/usr/share/pyshared/numpy/oldnumeric/ma.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 | """MA: a facility for dealing with missing observations
MA is generally used as a numpy.array look-alike.
by Paul F. Dubois.
Copyright 1999, 2000, 2001 Regents of the University of California.
Released for unlimited redistribution.
Adapted for numpy_core 2005 by Travis Oliphant and
(mainly) Paul Dubois.
"""
import types, sys
import numpy.core.umath as umath
import numpy.core.fromnumeric as fromnumeric
from numpy.core.numeric import newaxis, ndarray, inf
from numpy.core.fromnumeric import amax, amin
from numpy.core.numerictypes import bool_, typecodes
import numpy.core.numeric as numeric
import warnings
if sys.version_info[0] >= 3:
from functools import reduce
# Ufunc domain lookup for __array_wrap__
ufunc_domain = {}
# Ufunc fills lookup for __array__
ufunc_fills = {}
MaskType = bool_
nomask = MaskType(0)
divide_tolerance = 1.e-35
class MAError (Exception):
def __init__ (self, args=None):
"Create an exception"
# The .args attribute must be a tuple.
if not isinstance(args, tuple):
args = (args,)
self.args = args
def __str__(self):
"Calculate the string representation"
return str(self.args[0])
__repr__ = __str__
class _MaskedPrintOption:
"One instance of this class, masked_print_option, is created."
def __init__ (self, display):
"Create the masked print option object."
self.set_display(display)
self._enabled = 1
def display (self):
"Show what prints for masked values."
return self._display
def set_display (self, s):
"set_display(s) sets what prints for masked values."
self._display = s
def enabled (self):
"Is the use of the display value enabled?"
return self._enabled
def enable(self, flag=1):
"Set the enabling flag to flag."
self._enabled = flag
def __str__ (self):
return str(self._display)
__repr__ = __str__
#if you single index into a masked location you get this object.
masked_print_option = _MaskedPrintOption('--')
# Use single element arrays or scalars.
default_real_fill_value = 1.e20
default_complex_fill_value = 1.e20 + 0.0j
default_character_fill_value = '-'
default_integer_fill_value = 999999
default_object_fill_value = '?'
def default_fill_value (obj):
"Function to calculate default fill value for an object."
if isinstance(obj, types.FloatType):
return default_real_fill_value
elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType):
return default_integer_fill_value
elif isinstance(obj, types.StringType):
return default_character_fill_value
elif isinstance(obj, types.ComplexType):
return default_complex_fill_value
elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
x = obj.dtype.char
if x in typecodes['Float']:
return default_real_fill_value
if x in typecodes['Integer']:
return default_integer_fill_value
if x in typecodes['Complex']:
return default_complex_fill_value
if x in typecodes['Character']:
return default_character_fill_value
if x in typecodes['UnsignedInteger']:
return umath.absolute(default_integer_fill_value)
return default_object_fill_value
else:
return default_object_fill_value
def minimum_fill_value (obj):
"Function to calculate default fill value suitable for taking minima."
if isinstance(obj, types.FloatType):
return numeric.inf
elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType):
return sys.maxint
elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
x = obj.dtype.char
if x in typecodes['Float']:
return numeric.inf
if x in typecodes['Integer']:
return sys.maxint
if x in typecodes['UnsignedInteger']:
return sys.maxint
else:
raise TypeError, 'Unsuitable type for calculating minimum.'
def maximum_fill_value (obj):
"Function to calculate default fill value suitable for taking maxima."
if isinstance(obj, types.FloatType):
return -inf
elif isinstance(obj, types.IntType) or isinstance(obj, types.LongType):
return -sys.maxint
elif isinstance(obj, MaskedArray) or isinstance(obj, ndarray):
x = obj.dtype.char
if x in typecodes['Float']:
return -inf
if x in typecodes['Integer']:
return -sys.maxint
if x in typecodes['UnsignedInteger']:
return 0
else:
raise TypeError, 'Unsuitable type for calculating maximum.'
def set_fill_value (a, fill_value):
"Set fill value of a if it is a masked array."
if isMaskedArray(a):
a.set_fill_value (fill_value)
def getmask (a):
"""Mask of values in a; could be nomask.
Returns nomask if a is not a masked array.
To get an array for sure use getmaskarray."""
if isinstance(a, MaskedArray):
return a.raw_mask()
else:
return nomask
def getmaskarray (a):
"""Mask of values in a; an array of zeros if mask is nomask
or not a masked array, and is a byte-sized integer.
Do not try to add up entries, for example.
"""
m = getmask(a)
if m is nomask:
return make_mask_none(shape(a))
else:
return m
def is_mask (m):
"""Is m a legal mask? Does not check contents, only type.
"""
try:
return m.dtype.type is MaskType
except AttributeError:
return False
def make_mask (m, copy=0, flag=0):
"""make_mask(m, copy=0, flag=0)
return m as a mask, creating a copy if necessary or requested.
Can accept any sequence of integers or nomask. Does not check
that contents must be 0s and 1s.
if flag, return nomask if m contains no true elements.
"""
if m is nomask:
return nomask
elif isinstance(m, ndarray):
if m.dtype.type is MaskType:
if copy:
result = numeric.array(m, dtype=MaskType, copy=copy)
else:
result = m
else:
result = m.astype(MaskType)
else:
result = filled(m, True).astype(MaskType)
if flag and not fromnumeric.sometrue(fromnumeric.ravel(result)):
return nomask
else:
return result
def make_mask_none (s):
"Return a mask of all zeros of shape s."
result = numeric.zeros(s, dtype=MaskType)
result.shape = s
return result
def mask_or (m1, m2):
"""Logical or of the mask candidates m1 and m2, treating nomask as false.
Result may equal m1 or m2 if the other is nomask.
"""
if m1 is nomask: return make_mask(m2)
if m2 is nomask: return make_mask(m1)
if m1 is m2 and is_mask(m1): return m1
return make_mask(umath.logical_or(m1, m2))
def filled (a, value = None):
"""a as a contiguous numeric array with any masked areas replaced by value
if value is None or the special element "masked", get_fill_value(a)
is used instead.
If a is already a contiguous numeric array, a itself is returned.
filled(a) can be used to be sure that the result is numeric when
passing an object a to other software ignorant of MA, in particular to
numeric itself.
"""
if isinstance(a, MaskedArray):
return a.filled(value)
elif isinstance(a, ndarray) and a.flags['CONTIGUOUS']:
return a
elif isinstance(a, types.DictType):
return numeric.array(a, 'O')
else:
return numeric.array(a)
def get_fill_value (a):
"""
The fill value of a, if it has one; otherwise, the default fill value
for that type.
"""
if isMaskedArray(a):
result = a.fill_value()
else:
result = default_fill_value(a)
return result
def common_fill_value (a, b):
"The common fill_value of a and b, if there is one, or None"
t1 = get_fill_value(a)
t2 = get_fill_value(b)
if t1 == t2: return t1
return None
# Domain functions return 1 where the argument(s) are not in the domain.
class domain_check_interval:
"domain_check_interval(a,b)(x) = true where x < a or y > b"
def __init__(self, y1, y2):
"domain_check_interval(a,b)(x) = true where x < a or y > b"
self.y1 = y1
self.y2 = y2
def __call__ (self, x):
"Execute the call behavior."
return umath.logical_or(umath.greater (x, self.y2),
umath.less(x, self.y1)
)
class domain_tan:
"domain_tan(eps) = true where abs(cos(x)) < eps)"
def __init__(self, eps):
"domain_tan(eps) = true where abs(cos(x)) < eps)"
self.eps = eps
def __call__ (self, x):
"Execute the call behavior."
return umath.less(umath.absolute(umath.cos(x)), self.eps)
class domain_greater:
"domain_greater(v)(x) = true where x <= v"
def __init__(self, critical_value):
"domain_greater(v)(x) = true where x <= v"
self.critical_value = critical_value
def __call__ (self, x):
"Execute the call behavior."
return umath.less_equal (x, self.critical_value)
class domain_greater_equal:
"domain_greater_equal(v)(x) = true where x < v"
def __init__(self, critical_value):
"domain_greater_equal(v)(x) = true where x < v"
self.critical_value = critical_value
def __call__ (self, x):
"Execute the call behavior."
return umath.less (x, self.critical_value)
class masked_unary_operation:
def __init__ (self, aufunc, fill=0, domain=None):
""" masked_unary_operation(aufunc, fill=0, domain=None)
aufunc(fill) must be defined
self(x) returns aufunc(x)
with masked values where domain(x) is true or getmask(x) is true.
