_binary_operation(umath.logical_xor)
bitwise_and = masked_binary_operation(umath.bitwise_and)
bitwise_or = masked_binary_operation(umath.bitwise_or)
bitwise_xor = masked_binary_operation(umath.bitwise_xor)

def rank (object):
    return fromnumeric.rank(filled(object))

def shape (object):
    return fromnumeric.shape(filled(object))

def size (object, axis=None):
    return fromnumeric.size(filled(object), axis)

class MaskedArray (object):
    """Arrays with possibly masked values.
       Masked values of 1 exclude the corresponding element from
       any computation.

       Construction:
           x = array(data, dtype=None, copy=True, order=False,
                     mask = nomask, fill_value=None)

       If copy=False, every effort is made not to copy the data:
           If data is a MaskedArray, and argument mask=nomask,
           then the candidate data is data.data and the
           mask used is data.mask. If data is a numeric array,
           it is used as the candidate raw data.
           If dtype is not None and
           is != data.dtype.char then a data copy is required.
           Otherwise, the candidate is used.

       If a data copy is required, raw data stored is the result of:
       numeric.array(data, dtype=dtype.char, copy=copy)

       If mask is nomask there are no masked values. Otherwise mask must
       be convertible to an array of booleans with the same shape as x.

       fill_value is used to fill in masked values when necessary,
       such as when printing and in method/function filled().
       The fill_value is not used for computation within this module.
    """
    __array_priority__ = 10.1
    def __init__(self, data, dtype=None, copy=True, order=False,
                 mask=nomask, fill_value=None):
        """array(data, dtype=None, copy=True, order=False, mask=nomask, fill_value=None)
           If data already a numeric array, its dtype becomes the default value of dtype.
        """
        if dtype is None:
            tc = None
        else:
            tc = numeric.dtype(dtype)
        need_data_copied = copy
        if isinstance(data, MaskedArray):
            c = data.data
            if tc is None:
                tc = c.dtype
            elif tc != c.dtype:
                need_data_copied = True
            if mask is nomask:
                mask = data.mask
            elif mask is not nomask: #attempting to change the mask
                need_data_copied = True

        elif isinstance(data, ndarray):
            c = data
            if tc is None:
                tc = c.dtype
            elif tc != c.dtype:
                need_data_copied = True
        else:
            need_data_copied = False #because I'll do it now
            c = numeric.array(data, dtype=tc, copy=True, order=order)
            tc = c.dtype

        if need_data_copied:
            if tc == c.dtype:
                self._data = numeric.array(c, dtype=tc, copy=True, order=order)
            else:
                self._data = c.astype(tc)
        else:
            self._data = c

        if mask is nomask:
            self._mask = nomask
            self._shared_mask = 0
        else:
            self._mask = make_mask (mask)
            if self._mask is nomask:
                self._shared_mask = 0
            else:
                self._shared_mask = (self._mask is mask)
                nm = size(self._mask)
                nd = size(self._data)
                if nm != nd:
                    if nm == 1:
                        self._mask = fromnumeric.resize(self._mask, self._data.shape)
                        self._shared_mask = 0
                    elif nd == 1:
                        self._data = fromnumeric.resize(self._data, self._mask.shape)
                        self._data.shape = self._mask.shape
                    else:
                        raise MAError, "Mask and data not compatible."
                elif nm == 1 and shape(self._mask) != shape(self._data):
                    self.unshare_mask()
                    self._mask.shape = self._data.shape

        self.set_fill_value(fill_value)

    def __array__ (self, t=None, context=None):
        "Special hook for numeric. Converts to numeric if possible."
        if self._mask is not nomask:
            if fromnumeric.ravel(self._mask).any():
                if context is None:
                    warnings.warn("Cannot automatically convert masked array to "\
                                  "numeric because data\n    is masked in one or "\
                                  "more locations.");
                    return self._data
                    #raise MAError, \
                    #      """Cannot automatically convert masked array to numeric because data
                    #      is masked in one or more locations.
                    #      """
                else:
                    func, args, i = context
                    fills = ufunc_fills.get(func)
                    if fills is None:
                        raise MAError, "%s not known to ma" % func
                    return self.filled(fills[i])
            else:  # Mask is all false
                   # Optimize to avoid future invocations of this section.
                self._mask = nomask
                self._shared_mask = 0
        if t:
            return self._data.astype(t)
        else:
            return self._data

    def __array_wrap__ (self, array, context=None):
        """Special hook for ufuncs.

        Wraps the numpy array and sets the mask according to
        context.
        """
        if context is None:
            return MaskedArray(array, copy=False, mask=nomask)
        func, args = context[:2]
        domain = ufunc_domain[func]
        m = reduce(mask_or, [getmask(a) for a in args])
        if domain is not None:
            m = mask_or(m, domain(*[getattr(a, '_data', a)
                                    for a in args]))
        if m is not nomask:
            try:
                shape = array.shape
            except AttributeError:
                pass
            else:
                if m.shape != shape:
                    m = reduce(mask_or, [getmaskarray(a) for a in args])

        return MaskedArray(array, copy=False, mask=m)

    def _get_shape(self):
        "Return the current shape."
        return self._data.shape

    def _set_shape (self, newshape):
        "Set the array's shape."
        self._data.shape = newshape
        if self._mask is not nomask:
            self._mask = self._mask.copy()
            self._mask.shape = newshape

    def _get_flat(self):
        """Calculate the flat value.
        """
        if self._mask is nomask:
            return masked_array(self._data.ravel(), mask=nomask,
                                fill_value = self.fill_value())
        else:
            return masked_array(self._data.ravel(),
                                mask=self._mask.ravel(),
                                fill_value = self.fill_value())

    def _set_flat (self, value):
        "x.flat = value"
        y = self.ravel()
        y[:] = value

    def _get_real(self):
        "Get the real part of a complex array."
        if self._mask is nomask:
            return masked_array(self._data.real, mask=nomask,
                            fill_value = self.fill_value())
        else:
            return masked_array(self._data.real, mask=self._mask,
                            fill_value = self.fill_value())

    def _set_real (self, value):
        "x.real = value"
        y = self.real
        y[...] = value

    def _get_imaginary(self):
        "Get the imaginary part of a complex array."
        if self._mask is nomask:
            return masked_array(self._data.imag, mask=nomask,
                            fill_value = self.fill_value())
        else:
            return masked_array(self._data.imag, mask=self._mask,
                            fill_value = self.fill_value())

