/usr/share/pyshared/numpy/lib/arraysetops.py is in python-numpy 1:1.6.1-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 | """
Set operations for 1D numeric arrays based on sorting.
:Contains:
ediff1d,
unique,
intersect1d,
setxor1d,
in1d,
union1d,
setdiff1d
:Notes:
For floating point arrays, inaccurate results may appear due to usual round-off
and floating point comparison issues.
Speed could be gained in some operations by an implementation of
sort(), that can provide directly the permutation vectors, avoiding
thus calls to argsort().
To do: Optionally return indices analogously to unique for all functions.
:Author: Robert Cimrman
"""
__all__ = ['ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d',
'unique', 'in1d']
import numpy as np
from numpy.lib.utils import deprecate
def ediff1d(ary, to_end=None, to_begin=None):
"""
The differences between consecutive elements of an array.
Parameters
----------
ary : array_like
If necessary, will be flattened before the differences are taken.
to_end : array_like, optional
Number(s) to append at the end of the returned differences.
to_begin : array_like, optional
Number(s) to prepend at the beginning of the returned differences.
Returns
-------
ed : ndarray
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
See Also
--------
diff, gradient
Notes
-----
When applied to masked arrays, this function drops the mask information
if the `to_begin` and/or `to_end` parameters are used.
Examples
--------
>>> x = np.array([1, 2, 4, 7, 0])
>>> np.ediff1d(x)
array([ 1, 2, 3, -7])
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
array([-99, 1, 2, 3, -7, 88, 99])
The returned array is always 1D.
>>> y = [[1, 2, 4], [1, 6, 24]]
>>> np.ediff1d(y)
array([ 1, 2, -3, 5, 18])
"""
ary = np.asanyarray(ary).flat
ed = ary[1:] - ary[:-1]
arrays = [ed]
if to_begin is not None:
arrays.insert(0, to_begin)
if to_end is not None:
arrays.append(to_end)
if len(arrays) != 1:
# We'll save ourselves a copy of a potentially large array in
# the common case where neither to_begin or to_end was given.
ed = np.hstack(arrays)
return ed
def unique(ar, return_index=False, return_inverse=False):
"""
Find the unique elements of an array.
Returns the sorted unique elements of an array. There are two optional
outputs in addition to the unique elements: the indices of the input array
that give the unique values, and the indices of the unique array that
reconstruct the input array.
Parameters
----------
ar : array_like
Input array. This will be flattened if it is not already 1-D.
return_index : bool, optional
If True, also return the indices of `ar` that result in the unique
array.
return_inverse : bool, optional
If True, also return the indices of the unique array that can be used
to reconstruct `ar`.
Returns
-------
unique : ndarray
The sorted unique values.
unique_indices : ndarray, optional
The indices of the unique values in the (flattened) original array.
Only provided if `return_index` is True.
unique_inverse : ndarray, optional
The indices to reconstruct the (flattened) original array from the
unique array. Only provided if `return_inverse` is True.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> np.unique([1, 1, 2, 2, 3, 3])
array([1, 2, 3])
>>> a = np.array([[1, 1], [2, 3]])
>>> np.unique(a)
array([1, 2, 3])
Return the indices of the original array that give the unique values:
>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
>>> u, indices = np.unique(a, return_index=True)
>>> u
array(['a', 'b', 'c'],
dtype='|S1')
>>> indices
array([0, 1, 3])
>>> a[indices]
array(['a', 'b', 'c'],
dtype='|S1')
Reconstruct the input array from the unique values:
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
>>> u, indices = np.unique(a, return_inverse=True)
>>> u
array([1, 2, 3, 4, 6])
>>> indices
array([0, 1, 4, 3, 1, 2, 1])
>>> u[indices]
array([1, 2, 6, 4, 2, 3, 2])
"""
try:
ar = ar.flatten()
except AttributeError:
if not return_inverse and not return_index:
items = sorted(set(ar))
return np.asarray(items)
else:
ar = np.asanyarray(ar).flatten()
if ar.size == 0:
if return_inverse and return_index:
return ar, np.empty(0, np.bool), np.empty(0, np.bool)
elif return_inverse or return_index:
return ar, np.empty(0, np.bool)
else:
return ar
if return_inverse or return_index:
perm = ar.argsort()
aux = ar[perm]
flag = np.concatenate(([True], aux[1:] != aux[:-1]))
if return_inverse:
iflag = np.cumsum(flag) - 1
iperm = perm.argsort()
if return_index:
return aux[flag], perm[flag], iflag[iperm]
else:
return aux[flag], iflag[iperm]
else:
return aux[flag], perm[flag]
else:
ar.sort()
flag = np.concatenate(([True], ar[1:] != ar[:-1]))
return ar[flag]
def intersect1d(ar1, ar2, assume_unique=False):
"""
Find the intersection of two arrays.