"""
self.f = aufunc
self.fill = fill
self.domain = domain
self.__doc__ = getattr(aufunc, "__doc__", str(aufunc))
self.__name__ = getattr(aufunc, "__name__", str(aufunc))
ufunc_domain[aufunc] = domain
ufunc_fills[aufunc] = fill,
def __call__ (self, a, *args, **kwargs):
"Execute the call behavior."
# numeric tries to return scalars rather than arrays when given scalars.
m = getmask(a)
d1 = filled(a, self.fill)
if self.domain is not None:
m = mask_or(m, self.domain(d1))
result = self.f(d1, *args, **kwargs)
return masked_array(result, m)
def __str__ (self):
return "Masked version of " + str(self.f)
class domain_safe_divide:
def __init__ (self, tolerance=divide_tolerance):
self.tolerance = tolerance
def __call__ (self, a, b):
return umath.absolute(a) * self.tolerance >= umath.absolute(b)
class domained_binary_operation:
"""Binary operations that have a domain, like divide. These are complicated
so they are a separate class. They have no reduce, outer or accumulate.
"""
def __init__ (self, abfunc, domain, fillx=0, filly=0):
"""abfunc(fillx, filly) must be defined.
abfunc(x, filly) = x for all x to enable reduce.
"""
self.f = abfunc
self.domain = domain
self.fillx = fillx
self.filly = filly
self.__doc__ = getattr(abfunc, "__doc__", str(abfunc))
self.__name__ = getattr(abfunc, "__name__", str(abfunc))
ufunc_domain[abfunc] = domain
ufunc_fills[abfunc] = fillx, filly
def __call__(self, a, b):
"Execute the call behavior."
ma = getmask(a)
mb = getmask(b)
d1 = filled(a, self.fillx)
d2 = filled(b, self.filly)
t = self.domain(d1, d2)
if fromnumeric.sometrue(t, None):
d2 = where(t, self.filly, d2)
mb = mask_or(mb, t)
m = mask_or(ma, mb)
result = self.f(d1, d2)
return masked_array(result, m)
def __str__ (self):
return "Masked version of " + str(self.f)
class masked_binary_operation:
def __init__ (self, abfunc, fillx=0, filly=0):
"""abfunc(fillx, filly) must be defined.
abfunc(x, filly) = x for all x to enable reduce.
"""
self.f = abfunc
self.fillx = fillx
self.filly = filly
self.__doc__ = getattr(abfunc, "__doc__", str(abfunc))
ufunc_domain[abfunc] = None
ufunc_fills[abfunc] = fillx, filly
def __call__ (self, a, b, *args, **kwargs):
"Execute the call behavior."
m = mask_or(getmask(a), getmask(b))
d1 = filled(a, self.fillx)
d2 = filled(b, self.filly)
result = self.f(d1, d2, *args, **kwargs)
if isinstance(result, ndarray) \
and m.ndim != 0 \
and m.shape != result.shape:
m = mask_or(getmaskarray(a), getmaskarray(b))
return masked_array(result, m)
def reduce (self, target, axis=0, dtype=None):
"""Reduce target along the given axis with this function."""
m = getmask(target)
t = filled(target, self.filly)
if t.shape == ():
t = t.reshape(1)
if m is not nomask:
m = make_mask(m, copy=1)
m.shape = (1,)
if m is nomask:
t = self.f.reduce(t, axis)
else:
t = masked_array (t, m)
# XXX: "or t.dtype" below is a workaround for what appears
# XXX: to be a bug in reduce.
t = self.f.reduce(filled(t, self.filly), axis,
dtype=dtype or t.dtype)
m = umath.logical_and.reduce(m, axis)
if isinstance(t, ndarray):
return masked_array(t, m, get_fill_value(target))
elif m:
return masked
else:
return t
def outer (self, a, b):
"Return the function applied to the outer product of a and b."
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = nomask
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = logical_or.outer(ma, mb)
d = self.f.outer(filled(a, self.fillx), filled(b, self.filly))
return masked_array(d, m)
def accumulate (self, target, axis=0):
"""Accumulate target along axis after filling with y fill value."""
t = filled(target, self.filly)
return masked_array (self.f.accumulate (t, axis))
def __str__ (self):
return "Masked version of " + str(self.f)
sqrt = masked_unary_operation(umath.sqrt, 0.0, domain_greater_equal(0.0))
log = masked_unary_operation(umath.log, 1.0, domain_greater(0.0))
log10 = masked_unary_operation(umath.log10, 1.0, domain_greater(0.0))
exp = masked_unary_operation(umath.exp)
conjugate = masked_unary_operation(umath.conjugate)
sin = masked_unary_operation(umath.sin)
cos = masked_unary_operation(umath.cos)
tan = masked_unary_operation(umath.tan, 0.0, domain_tan(1.e-35))
arcsin = masked_unary_operation(umath.arcsin, 0.0, domain_check_interval(-1.0, 1.0))
arccos = masked_unary_operation(umath.arccos, 0.0, domain_check_interval(-1.0, 1.0))
arctan = masked_unary_operation(umath.arctan)
# Missing from numeric
arcsinh = masked_unary_operation(umath.arcsinh)
arccosh = masked_unary_operation(umath.arccosh, 1.0, domain_greater_equal(1.0))
arctanh = masked_unary_operation(umath.arctanh, 0.0, domain_check_interval(-1.0+1e-15, 1.0-1e-15))
sinh = masked_unary_operation(umath.sinh)
cosh = masked_unary_operation(umath.cosh)
tanh = masked_unary_operation(umath.tanh)
absolute = masked_unary_operation(umath.absolute)
fabs = masked_unary_operation(umath.fabs)
negative = masked_unary_operation(umath.negative)
def nonzero(a):
"""returns the indices of the elements of a which are not zero
and not masked
"""
return numeric.asarray(filled(a, 0).nonzero())
around = masked_unary_operation(fromnumeric.round_)
floor = masked_unary_operation(umath.floor)
ceil = masked_unary_operation(umath.ceil)
logical_not = masked_unary_operation(umath.logical_not)
add = masked_binary_operation(umath.add)
subtract = masked_binary_operation(umath.subtract)
subtract.reduce = None
multiply = masked_binary_operation(umath.multiply, 1, 1)
divide = domained_binary_operation(umath.divide, domain_safe_divide(), 0, 1)
true_divide = domained_binary_operation(umath.true_divide, domain_safe_divide(), 0, 1)
floor_divide = domained_binary_operation(umath.floor_divide, domain_safe_divide(), 0, 1)
remainder = domained_binary_operation(umath.remainder, domain_safe_divide(), 0, 1)
fmod = domained_binary_operation(umath.fmod, domain_safe_divide(), 0, 1)
hypot = masked_binary_operation(umath.hypot)
arctan2 = masked_binary_operation(umath.arctan2, 0.0, 1.0)
arctan2.reduce = None
equal = masked_binary_operation(umath.equal)
equal.reduce = None
not_equal = masked_binary_operation(umath.not_equal)
not_equal.reduce = None
less_equal = masked_binary_operation(umath.less_equal)
less_equal.reduce = None
greater_equal = masked_binary_operation(umath.greater_equal)
greater_equal.reduce = None
less = masked_binary_operation(umath.less)
less.reduce = None
greater = masked_binary_operation(umath.greater)
greater.reduce = None
logical_and = masked_binary_operation(umath.logical_and)
alltrue = masked_binary_operation(umath.logical_and, 1, 1).reduce
logical_or = masked_binary_operation(umath.logical_or)
sometrue = logical_or.reduce
logical_xor = masked_binary_operation(umath.logical_xor)
bitwise_and = masked_binary_operation(umath.bitwise_and)
bitwise_or = masked_binary_operation(umath.bitwise_or)
bitwise_xor = masked_binary_operation(umath.bitwise_xor)
def rank (object):
return fromnumeric.rank(filled(object))
def shape (object):
return fromnumeric.shape(filled(object))
def size (object, axis=None):
return fromnumeric.size(filled(object), axis)
class MaskedArray (object):
"""Arrays with possibly masked values.