    def _set_imaginary (self, value):
        "x.imaginary = value"
        y = self.imaginary
        y[...] = value

    def __str__(self):
        """Calculate the str representation, using masked for fill if
           it is enabled. Otherwise fill with fill value.
        """
        if masked_print_option.enabled():
            f = masked_print_option
            # XXX: Without the following special case masked
            # XXX: would print as "[--]", not "--". Can we avoid
            # XXX: checks for masked by choosing a different value
            # XXX: for the masked singleton? 2005-01-05 -- sasha
            if self is masked:
                return str(f)
            m = self._mask
            if m is not nomask and m.shape == () and m:
                return str(f)
            # convert to object array to make filled work
            self = self.astype(object)
        else:
            f = self.fill_value()
        res = self.filled(f)
        return str(res)

    def __repr__(self):
        """Calculate the repr representation, using masked for fill if
           it is enabled. Otherwise fill with fill value.
        """
        with_mask = """\
array(data =
 %(data)s,
      mask =
 %(mask)s,
      fill_value=%(fill)s)
"""
        with_mask1 = """\
array(data = %(data)s,
      mask = %(mask)s,
      fill_value=%(fill)s)
"""
        without_mask = """array(
 %(data)s)"""
        without_mask1 = """array(%(data)s)"""

        n = len(self.shape)
        if self._mask is nomask:
            if n <= 1:
                return without_mask1 % {'data':str(self.filled())}
            return without_mask % {'data':str(self.filled())}
        else:
            if n <= 1:
                return with_mask % {
                    'data': str(self.filled()),
                    'mask': str(self._mask),
                    'fill': str(self.fill_value())
                    }
            return with_mask % {
                'data': str(self.filled()),
                'mask': str(self._mask),
                'fill': str(self.fill_value())
                }
        without_mask1 = """array(%(data)s)"""
        if self._mask is nomask:
            return without_mask % {'data':str(self.filled())}
        else:
            return with_mask % {
                'data': str(self.filled()),
                'mask': str(self._mask),
                'fill': str(self.fill_value())
                }

    def __float__(self):
        "Convert self to float."
        self.unmask()
        if self._mask is not nomask:
            raise MAError, 'Cannot convert masked element to a Python float.'
        return float(self.data.item())

    def __int__(self):
        "Convert self to int."
        self.unmask()
        if self._mask is not nomask:
            raise MAError, 'Cannot convert masked element to a Python int.'
        return int(self.data.item())

    def __getitem__(self, i):
        "Get item described by i. Not a copy as in previous versions."
        self.unshare_mask()
        m = self._mask
        dout = self._data[i]
        if m is nomask:
            try:
                if dout.size == 1:
                    return dout
                else:
                    return masked_array(dout, fill_value=self._fill_value)
            except AttributeError:
                return dout
        mi = m[i]
        if mi.size == 1:
            if mi:
                return masked
            else:
                return dout
        else:
            return masked_array(dout, mi, fill_value=self._fill_value)

# --------
# setitem and setslice notes
# note that if value is masked, it means to mask those locations.
# setting a value changes the mask to match the value in those locations.

    def __setitem__(self, index, value):
        "Set item described by index. If value is masked, mask those locations."
        d = self._data
        if self is masked:
            raise MAError, 'Cannot alter masked elements.'
        if value is masked:
            if self._mask is nomask:
                self._mask = make_mask_none(d.shape)
                self._shared_mask = False
            else:
                self.unshare_mask()
            self._mask[index] = True
            return
        m = getmask(value)
        value = filled(value).astype(d.dtype)
        d[index] = value
        if m is nomask:
            if self._mask is not nomask:
                self.unshare_mask()
                self._mask[index] = False
        else:
            if self._mask is nomask:
                self._mask = make_mask_none(d.shape)
                self._shared_mask = True
            else:
                self.unshare_mask()
            self._mask[index] = m

    def __nonzero__(self):
        """returns true if any element is non-zero or masked

        """
        # XXX: This changes bool conversion logic from MA.
        # XXX: In MA bool(a) == len(a) != 0, but in numpy
        # XXX: scalars do not have len
        m = self._mask
        d = self._data
        return bool(m is not nomask and m.any()
                    or d is not nomask and d.any())

    def __len__ (self):
        """Return length of first dimension. This is weird but Python's
         slicing behavior depends on it."""
        return len(self._data)

    def __and__(self, other):
        "Return bitwise_and"
        return bitwise_and(self, other)

    def __or__(self, other):
        "Return bitwise_or"
        return bitwise_or(self, other)

    def __xor__(self, other):
        "Return bitwise_xor"
        return bitwise_xor(self, other)

    __rand__ = __and__
    __ror__ = __or__
    __rxor__ = __xor__

    def __abs__(self):
        "Return absolute(self)"
        return absolute(self)

    def __neg__(self):
        "Return negative(self)"
        return negative(self)

    def __pos__(self):
        "Return array(self)"
        return array(self)

    def __add__(self, other):
        "Return add(self, other)"
        return add(self, other)

    __radd__ = __add__

    def __mod__ (self, other):
        "Return remainder(self, other)"
        return remainder(self, other)

    def __rmod__ (self, other):
        "Return remainder(other, self)"
        return remainder(other, self)

    def __lshift__ (self, n):
        return left_shift(self, n)

    def __rshift__ (self, n):
        return right_shift(self, n)

    def __sub__(self, other):
        "Return subtract(self, other)"
        return subtract(self, other)

    def __rsub__(self, other):
        "Return subtract(other, self)"
        return subtract(other, self)

    def __mul__(self, other):
        "Return multiply(self, other)"
        return multiply(self, other)

    __rmul__ = __mul__

    def __div__(self, other):
        "Return divide(self, other)"
        return divide(self, other)

    def __rdiv__(self, other):
        "Return divide(other, self)"
        return divide(other, self)

    def __truediv__(self, other):
        "Return divide(self, other)"
        return true_divide(self, other)

    def __rtruediv__(self, other):
        "Return divide(other, self)"
        return true_divide(other, self)

    def __floordiv__(self, other):
        "Return divide(self, other)"
        return floor_divide(self, other)

    def __rfloordiv__(self, other):
        "Return divide(other, self)"
        return floor_divide(other, self)

    def __pow__(self, other, third=None):
        "Return power(self, other, third)"
        return power(self, other, third)

    def __sqrt__(self):
        "Return sqrt(self)"
        return sqrt(self)

    def __iadd__(self, other):
        "Add other to self in place."
        t = self._data.dtype.char
        f = filled(other, 0)
        t1 = f.dtype.char
        if t == t1:
            pass
        elif t in typecodes['Integer']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Float']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Complex']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            elif t1 in typecodes['Complex']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        else:
            raise TypeError, 'Incorrect type for in-place operation.'