Return the sorted, unique values that are in both of the input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
out : ndarray
Sorted 1D array of common and unique elements.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
array([1, 3])
"""
if not assume_unique:
# Might be faster than unique( intersect1d( ar1, ar2 ) )?
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = np.concatenate( (ar1, ar2) )
aux.sort()
return aux[aux[1:] == aux[:-1]]
def setxor1d(ar1, ar2, assume_unique=False):
"""
Find the set exclusive-or of two arrays.
Return the sorted, unique values that are in only one (not both) of the
input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
xor : ndarray
Sorted 1D array of unique values that are in only one of the input
arrays.
Examples
--------
>>> a = np.array([1, 2, 3, 2, 4])
>>> b = np.array([2, 3, 5, 7, 5])
>>> np.setxor1d(a,b)
array([1, 4, 5, 7])
"""
if not assume_unique:
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = np.concatenate( (ar1, ar2) )
if aux.size == 0:
return aux
aux.sort()
# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
flag = np.concatenate( ([True], aux[1:] != aux[:-1], [True] ) )
# flag2 = ediff1d( flag ) == 0
flag2 = flag[1:] == flag[:-1]
return aux[flag2]
def in1d(ar1, ar2, assume_unique=False):
"""
Test whether each element of a 1D array is also present in a second array.
Returns a boolean array the same length as `ar1` that is True
where an element of `ar1` is in `ar2` and False otherwise.
Parameters
----------
ar1 : array_like, shape (M,)
Input array.
ar2 : array_like
The values against which to test each value of `ar1`.
assume_unique : bool, optional
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
mask : ndarray of bools, shape(M,)
The values `ar1[mask]` are in `ar2`.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Notes
-----
`in1d` can be considered as an element-wise function version of the
python keyword `in`, for 1D sequences. ``in1d(a, b)`` is roughly
equivalent to ``np.array([item in b for item in a])``.
.. versionadded:: 1.4.0
Examples
--------
>>> test = np.array([0, 1, 2, 5, 0])
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
array([ True, False, True, False, True], dtype=bool)
>>> test[mask]
array([0, 2, 0])
"""
if not assume_unique:
ar1, rev_idx = np.unique(ar1, return_inverse=True)
ar2 = np.unique(ar2)
ar = np.concatenate( (ar1, ar2) )
# We need this to be a stable sort, so always use 'mergesort'
# here. The values from the first array should always come before
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
equal_adj = (sar[1:] == sar[:-1])
flag = np.concatenate( (equal_adj, [False] ) )
indx = order.argsort(kind='mergesort')[:len( ar1 )]
if assume_unique:
return flag[indx]
else:
return flag[indx][rev_idx]
def union1d(ar1, ar2):
"""
Find the union of two arrays.
Return the unique, sorted array of values that are in either of the two
input arrays.
Parameters
----------
ar1, ar2 : array_like
Input arrays. They are flattened if they are not already 1D.
Returns
-------
union : ndarray
Unique, sorted union of the input arrays.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> np.union1d([-1, 0, 1], [-2, 0, 2])
array([-2, -1, 0, 1, 2])
"""
return unique( np.concatenate( (ar1, ar2) ) )
def setdiff1d(ar1, ar2, assume_unique=False):
"""
Find the set difference of two arrays.
Return the sorted, unique values in `ar1` that are not in `ar2`.
Parameters
----------
ar1 : array_like
Input array.
ar2 : array_like
Input comparison array.
assume_unique : bool
If True, the input arrays are both assumed to be unique, which
can speed up the calculation. Default is False.
Returns
-------
difference : ndarray
Sorted 1D array of values in `ar1` that are not in `ar2`.
See Also
--------
numpy.lib.arraysetops : Module with a number of other functions for
performing set operations on arrays.
Examples
--------
>>> a = np.array([1, 2, 3, 2, 4, 1])
>>> b = np.array([3, 4, 5, 6])
>>> np.setdiff1d(a, b)
array([1, 2])
"""
if not assume_unique:
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = in1d(ar1, ar2, assume_unique=True)
if aux.size == 0:
return aux
else:
return np.asarray(ar1)[aux == 0]
|