Masked values of 1 exclude the corresponding element from
any computation.
Construction:
x = array(data, dtype=None, copy=True, order=False,
mask = nomask, fill_value=None)
If copy=False, every effort is made not to copy the data:
If data is a MaskedArray, and argument mask=nomask,
then the candidate data is data.data and the
mask used is data.mask. If data is a numeric array,
it is used as the candidate raw data.
If dtype is not None and
is != data.dtype.char then a data copy is required.
Otherwise, the candidate is used.
If a data copy is required, raw data stored is the result of:
numeric.array(data, dtype=dtype.char, copy=copy)
If mask is nomask there are no masked values. Otherwise mask must
be convertible to an array of booleans with the same shape as x.
fill_value is used to fill in masked values when necessary,
such as when printing and in method/function filled().
The fill_value is not used for computation within this module.
"""
__array_priority__ = 10.1
def __init__(self, data, dtype=None, copy=True, order=False,
mask=nomask, fill_value=None):
"""array(data, dtype=None, copy=True, order=False, mask=nomask, fill_value=None)
If data already a numeric array, its dtype becomes the default value of dtype.
"""
if dtype is None:
tc = None
else:
tc = numeric.dtype(dtype)
need_data_copied = copy
if isinstance(data, MaskedArray):
c = data.data
if tc is None:
tc = c.dtype
elif tc != c.dtype:
need_data_copied = True
if mask is nomask:
mask = data.mask
elif mask is not nomask: #attempting to change the mask
need_data_copied = True
elif isinstance(data, ndarray):
c = data
if tc is None:
tc = c.dtype
elif tc != c.dtype:
need_data_copied = True
else:
need_data_copied = False #because I'll do it now
c = numeric.array(data, dtype=tc, copy=True, order=order)
tc = c.dtype
if need_data_copied:
if tc == c.dtype:
self._data = numeric.array(c, dtype=tc, copy=True, order=order)
else:
self._data = c.astype(tc)
else:
self._data = c
if mask is nomask:
self._mask = nomask
self._shared_mask = 0
else:
self._mask = make_mask (mask)
if self._mask is nomask:
self._shared_mask = 0
else:
self._shared_mask = (self._mask is mask)
nm = size(self._mask)
nd = size(self._data)
if nm != nd:
if nm == 1:
self._mask = fromnumeric.resize(self._mask, self._data.shape)
self._shared_mask = 0
elif nd == 1:
self._data = fromnumeric.resize(self._data, self._mask.shape)
self._data.shape = self._mask.shape
else:
raise MAError, "Mask and data not compatible."
elif nm == 1 and shape(self._mask) != shape(self._data):
self.unshare_mask()
self._mask.shape = self._data.shape
self.set_fill_value(fill_value)
def __array__ (self, t=None, context=None):
"Special hook for numeric. Converts to numeric if possible."
if self._mask is not nomask:
if fromnumeric.ravel(self._mask).any():
if context is None:
warnings.warn("Cannot automatically convert masked array to "\
"numeric because data\n is masked in one or "\
"more locations.");
return self._data
#raise MAError, \
# """Cannot automatically convert masked array to numeric because data
# is masked in one or more locations.
# """
else:
func, args, i = context
fills = ufunc_fills.get(func)
if fills is None:
raise MAError, "%s not known to ma" % func
return self.filled(fills[i])
else: # Mask is all false
# Optimize to avoid future invocations of this section.
self._mask = nomask
self._shared_mask = 0
if t:
return self._data.astype(t)
else:
return self._data
def __array_wrap__ (self, array, context=None):
"""Special hook for ufuncs.
Wraps the numpy array and sets the mask according to
context.
"""
if context is None:
return MaskedArray(array, copy=False, mask=nomask)
func, args = context[:2]
domain = ufunc_domain[func]
m = reduce(mask_or, [getmask(a) for a in args])
if domain is not None:
m = mask_or(m, domain(*[getattr(a, '_data', a)
for a in args]))
if m is not nomask:
try:
shape = array.shape
except AttributeError:
pass
else:
if m.shape != shape:
m = reduce(mask_or, [getmaskarray(a) for a in args])
return MaskedArray(array, copy=False, mask=m)
def _get_shape(self):
"Return the current shape."
return self._data.shape
def _set_shape (self, newshape):
"Set the array's shape."
self._data.shape = newshape
if self._mask is not nomask:
self._mask = self._mask.copy()
self._mask.shape = newshape
def _get_flat(self):
"""Calculate the flat value.
"""
if self._mask is nomask:
return masked_array(self._data.ravel(), mask=nomask,
fill_value = self.fill_value())
else:
return masked_array(self._data.ravel(),
mask=self._mask.ravel(),
fill_value = self.fill_value())
def _set_flat (self, value):
"x.flat = value"
y = self.ravel()
y[:] = value
def _get_real(self):
"Get the real part of a complex array."
if self._mask is nomask:
return masked_array(self._data.real, mask=nomask,
fill_value = self.fill_value())
else:
return masked_array(self._data.real, mask=self._mask,
fill_value = self.fill_value())
def _set_real (self, value):
"x.real = value"
y = self.real
y[...] = value
def _get_imaginary(self):
"Get the imaginary part of a complex array."
if self._mask is nomask:
return masked_array(self._data.imag, mask=nomask,
fill_value = self.fill_value())
else:
return masked_array(self._data.imag, mask=self._mask,
fill_value = self.fill_value())
def _set_imaginary (self, value):
"x.imaginary = value"
y = self.imaginary
y[...] = value
def __str__(self):
"""Calculate the str representation, using masked for fill if
it is enabled. Otherwise fill with fill value.
"""
if masked_print_option.enabled():
f = masked_print_option
# XXX: Without the following special case masked
# XXX: would print as "[--]", not "--". Can we avoid
# XXX: checks for masked by choosing a different value
# XXX: for the masked singleton? 2005-01-05 -- sasha
if self is masked:
return str(f)
m = self._mask
if m is not nomask and m.shape == () and m:
return str(f)
# convert to object array to make filled work
self = self.astype(object)
else:
f = self.fill_value()
res = self.filled(f)
return str(res)
def __repr__(self):
"""Calculate the repr representation, using masked for fill if
it is enabled. Otherwise fill with fill value.