        if self._mask is nomask:
            self._data += f
            m = getmask(other)
            self._mask = m
            self._shared_mask = m is not nomask
        else:
            result = add(self, masked_array(f, mask=getmask(other)))
            self._data = result.data
            self._mask = result.mask
            self._shared_mask = 1
        return self

    def __imul__(self, other):
        "Add other to self in place."
        t = self._data.dtype.char
        f = filled(other, 0)
        t1 = f.dtype.char
        if t == t1:
            pass
        elif t in typecodes['Integer']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Float']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Complex']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            elif t1 in typecodes['Complex']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        else:
            raise TypeError, 'Incorrect type for in-place operation.'

        if self._mask is nomask:
            self._data *= f
            m = getmask(other)
            self._mask = m
            self._shared_mask = m is not nomask
        else:
            result = multiply(self, masked_array(f, mask=getmask(other)))
            self._data = result.data
            self._mask = result.mask
            self._shared_mask = 1
        return self

    def __isub__(self, other):
        "Subtract other from self in place."
        t = self._data.dtype.char
        f = filled(other, 0)
        t1 = f.dtype.char
        if t == t1:
            pass
        elif t in typecodes['Integer']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Float']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Complex']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            elif t1 in typecodes['Complex']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        else:
            raise TypeError, 'Incorrect type for in-place operation.'

        if self._mask is nomask:
            self._data -= f
            m = getmask(other)
            self._mask = m
            self._shared_mask = m is not nomask
        else:
            result = subtract(self, masked_array(f, mask=getmask(other)))
            self._data = result.data
            self._mask = result.mask
            self._shared_mask = 1
        return self



    def __idiv__(self, other):
        "Divide self by other in place."
        t = self._data.dtype.char
        f = filled(other, 0)
        t1 = f.dtype.char
        if t == t1:
            pass
        elif t in typecodes['Integer']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Float']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        elif t in typecodes['Complex']:
            if t1 in typecodes['Integer']:
                f = f.astype(t)
            elif t1 in typecodes['Float']:
                f = f.astype(t)
            elif t1 in typecodes['Complex']:
                f = f.astype(t)
            else:
                raise TypeError, 'Incorrect type for in-place operation.'
        else:
            raise TypeError, 'Incorrect type for in-place operation.'
        mo = getmask(other)
        result = divide(self, masked_array(f, mask=mo))
        self._data = result.data
        dm = result.raw_mask()
        if dm is not self._mask:
            self._mask = dm
            self._shared_mask = 1
        return self

    def __eq__(self, other):
        return equal(self,other)

    def __ne__(self, other):
        return not_equal(self,other)

    def __lt__(self, other):
        return less(self,other)

    def __le__(self, other):
        return less_equal(self,other)

    def __gt__(self, other):
        return greater(self,other)

    def __ge__(self, other):
        return greater_equal(self,other)

    def astype (self, tc):
        "return self as array of given type."
        d = self._data.astype(tc)
        return array(d, mask=self._mask)

    def byte_swapped(self):
        """Returns the raw data field, byte_swapped. Included for consistency
         with numeric but doesn't make sense in this context.
        """
        return self._data.byte_swapped()

    def compressed (self):
        "A 1-D array of all the non-masked data."
        d = fromnumeric.ravel(self._data)
        if self._mask is nomask:
            return array(d)
        else:
            m = 1 - fromnumeric.ravel(self._mask)
            c = fromnumeric.compress(m, d)
            return array(c, copy=0)

    def count (self, axis = None):
        "Count of the non-masked elements in a, or along a certain axis."
        m = self._mask
        s = self._data.shape
        ls = len(s)
        if m is nomask:
            if ls == 0:
                return 1
            if ls == 1:
                return s[0]
            if axis is None:
                return reduce(lambda x, y:x*y, s)
            else:
                n = s[axis]
                t = list(s)
                del t[axis]
                return ones(t) * n
        if axis is None:
            w = fromnumeric.ravel(m).astype(int)
            n1 = size(w)
            if n1 == 1:
                n2 = w[0]
            else:
                n2 = umath.add.reduce(w)
            return n1 - n2
        else:
            n1 = size(m, axis)
            n2 = sum(m.astype(int), axis)
            return n1 - n2

    def dot (self, other):
        "s.dot(other) = innerproduct(s, other)"
        return innerproduct(self, other)

    def fill_value(self):
        "Get the current fill value."
        return self._fill_value

    def filled (self, fill_value=None):
        """A numeric array with masked values filled. If fill_value is None,
           use self.fill_value().

           If mask is nomask, copy data only if not contiguous.
           Result is always a contiguous, numeric array.
# Is contiguous really necessary now?
        """
        d = self._data
        m = self._mask
        if m is nomask:
            if d.flags['CONTIGUOUS']:
                return d
            else:
                return d.copy()
        else:
            if fill_value is None:
                value = self._fill_value
            else:
                value = fill_value

            if self is masked:
                result = numeric.array(value)
            else:
                try:
                    result = numeric.array(d, dtype=d.dtype, copy=1)
                    result[m] = value
                except (TypeError, AttributeError):
                    #ok, can't put that value in here
                    value = numeric.array(value, dtype=object)
                    d = d.astype(object)
                    result = fromnumeric.choose(m, (d, value))
            return result

    def ids (self):
        """Return the ids of the data and mask areas"""
        return (id(self._data), id(self._mask))

    def iscontiguous (self):
        "Is the data contiguous?"
        return self._data.flags['CONTIGUOUS']

    def itemsize(self):
        "Item size of each data item."
        return self._data.itemsize


    def outer(self, other):
        "s.outer(other) = outerproduct(s, other)"
        return outerproduct(self, other)

    def put (self, values):
        """Set the non-masked entries of self to filled(values).
           No change to mask
        """
        iota = numeric.arange(self.size)
        d = self._data
        if self._mask is nomask:
            ind = iota
        else:
            ind = fromnumeric.compress(1 - self._mask, iota)
        d[ind] =  filled(values).astype(d.dtype)

    def putmask (self, values):
        """Set the masked entries of self to filled(values).
           Mask changed to nomask.
        """
        d = self._data
        if self._mask is not nomask:
            d[self._mask] = filled(values).astype(d.dtype)
            self._shared_mask = 0
            self._mask = nomask

    def ravel (self):
        """Return a 1-D view of self."""
        if self._mask is nomask:
            return masked_array(self._data.ravel())
        else:
            return masked_array(self._data.ravel(), self._mask.ravel())

    def raw_data (self):
        """ Obsolete; use data property instead.
            The raw data; portions may be meaningless.
            May be noncontiguous. Expert use only."""
        return self._data
    data = property(fget=raw_data,
           doc="The data, but values at masked locations are meaningless.")

    def raw_mask (self):
        """ Obsolete; use mask property instead.
            May be noncontiguous. Expert use only.
        """
        return self._mask
    mask = property(fget=raw_mask,
           doc="The mask, may be nomask. Values where mask true are meaningless.")

    def reshape (self, *s):
        """This array reshaped to shape s"""
        d = self._data.reshape(*s)
        if self._mask is nomask:
            return masked_array(d)
        else:
            m = self._mask.reshape(*s)
        return masked_array(d, m)

    def set_fill_value (self, v=None):
        "Set the fill value to v. Omit v to restore default."
        if v is None:
            v = default_fill_value (self.raw_data())
        self._fill_value = v

    def _get_ndim(self):
        return self._data.ndim
    ndim = property(_get_ndim, doc=numeric.ndarray.ndim.__doc__)

    def _get_size (self):
        return self._data.size
    size = property(fget=_get_size, doc="Number of elements in the array.")
## CHECK THIS: signature of numeric.array.size?

    def _get_dtype(self):
        return self._data.dtype
    dtype = property(fget=_get_dtype, doc="type of the array elements.")

    def item(self, *args):
        "Return Python scalar if possible"
        if self._mask is not nomask:
            m = self._mask.item(*args)
            try:
                if m[0]:
                    return masked
            except IndexError:
                return masked
        return self._data.item(*args)

    def itemset(self, *args):
        "Set Python scalar into array"
        item = args[-1]
        args = args[:-1]
        self[args] = item

    def tolist(self, fill_value=None):
        "Convert to list"
        return self.filled(fill_value).tolist()

    def tostring(self, fill_value=None):
        "Convert to string"
        return self.filled(fill_value).tostring()

    def unmask (self):
        "Replace the mask by nomask if possible."
        if self._mask is nomask: return
        m = make_mask(self._mask, flag=1)
        if m is nomask:
            self._mask = nomask
            self._shared_mask = 0

    def unshare_mask (self):
        "If currently sharing mask, make a copy."
        if self._shared_mask:
            self._mask = make_mask (self._mask, copy=1, flag=0)
            self._shared_mask = 0

    def _get_ctypes(self):
        return self._data.ctypes

    def _get_T(self):
        if (self.ndim < 2):
            return self
        return self.transpose()

    shape = property(_get_shape, _set_shape,
           doc = 'tuple giving the shape of the array')

    flat = property(_get_flat, _set_flat,
           doc = 'Access array in flat form.')

    real = property(_get_real, _set_real,
           doc = 'Access the real part of the array')

    imaginary = property(_get_imaginary, _set_imaginary,
           doc = 'Access the imaginary part of the array')

    imag = imaginary

    ctypes = property(_get_ctypes, None, doc="ctypes")

    T = property(_get_T, None, doc="get transpose")

#end class MaskedArray

array = MaskedArray

def isMaskedArray (x):
    "Is x a masked array, that is, an instance of MaskedArray?"
    return isinstance(x, MaskedArray)

isarray = isMaskedArray
isMA = isMaskedArray  #backward compatibility

def allclose (a, b, fill_value=1, rtol=1.e-5, atol=1.e-8):
    """ Returns true if all components of a and b are equal
        subject to given tolerances.
        If fill_value is 1, masked values considered equal.
        If fill_value is 0, masked values considered unequal.
        The relative error rtol should be positive and << 1.0
        The absolute error atol comes into play for those elements
        of b that are very small or zero; it says how small a must be also.
    """
    m = mask_or(getmask(a), getmask(b))
    d1 = filled(a)
    d2 = filled(b)
    x = filled(array(d1, copy=0, mask=m), fill_value).astype(float)
    y = filled(array(d2, copy=0, mask=m), 1).astype(float)
    d = umath.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y))
    return fromnumeric.alltrue(fromnumeric.ravel(d))

def allequal (a, b, fill_value=1):
    """
        True if all entries of  a and b are equal, using
        fill_value as a truth value where either or both are masked.
    """
    m = mask_or(getmask(a), getmask(b))
    if m is nomask:
        x = filled(a)
        y = filled(b)
        d = umath.equal(x, y)
        return fromnumeric.alltrue(fromnumeric.ravel(d))
    elif fill_value:
        x = filled(a)
        y = filled(b)
        d = umath.equal(x, y)
        dm = array(d, mask=m, copy=0)
        return fromnumeric.alltrue(fromnumeric.ravel(filled(dm, 1)))
    else:
        return 0

def masked_values (data, value, rtol=1.e-5, atol=1.e-8, copy=1):
    """
       masked_values(data, value, rtol=1.e-5, atol=1.e-8)
       Create a masked array; mask is nomask if possible.
       If copy==0, and otherwise possible, result
       may share data values with original array.
       Let d = filled(data, value). Returns d
       masked where abs(data-value)<= atol + rtol * abs(value)
       if d is of a floating point type. Otherwise returns
       masked_object(d, value, copy)
    """
    abs = umath.absolute
    d = filled(data, value)
    if issubclass(d.dtype.type, numeric.floating):
        m = umath.less_equal(abs(d-value), atol+rtol*abs(value))
        m = make_mask(m, flag=1)
        return array(d, mask = m, copy=copy,
                      fill_value=value)
    else:
        return masked_object(d, value, copy=copy)

def masked_object (data, value, copy=1):
    "Create array masked where exactly data equal to value"
    d = filled(data, value)
    dm = make_mask(umath.equal(d, value), flag=1)
    return array(d, mask=dm, copy=copy, fill_value=value)