"""
with_mask = """\
array(data =
%(data)s,
mask =
%(mask)s,
fill_value=%(fill)s)
"""
with_mask1 = """\
array(data = %(data)s,
mask = %(mask)s,
fill_value=%(fill)s)
"""
without_mask = """array(
%(data)s)"""
without_mask1 = """array(%(data)s)"""
n = len(self.shape)
if self._mask is nomask:
if n <= 1:
return without_mask1 % {'data':str(self.filled())}
return without_mask % {'data':str(self.filled())}
else:
if n <= 1:
return with_mask % {
'data': str(self.filled()),
'mask': str(self._mask),
'fill': str(self.fill_value())
}
return with_mask % {
'data': str(self.filled()),
'mask': str(self._mask),
'fill': str(self.fill_value())
}
without_mask1 = """array(%(data)s)"""
if self._mask is nomask:
return without_mask % {'data':str(self.filled())}
else:
return with_mask % {
'data': str(self.filled()),
'mask': str(self._mask),
'fill': str(self.fill_value())
}
def __float__(self):
"Convert self to float."
self.unmask()
if self._mask is not nomask:
raise MAError, 'Cannot convert masked element to a Python float.'
return float(self.data.item())
def __int__(self):
"Convert self to int."
self.unmask()
if self._mask is not nomask:
raise MAError, 'Cannot convert masked element to a Python int.'
return int(self.data.item())
def __getitem__(self, i):
"Get item described by i. Not a copy as in previous versions."
self.unshare_mask()
m = self._mask
dout = self._data[i]
if m is nomask:
try:
if dout.size == 1:
return dout
else:
return masked_array(dout, fill_value=self._fill_value)
except AttributeError:
return dout
mi = m[i]
if mi.size == 1:
if mi:
return masked
else:
return dout
else:
return masked_array(dout, mi, fill_value=self._fill_value)
# --------
# setitem and setslice notes
# note that if value is masked, it means to mask those locations.
# setting a value changes the mask to match the value in those locations.
def __setitem__(self, index, value):
"Set item described by index. If value is masked, mask those locations."
d = self._data
if self is masked:
raise MAError, 'Cannot alter masked elements.'
if value is masked:
if self._mask is nomask:
self._mask = make_mask_none(d.shape)
self._shared_mask = False
else:
self.unshare_mask()
self._mask[index] = True
return
m = getmask(value)
value = filled(value).astype(d.dtype)
d[index] = value
if m is nomask:
if self._mask is not nomask:
self.unshare_mask()
self._mask[index] = False
else:
if self._mask is nomask:
self._mask = make_mask_none(d.shape)
self._shared_mask = True
else:
self.unshare_mask()
self._mask[index] = m
def __nonzero__(self):
"""returns true if any element is non-zero or masked
"""
# XXX: This changes bool conversion logic from MA.
# XXX: In MA bool(a) == len(a) != 0, but in numpy
# XXX: scalars do not have len
m = self._mask
d = self._data
return bool(m is not nomask and m.any()
or d is not nomask and d.any())
def __len__ (self):
"""Return length of first dimension. This is weird but Python's
slicing behavior depends on it."""
return len(self._data)
def __and__(self, other):
"Return bitwise_and"
return bitwise_and(self, other)
def __or__(self, other):
"Return bitwise_or"
return bitwise_or(self, other)
def __xor__(self, other):
"Return bitwise_xor"
return bitwise_xor(self, other)
__rand__ = __and__
__ror__ = __or__
__rxor__ = __xor__
def __abs__(self):
"Return absolute(self)"
return absolute(self)
def __neg__(self):
"Return negative(self)"
return negative(self)
def __pos__(self):
"Return array(self)"
return array(self)
def __add__(self, other):
"Return add(self, other)"
return add(self, other)
__radd__ = __add__
def __mod__ (self, other):
"Return remainder(self, other)"
return remainder(self, other)
def __rmod__ (self, other):
"Return remainder(other, self)"
return remainder(other, self)
def __lshift__ (self, n):
return left_shift(self, n)
def __rshift__ (self, n):
return right_shift(self, n)
def __sub__(self, other):
"Return subtract(self, other)"
return subtract(self, other)
def __rsub__(self, other):
"Return subtract(other, self)"
return subtract(other, self)
def __mul__(self, other):
"Return multiply(self, other)"
return multiply(self, other)
__rmul__ = __mul__
def __div__(self, other):
"Return divide(self, other)"
return divide(self, other)
def __rdiv__(self, other):
"Return divide(other, self)"
return divide(other, self)
def __truediv__(self, other):
"Return divide(self, other)"
return true_divide(self, other)
def __rtruediv__(self, other):
"Return divide(other, self)"
return true_divide(other, self)
def __floordiv__(self, other):
"Return divide(self, other)"
return floor_divide(self, other)
def __rfloordiv__(self, other):
"Return divide(other, self)"
return floor_divide(other, self)
def __pow__(self, other, third=None):
"Return power(self, other, third)"
return power(self, other, third)
def __sqrt__(self):
"Return sqrt(self)"
return sqrt(self)
def __iadd__(self, other):
"Add other to self in place."
t = self._data.dtype.char
f = filled(other, 0)
t1 = f.dtype.char
if t == t1:
pass
elif t in typecodes['Integer']:
if t1 in typecodes['Integer']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Float']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Complex']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
elif t1 in typecodes['Complex']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
else:
raise TypeError, 'Incorrect type for in-place operation.'
if self._mask is nomask:
self._data += f
m = getmask(other)
self._mask = m
self._shared_mask = m is not nomask
else:
result = add(self, masked_array(f, mask=getmask(other)))
self._data = result.data
self._mask = result.mask
self._shared_mask = 1
return self
def __imul__(self, other):
"Add other to self in place."
t = self._data.dtype.char
f = filled(other, 0)
t1 = f.dtype.char
if t == t1:
pass
elif t in typecodes['Integer']:
if t1 in typecodes['Integer']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Float']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Complex']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
elif t1 in typecodes['Complex']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
else:
raise TypeError, 'Incorrect type for in-place operation.'
if self._mask is nomask:
self._data *= f
m = getmask(other)
self._mask = m
self._shared_mask = m is not nomask
else:
result = multiply(self, masked_array(f, mask=getmask(other)))
self._data = result.data
self._mask = result.mask
self._shared_mask = 1
return self
def __isub__(self, other):
"Subtract other from self in place."
t = self._data.dtype.char
f = filled(other, 0)
t1 = f.dtype.char
if t == t1:
pass
elif t in typecodes['Integer']:
if t1 in typecodes['Integer']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Float']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Complex']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
elif t1 in typecodes['Complex']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
else:
raise TypeError, 'Incorrect type for in-place operation.'
if self._mask is nomask:
self._data -= f
m = getmask(other)
self._mask = m
self._shared_mask = m is not nomask
else:
result = subtract(self, masked_array(f, mask=getmask(other)))
self._data = result.data
self._mask = result.mask
self._shared_mask = 1
return self
def __idiv__(self, other):
"Divide self by other in place."
t = self._data.dtype.char
f = filled(other, 0)
t1 = f.dtype.char
if t == t1:
pass
elif t in typecodes['Integer']:
if t1 in typecodes['Integer']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Float']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
elif t in typecodes['Complex']:
if t1 in typecodes['Integer']:
f = f.astype(t)
elif t1 in typecodes['Float']:
f = f.astype(t)
elif t1 in typecodes['Complex']:
f = f.astype(t)
else:
raise TypeError, 'Incorrect type for in-place operation.'
else:
raise TypeError, 'Incorrect type for in-place operation.'
mo = getmask(other)
result = divide(self, masked_array(f, mask=mo))
self._data = result.data
dm = result.raw_mask()
if dm is not self._mask:
self._mask = dm
self._shared_mask = 1
return self
def __eq__(self, other):
return equal(self,other)
def __ne__(self, other):
return not_equal(self,other)
def __lt__(self, other):
return less(self,other)
def __le__(self, other):
return less_equal(self,other)
def __gt__(self, other):
return greater(self,other)
def __ge__(self, other):
return greater_equal(self,other)
def astype (self, tc):
"return self as array of given type."
d = self._data.astype(tc)
return array(d, mask=self._mask)
def byte_swapped(self):
"""Returns the raw data field, byte_swapped. Included for consistency
with numeric but doesn't make sense in this context.
"""
return self._data.byte_swapped()
def compressed (self):
"A 1-D array of all the non-masked data."
d = fromnumeric.ravel(self._data)
if self._mask is nomask:
return array(d)
else:
m = 1 - fromnumeric.ravel(self._mask)
c = fromnumeric.compress(m, d)
return array(c, copy=0)
def count (self, axis = None):
"Count of the non-masked elements in a, or along a certain axis."
m = self._mask
s = self._data.shape
ls = len(s)
if m is nomask:
if ls == 0:
return 1
if ls == 1:
return s[0]
if axis is None:
return reduce(lambda x, y:x*y, s)
else:
n = s[axis]
t = list(s)
del t[axis]
return ones(t) * n
if axis is None:
w = fromnumeric.ravel(m).astype(int)
n1 = size(w)
if n1 == 1:
n2 = w[0]
else:
n2 = umath.add.reduce(w)
return n1 - n2
else:
n1 = size(m, axis)
n2 = sum(m.astype(int), axis)
return n1 - n2
def dot (self, other):
"s.dot(other) = innerproduct(s, other)"
return innerproduct(self, other)
def fill_value(self):
"Get the current fill value."
return self._fill_value
def filled (self, fill_value=None):
"""A numeric array with masked values filled. If fill_value is None,
use self.fill_value().