def arange(start, stop=None, step=1, dtype=None):
    """Just like range() except it returns a array whose type can be specified
    by the keyword argument dtype.
    """
    return array(numeric.arange(start, stop, step, dtype))

arrayrange = arange

def fromstring (s, t):
    "Construct a masked array from a string. Result will have no mask."
    return masked_array(numeric.fromstring(s, t))

def left_shift (a, n):
    "Left shift n bits"
    m = getmask(a)
    if m is nomask:
        d = umath.left_shift(filled(a), n)
        return masked_array(d)
    else:
        d = umath.left_shift(filled(a, 0), n)
        return masked_array(d, m)

def right_shift (a, n):
    "Right shift n bits"
    m = getmask(a)
    if m is nomask:
        d = umath.right_shift(filled(a), n)
        return masked_array(d)
    else:
        d = umath.right_shift(filled(a, 0), n)
        return masked_array(d, m)

def resize (a, new_shape):
    """resize(a, new_shape) returns a new array with the specified shape.
    The original array's total size can be any size."""
    m = getmask(a)
    if m is not nomask:
        m = fromnumeric.resize(m, new_shape)
    result = array(fromnumeric.resize(filled(a), new_shape), mask=m)
    result.set_fill_value(get_fill_value(a))
    return result

def new_repeat(a, repeats, axis=None):
    """repeat elements of a repeats times along axis
       repeats is a sequence of length a.shape[axis]
       telling how many times to repeat each element.
    """
    af = filled(a)
    if isinstance(repeats, types.IntType):
        if axis is None:
            num = af.size
        else:
            num = af.shape[axis]
        repeats = tuple([repeats]*num)

    m = getmask(a)
    if m is not nomask:
        m = fromnumeric.repeat(m, repeats, axis)
    d = fromnumeric.repeat(af, repeats, axis)
    result = masked_array(d, m)
    result.set_fill_value(get_fill_value(a))
    return result



def identity(n):
    """identity(n) returns the identity matrix of shape n x n.
    """
    return array(numeric.identity(n))

def indices (dimensions, dtype=None):
    """indices(dimensions,dtype=None) returns an array representing a grid
    of indices with row-only, and column-only variation.
    """
    return array(numeric.indices(dimensions, dtype))

def zeros (shape, dtype=float):
    """zeros(n, dtype=float) =
     an array of all zeros of the given length or shape."""
    return array(numeric.zeros(shape, dtype))

def ones (shape, dtype=float):
    """ones(n, dtype=float) =
     an array of all ones of the given length or shape."""
    return array(numeric.ones(shape, dtype))

def count (a, axis = None):
    "Count of the non-masked elements in a, or along a certain axis."
    a = masked_array(a)
    return a.count(axis)

def power (a, b, third=None):
    "a**b"
    if third is not None:
        raise MAError, "3-argument power not supported."
    ma = getmask(a)
    mb = getmask(b)
    m = mask_or(ma, mb)
    fa = filled(a, 1)
    fb = filled(b, 1)
    if fb.dtype.char in typecodes["Integer"]:
        return masked_array(umath.power(fa, fb), m)
    md = make_mask(umath.less(fa, 0), flag=1)
    m = mask_or(m, md)
    if m is nomask:
        return masked_array(umath.power(fa, fb))
    else:
        fa = numeric.where(m, 1, fa)
        return masked_array(umath.power(fa, fb), m)

def masked_array (a, mask=nomask, fill_value=None):
    """masked_array(a, mask=nomask) =
       array(a, mask=mask, copy=0, fill_value=fill_value)
    """
    return array(a, mask=mask, copy=0, fill_value=fill_value)

def sum (target, axis=None, dtype=None):
    if axis is None:
        target = ravel(target)
        axis = 0
    return add.reduce(target, axis, dtype)

def product (target, axis=None, dtype=None):
    if axis is None:
        target = ravel(target)
        axis = 0
    return multiply.reduce(target, axis, dtype)

def new_average (a, axis=None, weights=None, returned = 0):
    """average(a, axis=None, weights=None)
       Computes average along indicated axis.
       If axis is None, average over the entire array
       Inputs can be integer or floating types; result is of type float.

       If weights are given, result is sum(a*weights,axis=0)/(sum(weights,axis=0)*1.0)
       weights must have a's shape or be the 1-d with length the size
       of a in the given axis.

       If returned, return a tuple: the result and the sum of the weights
       or count of values. Results will have the same shape.

       masked values in the weights will be set to 0.0
    """
    a = masked_array(a)
    mask = a.mask
    ash = a.shape
    if ash == ():
        ash = (1,)
    if axis is None:
        if mask is nomask:
            if weights is None:
                n = add.reduce(a.raw_data().ravel())
                d = reduce(lambda x, y: x * y, ash, 1.0)
            else:
                w = filled(weights, 0.0).ravel()
                n = umath.add.reduce(a.raw_data().ravel() * w)
                d = umath.add.reduce(w)
                del w
        else:
            if weights is None:
                n = add.reduce(a.ravel())
                w = fromnumeric.choose(mask, (1.0, 0.0)).ravel()
                d = umath.add.reduce(w)
                del w
            else:
                w = array(filled(weights, 0.0), float, mask=mask).ravel()
                n = add.reduce(a.ravel() * w)
                d = add.reduce(w)
                del w
    else:
        if mask is nomask:
            if weights is None:
                d = ash[axis] * 1.0
                n = umath.add.reduce(a.raw_data(), axis)
            else:
                w = filled(weights, 0.0)
                wsh = w.shape
                if wsh == ():
                    wsh = (1,)
                if wsh == ash:
                    w = numeric.array(w, float, copy=0)
                    n = add.reduce(a*w, axis)
                    d = add.reduce(w, axis)
                    del w
                elif wsh == (ash[axis],):
                    r = [newaxis]*len(ash)
                    r[axis] = slice(None, None, 1)
                    w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)")
                    n = add.reduce(a*w, axis)
                    d = add.reduce(w, axis)
                    del w, r
                else:
                    raise ValueError, 'average: weights wrong shape.'
        else:
            if weights is None:
                n = add.reduce(a, axis)
                w = numeric.choose(mask, (1.0, 0.0))
                d = umath.add.reduce(w, axis)
                del w
            else:
                w = filled(weights, 0.0)
                wsh = w.shape
                if wsh == ():
                    wsh = (1,)
                if wsh == ash:
                    w = array(w, float, mask=mask, copy=0)
                    n = add.reduce(a*w, axis)
                    d = add.reduce(w, axis)
                elif wsh == (ash[axis],):
                    r = [newaxis]*len(ash)
                    r[axis] = slice(None, None, 1)
                    w = eval ("w["+ repr(tuple(r)) + "] * masked_array(ones(ash, float), mask)")
                    n = add.reduce(a*w, axis)
                    d = add.reduce(w, axis)
                else:
                    raise ValueError, 'average: weights wrong shape.'
                del w
    #print n, d, repr(mask), repr(weights)
    if n is masked or d is masked: return masked
    result = divide (n, d)
    del n

    if isinstance(result, MaskedArray):
        result.unmask()
        if returned:
            if not isinstance(d, MaskedArray):
                d = masked_array(d)
            if not d.shape == result.shape:
                d = ones(result.shape, float) * d
            d.unmask()
    if returned:
        return result, d
    else:
        return result

def where (condition, x, y):
    """where(condition, x, y) is x where condition is nonzero, y otherwise.
       condition must be convertible to an integer array.
       Answer is always the shape of condition.
       The type depends on x and y. It is integer if both x and y are
       the value masked.
    """
    fc = filled(not_equal(condition, 0), 0)
    xv = filled(x)
    xm = getmask(x)
    yv = filled(y)
    ym = getmask(y)
    d = numeric.choose(fc, (yv, xv))
    md = numeric.choose(fc, (ym, xm))
    m = getmask(condition)
    m = make_mask(mask_or(m, md), copy=0, flag=1)
    return masked_array(d, m)

def choose (indices, t, out=None, mode='raise'):
    "Returns array shaped like indices with elements chosen from t"
    def fmask (x):
        if x is masked: return 1
        return filled(x)
    def nmask (x):
        if x is masked: return 1
        m = getmask(x)
        if m is nomask: return 0
        return m
    c = filled(indices, 0)
    masks = [nmask(x) for x in t]
    a = [fmask(x) for x in t]
    d = numeric.choose(c, a)
    m = numeric.choose(c, masks)
    m = make_mask(mask_or(m, getmask(indices)), copy=0, flag=1)
    return masked_array(d, m)

def masked_where(condition, x, copy=1):
    """Return x as an array masked where condition is true.
       Also masked where x or condition masked.
    """
    cm = filled(condition,1)
    m = mask_or(getmask(x), cm)
    return array(filled(x), copy=copy, mask=m)

def masked_greater(x, value, copy=1):
    "masked_greater(x, value) = x masked where x > value"
    return masked_where(greater(x, value), x, copy)

def masked_greater_equal(x, value, copy=1):
    "masked_greater_equal(x, value) = x masked where x >= value"
    return masked_where(greater_equal(x, value), x, copy)

def masked_less(x, value, copy=1):
    "masked_less(x, value) = x masked where x < value"
    return masked_where(less(x, value), x, copy)

def masked_less_equal(x, value, copy=1):
    "masked_less_equal(x, value) = x masked where x <= value"
    return masked_where(less_equal(x, value), x, copy)

def masked_not_equal(x, value, copy=1):
    "masked_not_equal(x, value) = x masked where x != value"
    d = filled(x, 0)
    c = umath.not_equal(d, value)
    m = mask_or(c, getmask(x))
    return array(d, mask=m, copy=copy)

def masked_equal(x, value, copy=1):
    """masked_equal(x, value) = x masked where x == value
       For floating point consider masked_values(x, value) instead.
    """
    d = filled(x, 0)
    c = umath.equal(d, value)
    m = mask_or(c, getmask(x))
    return array(d, mask=m, copy=copy)

def masked_inside(x, v1, v2, copy=1):
    """x with mask of all values of x that are inside [v1,v2]
       v1 and v2 can be given in either order.
    """
    if v2 < v1:
        t = v2
        v2 = v1
        v1 = t
    d = filled(x, 0)
    c = umath.logical_and(umath.less_equal(d, v2), umath.greater_equal(d, v1))
    m = mask_or(c, getmask(x))
    return array(d, mask = m, copy=copy)

def masked_outside(x, v1, v2, copy=1):
    """x with mask of all values of x that are outside [v1,v2]
       v1 and v2 can be given in either order.
    """
    if v2 < v1:
        t = v2
        v2 = v1
        v1 = t
    d = filled(x, 0)
    c = umath.logical_or(umath.less(d, v1), umath.greater(d, v2))
    m = mask_or(c, getmask(x))
    return array(d, mask = m, copy=copy)

def reshape (a, *newshape):
    "Copy of a with a new shape."
    m = getmask(a)
    d = filled(a).reshape(*newshape)
    if m is nomask:
        return masked_array(d)
    else:
        return masked_array(d, mask=numeric.reshape(m, *newshape))

def ravel (a):
    "a as one-dimensional, may share data and mask"
    m = getmask(a)
    d = fromnumeric.ravel(filled(a))
    if m is nomask:
        return masked_array(d)
    else:
        return masked_array(d, mask=numeric.ravel(m))

def concatenate (arrays, axis=0):
    "Concatenate the arrays along the given axis"
    d = []
    for x in arrays:
        d.append(filled(x))
    d = numeric.concatenate(d, axis)
    for x in arrays:
        if getmask(x) is not nomask: break
    else:
        return masked_array(d)
    dm = []
    for x in arrays:
        dm.append(getmaskarray(x))
    dm = numeric.concatenate(dm, axis)
    return masked_array(d, mask=dm)

def swapaxes (a, axis1, axis2):
    m = getmask(a)
    d = masked_array(a).data
    if m is nomask:
        return masked_array(data=numeric.swapaxes(d, axis1, axis2))
    else:
        return masked_array(data=numeric.swapaxes(d, axis1, axis2),
                            mask=numeric.swapaxes(m, axis1, axis2),)


def new_take (a, indices, axis=None, out=None, mode='raise'):
    "returns selection of items from a."
    m = getmask(a)
    # d = masked_array(a).raw_data()
    d = masked_array(a).data
    if m is nomask:
        return masked_array(numeric.take(d, indices, axis))
    else:
        return masked_array(numeric.take(d, indices, axis),
                     mask = numeric.take(m, indices, axis))

def transpose(a, axes=None):
    "reorder dimensions per tuple axes"
    m = getmask(a)
    d = filled(a)
    if m is nomask:
        return masked_array(numeric.transpose(d, axes))
    else:
        return masked_array(numeric.transpose(d, axes),
                     mask = numeric.transpose(m, axes))


def put(a, indices, values, mode='raise'):
    """sets storage-indexed locations to corresponding values.