If mask is nomask, copy data only if not contiguous.
Result is always a contiguous, numeric array.
# Is contiguous really necessary now?
"""
d = self._data
m = self._mask
if m is nomask:
if d.flags['CONTIGUOUS']:
return d
else:
return d.copy()
else:
if fill_value is None:
value = self._fill_value
else:
value = fill_value
if self is masked:
result = numeric.array(value)
else:
try:
result = numeric.array(d, dtype=d.dtype, copy=1)
result[m] = value
except (TypeError, AttributeError):
#ok, can't put that value in here
value = numeric.array(value, dtype=object)
d = d.astype(object)
result = fromnumeric.choose(m, (d, value))
return result
def ids (self):
"""Return the ids of the data and mask areas"""
return (id(self._data), id(self._mask))
def iscontiguous (self):
"Is the data contiguous?"
return self._data.flags['CONTIGUOUS']
def itemsize(self):
"Item size of each data item."
return self._data.itemsize
def outer(self, other):
"s.outer(other) = outerproduct(s, other)"
return outerproduct(self, other)
def put (self, values):
"""Set the non-masked entries of self to filled(values).
No change to mask
"""
iota = numeric.arange(self.size)
d = self._data
if self._mask is nomask:
ind = iota
else:
ind = fromnumeric.compress(1 - self._mask, iota)
d[ind] = filled(values).astype(d.dtype)
def putmask (self, values):
"""Set the masked entries of self to filled(values).
Mask changed to nomask.
"""
d = self._data
if self._mask is not nomask:
d[self._mask] = filled(values).astype(d.dtype)
self._shared_mask = 0
self._mask = nomask
def ravel (self):
"""Return a 1-D view of self."""
if self._mask is nomask:
return masked_array(self._data.ravel())
else:
return masked_array(self._data.ravel(), self._mask.ravel())
def raw_data (self):
""" Obsolete; use data property instead.
The raw data; portions may be meaningless.
May be noncontiguous. Expert use only."""
return self._data
data = property(fget=raw_data,
doc="The data, but values at masked locations are meaningless.")
def raw_mask (self):
""" Obsolete; use mask property instead.
May be noncontiguous. Expert use only.
"""
return self._mask
mask = property(fget=raw_mask,
doc="The mask, may be nomask. Values where mask true are meaningless.")
def reshape (self, *s):
"""This array reshaped to shape s"""
d = self._data.reshape(*s)
if self._mask is nomask:
return masked_array(d)
else:
m = self._mask.reshape(*s)
return masked_array(d, m)
def set_fill_value (self, v=None):
"Set the fill value to v. Omit v to restore default."
if v is None:
v = default_fill_value (self.raw_data())
self._fill_value = v
def _get_ndim(self):
return self._data.ndim
ndim = property(_get_ndim, doc=numeric.ndarray.ndim.__doc__)
def _get_size (self):
return self._data.size
size = property(fget=_get_size, doc="Number of elements in the array.")
## CHECK THIS: signature of numeric.array.size?
def _get_dtype(self):
return self._data.dtype
dtype = property(fget=_get_dtype, doc="type of the array elements.")
def item(self, *args):
"Return Python scalar if possible"
if self._mask is not nomask:
m = self._mask.item(*args)
try:
if m[0]:
return masked
except IndexError:
return masked
return self._data.item(*args)
def itemset(self, *args):
"Set Python scalar into array"
item = args[-1]
args = args[:-1]
self[args] = item
def tolist(self, fill_value=None):
"Convert to list"
return self.filled(fill_value).tolist()
def tostring(self, fill_value=None):
"Convert to string"
return self.filled(fill_value).tostring()
def unmask (self):
"Replace the mask by nomask if possible."
if self._mask is nomask: return
m = make_mask(self._mask, flag=1)
if m is nomask:
self._mask = nomask
self._shared_mask = 0
def unshare_mask (self):
"If currently sharing mask, make a copy."
if self._shared_mask:
self._mask = make_mask (self._mask, copy=1, flag=0)
self._shared_mask = 0
def _get_ctypes(self):
return self._data.ctypes
def _get_T(self):
if (self.ndim < 2):
return self
return self.transpose()
shape = property(_get_shape, _set_shape,
doc = 'tuple giving the shape of the array')
flat = property(_get_flat, _set_flat,
doc = 'Access array in flat form.')
real = property(_get_real, _set_real,
doc = 'Access the real part of the array')
imaginary = property(_get_imaginary, _set_imaginary,
doc = 'Access the imaginary part of the array')
imag = imaginary
ctypes = property(_get_ctypes, None, doc="ctypes")
T = property(_get_T, None, doc="get transpose")
#end class MaskedArray
array = MaskedArray
def isMaskedArray (x):
"Is x a masked array, that is, an instance of MaskedArray?"
return isinstance(x, MaskedArray)
isarray = isMaskedArray
isMA = isMaskedArray #backward compatibility
def allclose (a, b, fill_value=1, rtol=1.e-5, atol=1.e-8):
""" Returns true if all components of a and b are equal
subject to given tolerances.
If fill_value is 1, masked values considered equal.
If fill_value is 0, masked values considered unequal.
The relative error rtol should be positive and << 1.0
The absolute error atol comes into play for those elements
of b that are very small or zero; it says how small a must be also.
"""
m = mask_or(getmask(a), getmask(b))
d1 = filled(a)
d2 = filled(b)
x = filled(array(d1, copy=0, mask=m), fill_value).astype(float)
y = filled(array(d2, copy=0, mask=m), 1).astype(float)
d = umath.less_equal(umath.absolute(x-y), atol + rtol * umath.absolute(y))
return fromnumeric.alltrue(fromnumeric.ravel(d))
def allequal (a, b, fill_value=1):
"""
True if all entries of a and b are equal, using
fill_value as a truth value where either or both are masked.
"""
m = mask_or(getmask(a), getmask(b))
if m is nomask:
x = filled(a)
y = filled(b)
d = umath.equal(x, y)
return fromnumeric.alltrue(fromnumeric.ravel(d))
elif fill_value:
x = filled(a)
y = filled(b)
d = umath.equal(x, y)
dm = array(d, mask=m, copy=0)
return fromnumeric.alltrue(fromnumeric.ravel(filled(dm, 1)))
else:
return 0
def masked_values (data, value, rtol=1.e-5, atol=1.e-8, copy=1):
"""
masked_values(data, value, rtol=1.e-5, atol=1.e-8)
Create a masked array; mask is nomask if possible.
If copy==0, and otherwise possible, result
may share data values with original array.
Let d = filled(data, value). Returns d
masked where abs(data-value)<= atol + rtol * abs(value)
if d is of a floating point type. Otherwise returns
masked_object(d, value, copy)
"""
abs = umath.absolute
d = filled(data, value)
if issubclass(d.dtype.type, numeric.floating):
m = umath.less_equal(abs(d-value), atol+rtol*abs(value))
m = make_mask(m, flag=1)
return array(d, mask = m, copy=copy,
fill_value=value)
else:
return masked_object(d, value, copy=copy)
def masked_object (data, value, copy=1):
"Create array masked where exactly data equal to value"
d = filled(data, value)
dm = make_mask(umath.equal(d, value), flag=1)
return array(d, mask=dm, copy=copy, fill_value=value)
def arange(start, stop=None, step=1, dtype=None):
"""Just like range() except it returns a array whose type can be specified
by the keyword argument dtype.
"""
return array(numeric.arange(start, stop, step, dtype))
arrayrange = arange
def fromstring (s, t):
"Construct a masked array from a string. Result will have no mask."
return masked_array(numeric.fromstring(s, t))
def left_shift (a, n):
"Left shift n bits"
m = getmask(a)
if m is nomask:
d = umath.left_shift(filled(a), n)
return masked_array(d)
else:
d = umath.left_shift(filled(a, 0), n)
return masked_array(d, m)
def right_shift (a, n):
"Right shift n bits"
m = getmask(a)
if m is nomask:
d = umath.right_shift(filled(a), n)
return masked_array(d)
else:
d = umath.right_shift(filled(a, 0), n)
return masked_array(d, m)
def resize (a, new_shape):
"""resize(a, new_shape) returns a new array with the specified shape.
The original array's total size can be any size."""
m = getmask(a)
if m is not nomask:
m = fromnumeric.resize(m, new_shape)
result = array(fromnumeric.resize(filled(a), new_shape), mask=m)
result.set_fill_value(get_fill_value(a))
return result
def new_repeat(a, repeats, axis=None):
"""repeat elements of a repeats times along axis
repeats is a sequence of length a.shape[axis]
telling how many times to repeat each element.
"""
af = filled(a)
if isinstance(repeats, types.IntType):
if axis is None:
num = af.size
else:
num = af.shape[axis]
repeats = tuple([repeats]*num)
m = getmask(a)
if m is not nomask:
m = fromnumeric.repeat(m, repeats, axis)
d = fromnumeric.repeat(af, repeats, axis)
result = masked_array(d, m)
result.set_fill_value(get_fill_value(a))
return result
def identity(n):
"""identity(n) returns the identity matrix of shape n x n.
"""
return array(numeric.identity(n))
def indices (dimensions, dtype=None):
"""indices(dimensions,dtype=None) returns an array representing a grid
of indices with row-only, and column-only variation.
"""
return array(numeric.indices(dimensions, dtype))
def zeros (shape, dtype=float):
"""zeros(n, dtype=float) =
an array of all zeros of the given length or shape."""
return array(numeric.zeros(shape, dtype))
def ones (shape, dtype=float):
"""ones(n, dtype=float) =
an array of all ones of the given length or shape."""
return array(numeric.ones(shape, dtype))
def count (a, axis = None):
"Count of the non-masked elements in a, or along a certain axis."
a = masked_array(a)
return a.count(axis)
def power (a, b, third=None):
"a**b"
if third is not None:
raise MAError, "3-argument power not supported."
ma = getmask(a)
mb = getmask(b)
m = mask_or(ma, mb)
fa = filled(a, 1)
fb = filled(b, 1)
if fb.dtype.char in typecodes["Integer"]:
return masked_array(umath.power(fa, fb), m)
md = make_mask(umath.less(fa, 0), flag=1)
m = mask_or(m, md)
if m is nomask:
return masked_array(umath.power(fa, fb))
else:
fa = numeric.where(m, 1, fa)
return masked_array(umath.power(fa, fb), m)
def masked_array (a, mask=nomask, fill_value=None):
"""masked_array(a, mask=nomask) =
array(a, mask=mask, copy=0, fill_value=fill_value)
"""
return array(a, mask=mask, copy=0, fill_value=fill_value)
def sum (target, axis=None, dtype=None):
if axis is None:
target = ravel(target)
axis = 0
return add.reduce(target, axis, dtype)
def product (target, axis=None, dtype=None):
if axis is None:
target = ravel(target)
axis = 0
return multiply.reduce(target, axis, dtype)
def new_average (a, axis=None, weights=None, returned = 0):
"""average(a, axis=None, weights=None)
Computes average along indicated axis.
If axis is None, average over the entire array
Inputs can be integer or floating types; result is of type float.
If weights are given, result is sum(a*weights,axis=0)/(sum(weights,axis=0)*1.0)
weights must have a's shape or be the 1-d with length the size
of a in the given axis.
If returned, return a tuple: the result and the sum of the weights
or count of values. Results will have the same shape.
masked values in the weights will be set to 0.0
"""
a = masked_array(a)
mask = a.mask
ash = a.shape
if ash == ():
ash = (1,)
if axis is None:
if mask is nomask:
if weights is None:
n = add.reduce(a.raw_data().ravel())
d = reduce(lambda x, y: x * y, ash, 1.0)
else:
w = filled(weights, 0.0).ravel()
n = umath.add.reduce(a.raw_data().ravel() * w)
d = umath.add.reduce(w)
del w
else:
if weights is None:
n = add.reduce(a.ravel())
w = fromnumeric.choose(mask, (1.0, 0.0)).ravel()
d = umath.add.reduce(w)
del w
else:
w = array(filled(weights, 0.0), float, mask=mask).ravel()
n = add.reduce(a.ravel() * w)
d = add.reduce(w)
del w
else:
if mask is nomask:
if weights is None:
d = ash[axis] * 1.0
n = umath.add.reduce(a.raw_data(), axis)
else:
w = filled(weights, 0.0)
wsh = w.shape
if wsh == ():
wsh = (1,)
if wsh == ash:
w = numeric.array(w, float, copy=0)
n = add.reduce(a*w, axis)
d = add.reduce(w, axis)
del w
elif wsh == (ash[axis],):
r = [newaxis]*len(ash)
r[axis] = slice(None, None, 1)
w = eval ("w["+ repr(tuple(r)) + "] * ones(ash, float)")
n = add.reduce(a*w, axis)
d = add.reduce(w, axis)
del w, r
else:
raise ValueError, 'average: weights wrong shape.'
else:
if weights is None:
n = add.reduce(a, axis)
w = numeric.choose(mask, (1.0, 0.0))
d = umath.add.reduce(w, axis)
del w
else:
w = filled(weights, 0.0)
wsh = w.shape
if wsh == ():
wsh = (1,)
if wsh == ash:
w = array(w, float, mask=mask, copy=0)
n = add.reduce(a*w, axis)
d = add.reduce(w, axis)
elif wsh == (ash[axis],):
r = [newaxis]*len(ash)
r[axis] = slice(None, None, 1)
w = eval ("w["+ repr(tuple(r)) + "] * masked_array(ones(ash, float), mask)")
n = add.reduce(a*w, axis)
d = add.reduce(w, axis)
else:
raise ValueError, 'average: weights wrong shape.'
del w
#print n, d, repr(mask), repr(weights)
if n is masked or d is masked: return masked
result = divide (n, d)
del n
if isinstance(result, MaskedArray):
result.unmask()
if returned:
if not isinstance(d, MaskedArray):
d = masked_array(d)
if not d.shape == result.shape:
d = ones(result.shape, float) * d
d.unmask()
if returned:
return result, d
else:
return result
def where (condition, x, y):
"""where(condition, x, y) is x where condition is nonzero, y otherwise.
condition must be convertible to an integer array.
Answer is always the shape of condition.
The type depends on x and y. It is integer if both x and y are
the value masked.
"""
fc = filled(not_equal(condition, 0), 0)
xv = filled(x)
xm = getmask(x)
yv = filled(y)
ym = getmask(y)
d = numeric.choose(fc, (yv, xv))
md = numeric.choose(fc, (ym, xm))
m = getmask(condition)
m = make_mask(mask_or(m, md), copy=0, flag=1)
return masked_array(d, m)
def choose (indices, t, out=None, mode='raise'):
"Returns array shaped like indices with elements chosen from t"
def fmask (x):
if x is masked: return 1
return filled(x)
def nmask (x):
if x is masked: return 1
m = getmask(x)
if m is nomask: return 0
return m
c = filled(indices, 0)
masks = [nmask(x) for x in t]
a = [fmask(x) for x in t]
d = numeric.choose(c, a)
m = numeric.choose(c, masks)
m = make_mask(mask_or(m, getmask(indices)), copy=0, flag=1)
return masked_array(d, m)
def masked_where(condition, x, copy=1):
"""Return x as an array masked where condition is true.
Also masked where x or condition masked.