    Values and indices are filled if necessary.

    """
    d = a.raw_data()
    ind = filled(indices)
    v = filled(values)
    numeric.put (d, ind, v)
    m = getmask(a)
    if m is not nomask:
        a.unshare_mask()
        numeric.put(a.raw_mask(), ind, 0)

def putmask(a, mask, values):
    "putmask(a, mask, values) sets a where mask is true."
    if mask is nomask:
        return
    numeric.putmask(a.raw_data(), mask, values)
    m = getmask(a)
    if m is nomask: return
    a.unshare_mask()
    numeric.putmask(a.raw_mask(), mask, 0)

def inner(a, b):
    """inner(a,b) returns the dot product of two arrays, which has
    shape a.shape[:-1] + b.shape[:-1] with elements computed by summing the
    product of the elements from the last dimensions of a and b.
    Masked elements are replace by zeros.
    """
    fa = filled(a, 0)
    fb = filled(b, 0)
    if len(fa.shape) == 0: fa.shape = (1,)
    if len(fb.shape) == 0: fb.shape = (1,)
    return masked_array(numeric.inner(fa, fb))

innerproduct = inner

def outer(a, b):
    """outer(a,b) = {a[i]*b[j]}, has shape (len(a),len(b))"""
    fa = filled(a, 0).ravel()
    fb = filled(b, 0).ravel()
    d = numeric.outer(fa, fb)
    ma = getmask(a)
    mb = getmask(b)
    if ma is nomask and mb is nomask:
        return masked_array(d)
    ma = getmaskarray(a)
    mb = getmaskarray(b)
    m = make_mask(1-numeric.outer(1-ma, 1-mb), copy=0)
    return masked_array(d, m)

outerproduct = outer

def dot(a, b):
    """dot(a,b) returns matrix-multiplication between a and b.  The product-sum
    is over the last dimension of a and the second-to-last dimension of b.
    Masked values are replaced by zeros. See also innerproduct.
    """
    return innerproduct(filled(a, 0), numeric.swapaxes(filled(b, 0), -1, -2))

def compress(condition, x, dimension=-1, out=None):
    """Select those parts of x for which condition is true.
       Masked values in condition are considered false.
    """
    c = filled(condition, 0)
    m = getmask(x)
    if m is not nomask:
        m = numeric.compress(c, m, dimension)
    d = numeric.compress(c, filled(x), dimension)
    return masked_array(d, m)

class _minimum_operation:
    "Object to calculate minima"
    def __init__ (self):
        """minimum(a, b) or minimum(a)
           In one argument case returns the scalar minimum.
        """
        pass

    def __call__ (self, a, b=None):
        "Execute the call behavior."
        if b is None:
            m = getmask(a)
            if m is nomask:
                d = amin(filled(a).ravel())
                return d
            ac = a.compressed()
            if len(ac) == 0:
                return masked
            else:
                return amin(ac.raw_data())
        else:
            return where(less(a, b), a, b)

    def reduce (self, target, axis=0):
        """Reduce target along the given axis."""
        m = getmask(target)
        if m is nomask:
            t = filled(target)
            return masked_array (umath.minimum.reduce (t, axis))
        else:
            t = umath.minimum.reduce(filled(target, minimum_fill_value(target)), axis)
            m = umath.logical_and.reduce(m, axis)
            return masked_array(t, m, get_fill_value(target))

    def outer (self, a, b):
        "Return the function applied to the outer product of a and b."
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = logical_or.outer(ma, mb)
        d = umath.minimum.outer(filled(a), filled(b))
        return masked_array(d, m)

minimum = _minimum_operation ()

class _maximum_operation:
    "Object to calculate maxima"
    def __init__ (self):
        """maximum(a, b) or maximum(a)
           In one argument case returns the scalar maximum.
        """
        pass

    def __call__ (self, a, b=None):
        "Execute the call behavior."
        if b is None:
            m = getmask(a)
            if m is nomask:
                d = amax(filled(a).ravel())
                return d
            ac = a.compressed()
            if len(ac) == 0:
                return masked
            else:
                return amax(ac.raw_data())
        else:
            return where(greater(a, b), a, b)

    def reduce (self, target, axis=0):
        """Reduce target along the given axis."""
        m = getmask(target)
        if m is nomask:
            t = filled(target)
            return masked_array (umath.maximum.reduce (t, axis))
        else:
            t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)
            m = umath.logical_and.reduce(m, axis)
            return masked_array(t, m, get_fill_value(target))

    def outer (self, a, b):
        "Return the function applied to the outer product of a and b."
        ma = getmask(a)
        mb = getmask(b)
        if ma is nomask and mb is nomask:
            m = nomask
        else:
            ma = getmaskarray(a)
            mb = getmaskarray(b)
            m = logical_or.outer(ma, mb)
        d = umath.maximum.outer(filled(a), filled(b))
        return masked_array(d, m)

maximum = _maximum_operation ()

def sort (x, axis = -1, fill_value=None):
    """If x does not have a mask, return a masked array formed from the
       result of numeric.sort(x, axis).
       Otherwise, fill x with fill_value. Sort it.
       Set a mask where the result is equal to fill_value.
       Note that this may have unintended consequences if the data contains the
       fill value at a non-masked site.