"""
cm = filled(condition,1)
m = mask_or(getmask(x), cm)
return array(filled(x), copy=copy, mask=m)
def masked_greater(x, value, copy=1):
"masked_greater(x, value) = x masked where x > value"
return masked_where(greater(x, value), x, copy)
def masked_greater_equal(x, value, copy=1):
"masked_greater_equal(x, value) = x masked where x >= value"
return masked_where(greater_equal(x, value), x, copy)
def masked_less(x, value, copy=1):
"masked_less(x, value) = x masked where x < value"
return masked_where(less(x, value), x, copy)
def masked_less_equal(x, value, copy=1):
"masked_less_equal(x, value) = x masked where x <= value"
return masked_where(less_equal(x, value), x, copy)
def masked_not_equal(x, value, copy=1):
"masked_not_equal(x, value) = x masked where x != value"
d = filled(x, 0)
c = umath.not_equal(d, value)
m = mask_or(c, getmask(x))
return array(d, mask=m, copy=copy)
def masked_equal(x, value, copy=1):
"""masked_equal(x, value) = x masked where x == value
For floating point consider masked_values(x, value) instead.
"""
d = filled(x, 0)
c = umath.equal(d, value)
m = mask_or(c, getmask(x))
return array(d, mask=m, copy=copy)
def masked_inside(x, v1, v2, copy=1):
"""x with mask of all values of x that are inside [v1,v2]
v1 and v2 can be given in either order.
"""
if v2 < v1:
t = v2
v2 = v1
v1 = t
d = filled(x, 0)
c = umath.logical_and(umath.less_equal(d, v2), umath.greater_equal(d, v1))
m = mask_or(c, getmask(x))
return array(d, mask = m, copy=copy)
def masked_outside(x, v1, v2, copy=1):
"""x with mask of all values of x that are outside [v1,v2]
v1 and v2 can be given in either order.
"""
if v2 < v1:
t = v2
v2 = v1
v1 = t
d = filled(x, 0)
c = umath.logical_or(umath.less(d, v1), umath.greater(d, v2))
m = mask_or(c, getmask(x))
return array(d, mask = m, copy=copy)
def reshape (a, *newshape):
"Copy of a with a new shape."
m = getmask(a)
d = filled(a).reshape(*newshape)
if m is nomask:
return masked_array(d)
else:
return masked_array(d, mask=numeric.reshape(m, *newshape))
def ravel (a):
"a as one-dimensional, may share data and mask"
m = getmask(a)
d = fromnumeric.ravel(filled(a))
if m is nomask:
return masked_array(d)
else:
return masked_array(d, mask=numeric.ravel(m))
def concatenate (arrays, axis=0):
"Concatenate the arrays along the given axis"
d = []
for x in arrays:
d.append(filled(x))
d = numeric.concatenate(d, axis)
for x in arrays:
if getmask(x) is not nomask: break
else:
return masked_array(d)
dm = []
for x in arrays:
dm.append(getmaskarray(x))
dm = numeric.concatenate(dm, axis)
return masked_array(d, mask=dm)
def swapaxes (a, axis1, axis2):
m = getmask(a)
d = masked_array(a).data
if m is nomask:
return masked_array(data=numeric.swapaxes(d, axis1, axis2))
else:
return masked_array(data=numeric.swapaxes(d, axis1, axis2),
mask=numeric.swapaxes(m, axis1, axis2),)
def new_take (a, indices, axis=None, out=None, mode='raise'):
"returns selection of items from a."
m = getmask(a)
# d = masked_array(a).raw_data()
d = masked_array(a).data
if m is nomask:
return masked_array(numeric.take(d, indices, axis))
else:
return masked_array(numeric.take(d, indices, axis),
mask = numeric.take(m, indices, axis))
def transpose(a, axes=None):
"reorder dimensions per tuple axes"
m = getmask(a)
d = filled(a)
if m is nomask:
return masked_array(numeric.transpose(d, axes))
else:
return masked_array(numeric.transpose(d, axes),
mask = numeric.transpose(m, axes))
def put(a, indices, values, mode='raise'):
"""sets storage-indexed locations to corresponding values.
Values and indices are filled if necessary.
"""
d = a.raw_data()
ind = filled(indices)
v = filled(values)
numeric.put (d, ind, v)
m = getmask(a)
if m is not nomask:
a.unshare_mask()
numeric.put(a.raw_mask(), ind, 0)
def putmask(a, mask, values):
"putmask(a, mask, values) sets a where mask is true."
if mask is nomask:
return
numeric.putmask(a.raw_data(), mask, values)
m = getmask(a)
if m is nomask: return
a.unshare_mask()
numeric.putmask(a.raw_mask(), mask, 0)
def inner(a, b):
"""inner(a,b) returns the dot product of two arrays, which has
shape a.shape[:-1] + b.shape[:-1] with elements computed by summing the
product of the elements from the last dimensions of a and b.
Masked elements are replace by zeros.
"""
fa = filled(a, 0)
fb = filled(b, 0)
if len(fa.shape) == 0: fa.shape = (1,)
if len(fb.shape) == 0: fb.shape = (1,)
return masked_array(numeric.inner(fa, fb))
innerproduct = inner
def outer(a, b):
"""outer(a,b) = {a[i]*b[j]}, has shape (len(a),len(b))"""
fa = filled(a, 0).ravel()
fb = filled(b, 0).ravel()
d = numeric.outer(fa, fb)
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
return masked_array(d)
ma = getmaskarray(a)
mb = getmaskarray(b)
m = make_mask(1-numeric.outer(1-ma, 1-mb), copy=0)
return masked_array(d, m)
outerproduct = outer
def dot(a, b):
"""dot(a,b) returns matrix-multiplication between a and b. The product-sum
is over the last dimension of a and the second-to-last dimension of b.
Masked values are replaced by zeros. See also innerproduct.
"""
return innerproduct(filled(a, 0), numeric.swapaxes(filled(b, 0), -1, -2))
def compress(condition, x, dimension=-1, out=None):
"""Select those parts of x for which condition is true.
Masked values in condition are considered false.
"""
c = filled(condition, 0)
m = getmask(x)
if m is not nomask:
m = numeric.compress(c, m, dimension)
d = numeric.compress(c, filled(x), dimension)
return masked_array(d, m)
class _minimum_operation:
"Object to calculate minima"
def __init__ (self):
"""minimum(a, b) or minimum(a)
In one argument case returns the scalar minimum.
"""
pass
def __call__ (self, a, b=None):
"Execute the call behavior."
if b is None:
m = getmask(a)
if m is nomask:
d = amin(filled(a).ravel())
return d
ac = a.compressed()
if len(ac) == 0:
return masked
else:
return amin(ac.raw_data())
else:
return where(less(a, b), a, b)
def reduce (self, target, axis=0):
"""Reduce target along the given axis."""
m = getmask(target)
if m is nomask:
t = filled(target)
return masked_array (umath.minimum.reduce (t, axis))
else:
t = umath.minimum.reduce(filled(target, minimum_fill_value(target)), axis)
m = umath.logical_and.reduce(m, axis)
return masked_array(t, m, get_fill_value(target))
def outer (self, a, b):
"Return the function applied to the outer product of a and b."
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = nomask
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = logical_or.outer(ma, mb)
d = umath.minimum.outer(filled(a), filled(b))
return masked_array(d, m)
minimum = _minimum_operation ()
class _maximum_operation:
"Object to calculate maxima"
def __init__ (self):
"""maximum(a, b) or maximum(a)
In one argument case returns the scalar maximum.
"""
pass
def __call__ (self, a, b=None):
"Execute the call behavior."
if b is None:
m = getmask(a)
if m is nomask:
d = amax(filled(a).ravel())
return d
ac = a.compressed()
if len(ac) == 0:
return masked
else:
return amax(ac.raw_data())
else:
return where(greater(a, b), a, b)
def reduce (self, target, axis=0):
"""Reduce target along the given axis."""
m = getmask(target)
if m is nomask:
t = filled(target)
return masked_array (umath.maximum.reduce (t, axis))
else:
t = umath.maximum.reduce(filled(target, maximum_fill_value(target)), axis)
m = umath.logical_and.reduce(m, axis)
return masked_array(t, m, get_fill_value(target))
def outer (self, a, b):
"Return the function applied to the outer product of a and b."
ma = getmask(a)
mb = getmask(b)
if ma is nomask and mb is nomask:
m = nomask
else:
ma = getmaskarray(a)
mb = getmaskarray(b)
m = logical_or.outer(ma, mb)
d = umath.maximum.outer(filled(a), filled(b))
return masked_array(d, m)
maximum = _maximum_operation ()
def sort (x, axis = -1, fill_value=None):
"""If x does not have a mask, return a masked array formed from the
result of numeric.sort(x, axis).
Otherwise, fill x with fill_value. Sort it.
Set a mask where the result is equal to fill_value.
Note that this may have unintended consequences if the data contains the
fill value at a non-masked site.
If fill_value is not given the default fill value for x's type will be
used.
"""
if fill_value is None:
fill_value = default_fill_value (x)
d = filled(x, fill_value)
s = fromnumeric.sort(d, axis)
if getmask(x) is nomask:
return masked_array(s)
return masked_values(s, fill_value, copy=0)
def diagonal(a, k = 0, axis1=0, axis2=1):
"""diagonal(a,k=0,axis1=0, axis2=1) = the k'th diagonal of a"""
d = fromnumeric.diagonal(filled(a), k, axis1, axis2)
m = getmask(a)
if m is nomask:
return masked_array(d, m)
else:
return masked_array(d, fromnumeric.diagonal(m, k, axis1, axis2))
def trace (a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
"""trace(a,offset=0, axis1=0, axis2=1) returns the sum along diagonals
(defined by the last two dimenions) of the array.
"""
return diagonal(a, offset, axis1, axis2).sum(dtype=dtype)
def argsort (x, axis = -1, out=None, fill_value=None):
"""Treating masked values as if they have the value fill_value,
return sort indices for sorting along given axis.
if fill_value is None, use get_fill_value(x)
Returns a numpy array.
"""
d = filled(x, fill_value)
return fromnumeric.argsort(d, axis)
def argmin (x, axis = -1, out=None, fill_value=None):
"""Treating masked values as if they have the value fill_value,
return indices for minimum values along given axis.
if fill_value is None, use get_fill_value(x).
Returns a numpy array if x has more than one dimension.
Otherwise, returns a scalar index.
"""
d = filled(x, fill_value)
return fromnumeric.argmin(d, axis)
def argmax (x, axis = -1, out=None, fill_value=None):
"""Treating masked values as if they have the value fill_value,
return sort indices for maximum along given axis.
if fill_value is None, use -get_fill_value(x) if it exists.
Returns a numpy array if x has more than one dimension.
Otherwise, returns a scalar index.
"""
if fill_value is None:
fill_value = default_fill_value (x)
try:
fill_value = - fill_value
except:
pass
d = filled(x, fill_value)
return fromnumeric.argmax(d, axis)
def fromfunction (f, s):
"""apply f to s to create array as in umath."""
return masked_array(numeric.fromfunction(f, s))
def asarray(data, dtype=None):
"""asarray(data, dtype) = array(data, dtype, copy=0)
"""
if isinstance(data, MaskedArray) and \
(dtype is None or dtype == data.dtype):
return data
return array(data, dtype=dtype, copy=0)
# Add methods to support ndarray interface
# XXX: I is better to to change the masked_*_operation adaptors
# XXX: to wrap ndarray methods directly to create ma.array methods.
from types import MethodType
def _m(f):
return MethodType(f, None, array)
def not_implemented(*args, **kwds):
raise NotImplementedError, "not yet implemented for numpy.ma arrays"
array.all = _m(alltrue)
array.any = _m(sometrue)
array.argmax = _m(argmax)
array.argmin = _m(argmin)
array.argsort = _m(argsort)
array.base = property(_m(not_implemented))
array.byteswap = _m(not_implemented)
def _choose(self, *args, **kwds):
return choose(self, args)
array.choose = _m(_choose)
del _choose
def _clip(self,a_min,a_max,out=None):
return MaskedArray(data = self.data.clip(asarray(a_min).data,
asarray(a_max).data),
mask = mask_or(self.mask,
mask_or(getmask(a_min),getmask(a_max))))
array.clip = _m(_clip)
def _compress(self, cond, axis=None, out=None):
return compress(cond, self, axis)
array.compress = _m(_compress)
del _compress
array.conj = array.conjugate = _m(conjugate)
array.copy = _m(not_implemented)
def _cumprod(self, axis=None, dtype=None, out=None):
m = self.mask
if m is not nomask:
m = umath.logical_or.accumulate(self.mask, axis)
return MaskedArray(data = self.filled(1).cumprod(axis, dtype), mask=m)
array.cumprod = _m(_cumprod)
def _cumsum(self, axis=None, dtype=None, out=None):
m = self.mask
if m is not nomask:
m = umath.logical_or.accumulate(self.mask, axis)
return MaskedArray(data=self.filled(0).cumsum(axis, dtype), mask=m)
array.cumsum = _m(_cumsum)
array.diagonal = _m(diagonal)
array.dump = _m(not_implemented)
array.dumps = _m(not_implemented)
array.fill = _m(not_implemented)
array.flags = property(_m(not_implemented))
array.flatten = _m(ravel)
array.getfield = _m(not_implemented)
def _max(a, axis=None, out=None):
if out is not None:
raise TypeError("Output arrays Unsupported for masked arrays")
if axis is None:
return maximum(a)
else:
return maximum.reduce(a, axis)
array.max = _m(_max)
del _max
def _min(a, axis=None, out=None):
if out is not None:
raise TypeError("Output arrays Unsupported for masked arrays")
if axis is None:
return minimum(a)
else:
return minimum.reduce(a, axis)
array.min = _m(_min)
del _min
array.mean = _m(new_average)
array.nbytes = property(_m(not_implemented))
array.newbyteorder = _m(not_implemented)
array.nonzero = _m(nonzero)
array.prod = _m(product)
def _ptp(a,axis=None,out=None):
return a.max(axis,out)-a.min(axis)
array.ptp = _m(_ptp)
array.repeat = _m(new_repeat)
array.resize = _m(resize)
array.searchsorted = _m(not_implemented)
array.setfield = _m(not_implemented)
array.setflags = _m(not_implemented)
array.sort = _m(not_implemented) # NB: ndarray.sort is inplace
def _squeeze(self):
try:
result = MaskedArray(data = self.data.squeeze(),
mask = self.mask.squeeze())
except AttributeError:
result = _wrapit(self, 'squeeze')
return result
array.squeeze = _m(_squeeze)
array.strides = property(_m(not_implemented))
array.sum = _m(sum)
def _swapaxes(self,axis1,axis2):
return MaskedArray(data = self.data.swapaxes(axis1, axis2),
mask = self.mask.swapaxes(axis1, axis2))
array.swapaxes = _m(_swapaxes)
array.take = _m(new_take)
array.tofile = _m(not_implemented)
array.trace = _m(trace)
array.transpose = _m(transpose)
def _var(self,axis=None,dtype=None, out=None):
if axis is None:
return numeric.asarray(self.compressed()).var()
a = self.swapaxes(axis,0)
a = a - a.mean(axis=0)
a *= a
a /= a.count(axis=0)
return a.swapaxes(0,axis).sum(axis)
def _std(self,axis=None, dtype=None, out=None):
return (self.var(axis,dtype))**0.5
array.var = _m(_var)
array.std = _m(_std)
array.view = _m(not_implemented)
array.round = _m(around)
del _m, MethodType, not_implemented
masked = MaskedArray(0, int, mask=1)
def repeat(a, repeats, axis=0):
return new_repeat(a, repeats, axis)
def average(a, axis=0, weights=None, returned=0):
return new_average(a, axis, weights, returned)
def take(a, indices, axis=0):
return new_take(a, indices, axis)
|