       If fill_value is not given the default fill value for x's type will be
       used.
    """
    if fill_value is None:
        fill_value = default_fill_value (x)
    d = filled(x, fill_value)
    s = fromnumeric.sort(d, axis)
    if getmask(x) is nomask:
        return masked_array(s)
    return masked_values(s, fill_value, copy=0)

def diagonal(a, k = 0, axis1=0, axis2=1):
    """diagonal(a,k=0,axis1=0, axis2=1) = the k'th diagonal of a"""
    d = fromnumeric.diagonal(filled(a), k, axis1, axis2)
    m = getmask(a)
    if m is nomask:
        return masked_array(d, m)
    else:
        return masked_array(d, fromnumeric.diagonal(m, k, axis1, axis2))

def trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
    """trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals
    (defined by the last two dimenions) of the array.
    """
    return diagonal(a, offset, axis1, axis2).sum(dtype=dtype)

def argsort (x, axis = -1, out=None, fill_value=None):
    """Treating masked values as if they have the value fill_value,
       return sort indices for sorting along given axis.
       if fill_value is None, use get_fill_value(x)
       Returns a numpy array.
    """
    d = filled(x, fill_value)
    return fromnumeric.argsort(d, axis)

def argmin (x, axis = -1, out=None, fill_value=None):
    """Treating masked values as if they have the value fill_value,
       return indices for minimum values along given axis.
       if fill_value is None, use get_fill_value(x).
       Returns a numpy array if x has more than one dimension.
       Otherwise, returns a scalar index.
    """
    d = filled(x, fill_value)
    return fromnumeric.argmin(d, axis)

def argmax (x, axis = -1, out=None, fill_value=None):
    """Treating masked values as if they have the value fill_value,
       return sort indices for maximum along given axis.
       if fill_value is None, use -get_fill_value(x) if it exists.
       Returns a numpy array if x has more than one dimension.
       Otherwise, returns a scalar index.
    """
    if fill_value is None:
        fill_value = default_fill_value (x)
        try:
            fill_value = - fill_value
        except:
            pass
    d = filled(x, fill_value)
    return fromnumeric.argmax(d, axis)

def fromfunction (f, s):
    """apply f to s to create array as in umath."""
    return masked_array(numeric.fromfunction(f, s))

def asarray(data, dtype=None):
    """asarray(data, dtype) = array(data, dtype, copy=0)
    """
    if isinstance(data, MaskedArray) and \
        (dtype is None or dtype == data.dtype):
        return data
    return array(data, dtype=dtype, copy=0)

# Add methods to support ndarray interface
# XXX: I is better to to change the masked_*_operation adaptors
# XXX: to wrap ndarray methods directly to create ma.array methods.
from types import MethodType
def _m(f):
    return MethodType(f, None, array)
def not_implemented(*args, **kwds):
    raise NotImplementedError, "not yet implemented for numpy.ma arrays"
array.all = _m(alltrue)
array.any = _m(sometrue)
array.argmax = _m(argmax)
array.argmin = _m(argmin)
array.argsort = _m(argsort)
array.base = property(_m(not_implemented))
array.byteswap = _m(not_implemented)

def _choose(self, *args, **kwds):
    return choose(self, args)
array.choose = _m(_choose)
del _choose

def _clip(self,a_min,a_max,out=None):
    return MaskedArray(data = self.data.clip(asarray(a_min).data,
                                             asarray(a_max).data),
                       mask = mask_or(self.mask,
                                      mask_or(getmask(a_min),getmask(a_max))))
array.clip = _m(_clip)

def _compress(self, cond, axis=None, out=None):
    return compress(cond, self, axis)
array.compress = _m(_compress)
del _compress

array.conj = array.conjugate = _m(conjugate)
array.copy = _m(not_implemented)

def _cumprod(self, axis=None, dtype=None, out=None):
    m = self.mask
    if m is not nomask:
        m = umath.logical_or.accumulate(self.mask, axis)
    return MaskedArray(data = self.filled(1).cumprod(axis, dtype), mask=m)
array.cumprod = _m(_cumprod)

def _cumsum(self, axis=None, dtype=None, out=None):
    m = self.mask
    if m is not nomask:
        m = umath.logical_or.accumulate(self.mask, axis)
    return MaskedArray(data=self.filled(0).cumsum(axis, dtype), mask=m)
array.cumsum = _m(_cumsum)

array.diagonal = _m(diagonal)
array.dump = _m(not_implemented)
array.dumps = _m(not_implemented)
array.fill = _m(not_implemented)
array.flags = property(_m(not_implemented))
array.flatten = _m(ravel)
array.getfield = _m(not_implemented)

def _max(a, axis=None, out=None):
    if out is not None:
        raise TypeError("Output arrays Unsupported for masked arrays")
    if axis is None:
        return maximum(a)
    else:
        return maximum.reduce(a, axis)
array.max = _m(_max)
del _max
def _min(a, axis=None, out=None):
    if out is not None:
        raise TypeError("Output arrays Unsupported for masked arrays")
    if axis is None:
        return minimum(a)
    else:
        return minimum.reduce(a, axis)
array.min = _m(_min)
del _min
array.mean = _m(new_average)
array.nbytes = property(_m(not_implemented))
array.newbyteorder = _m(not_implemented)
array.nonzero = _m(nonzero)
array.prod = _m(product)

def _ptp(a,axis=None,out=None):
    return a.max(axis,out)-a.min(axis)
array.ptp = _m(_ptp)
array.repeat = _m(new_repeat)
array.resize = _m(resize)
array.searchsorted = _m(not_implemented)
array.setfield = _m(not_implemented)
array.setflags = _m(not_implemented)
array.sort = _m(not_implemented)  # NB: ndarray.sort is inplace

def _squeeze(self):
    try:
        result = MaskedArray(data = self.data.squeeze(),
                             mask = self.mask.squeeze())
    except AttributeError:
        result = _wrapit(self, 'squeeze')
    return result
array.squeeze = _m(_squeeze)

array.strides = property(_m(not_implemented))
array.sum = _m(sum)
def _swapaxes(self,axis1,axis2):
    return MaskedArray(data = self.data.swapaxes(axis1, axis2),
                       mask = self.mask.swapaxes(axis1, axis2))
array.swapaxes = _m(_swapaxes)
array.take = _m(new_take)
array.tofile = _m(not_implemented)
array.trace = _m(trace)
array.transpose = _m(transpose)

def _var(self,axis=None,dtype=None, out=None):
    if axis is None:
        return numeric.asarray(self.compressed()).var()
    a = self.swapaxes(axis,0)
    a = a - a.mean(axis=0)
    a *= a
    a /= a.count(axis=0)
    return a.swapaxes(0,axis).sum(axis)
def _std(self,axis=None, dtype=None, out=None):
    return (self.var(axis,dtype))**0.5
array.var = _m(_var)
array.std = _m(_std)

array.view =  _m(not_implemented)
array.round = _m(around)
del _m, MethodType, not_implemented


masked = MaskedArray(0, int, mask=1)

def repeat(a, repeats, axis=0):
    return new_repeat(a, repeats, axis)

def average(a, axis=0, weights=None, returned=0):
    return new_average(a, axis, weights, returned)

def take(a, indices, axis=0):
    return new_take(a, indices, axis)