/usr/share/pyshared/Onboard/Layout.py is in onboard 0.97.0-0ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 | # -*- coding: utf-8 -*-
""" Classes for recursive layout definition """
from __future__ import division, print_function, unicode_literals
from Onboard.utils import Rect, TreeItem
### Config Singleton ###
from Onboard.Config import Config
config = Config()
########################
class KeyContext(object):
"""
Transforms logical coordinates into canvas coordinates and vice versa.
"""
def __init__(self):
# logical rectangle as defined by the keyboard layout
self.log_rect = Rect(0.0, 0.0, 1.0, 1.0) # includes border
# canvas rectangle in drawing units
self.canvas_rect = Rect(0.0, 0.0, 1.0, 1.0)
def __repr__(self):
return" log={} canvas={}".format(list(self.log_rect),
list(self.canvas_rect))
def log_to_canvas(self, coord):
return (self.log_to_canvas_x(coord[0]), \
self.log_to_canvas_y(coord[1]))
def log_to_canvas_rect(self, rect):
if rect.is_empty():
return Rect()
return Rect(self.log_to_canvas_x(rect.x),
self.log_to_canvas_y(rect.y),
self.scale_log_to_canvas_x(rect.w),
self.scale_log_to_canvas_y(rect.h))
def log_to_canvas_x(self, x):
return self.canvas_rect.x + (x - self.log_rect.x) * self.canvas_rect.w / self.log_rect.w
def log_to_canvas_y(self, y):
return self.canvas_rect.y + (y - self.log_rect.y) * self.canvas_rect.h / self.log_rect.h
def scale_log_to_canvas(self, coord):
return (self.scale_log_to_canvas_x(coord[0]), \
self.scale_log_to_canvas_y(coord[1]))
def scale_log_to_canvas_x(self, x):
return x * self.canvas_rect.w / self.log_rect.w
def scale_log_to_canvas_y(self, y):
return y * self.canvas_rect.h / self.log_rect.h
def canvas_to_log(self, coord):
return (self.canvas_to_log_x(coord[0]), \
self.canvas_to_log_y(coord[1]))
def canvas_to_log_rect(self, rect):
return Rect(self.canvas_to_log_x(rect.x),
self.canvas_to_log_y(rect.y),
self.scale_canvas_to_log_x(rect.w),
self.scale_canvas_to_log_y(rect.h))
def canvas_to_log_x(self, x):
return x * self.log_rect.w / self.canvas_rect.w + self.log_rect.x
def canvas_to_log_y(self, y):
return y * self.log_rect.h / self.canvas_rect.h + self.log_rect.y
def scale_canvas_to_log_x(self, x):
return x * self.log_rect.w / self.canvas_rect.w
def scale_canvas_to_log_y(self, y):
return y * self.log_rect.h / self.canvas_rect.h
class LayoutItem(TreeItem):
""" Abstract base class for layoutable items """
# group string of the item, size group for keys
group = None
# name of the layer the item is to be shown on, None for all layers
layer_id = None
# filename of the svg file where the key geometry is defined
filename = None
# key context for transformation between logical and canvas coordinates
context = None
# State of visibility. Also determines if drawing space will be
# assigned to this item and its children.
visible = True
# sensitivity, aka. greying; True to stop interaction witht the item
sensitive = True
# Border around the item. The border "shrinks" the item and
# is invisible but still sensitive to clicks.
border = 0.0
# Expand item in LayoutBoxes
# "True" expands the item into the space of invisible siblings.
# "False" keeps it at the size of the even distribution of all siblings.
# Usually this will lock the key to the aspect ratio of its
# svg geometry.
expand = True
def __init__(self):
self.context = KeyContext()
def dumps(self):
"""
Recursively dumps the layout (sub-) tree starting from self.
Returns a multi-line string.
"""
global _level
if not "_level" in globals():
_level = -1
_level += 1
s = " "*_level + "{} id={} layer_id={} filename={}\n".format(
object.__repr__(self),
repr(self.id),
repr(self.layer_id),
repr(self.filename),
repr(self.visible),
) + \
"".join(item.dumps() for item in self.items)
_level -= 1
return s
def get_rect(self):
""" Get bounding box in logical coordinates """
return self.get_border_rect().deflate(self.border)
def get_border_rect(self):
""" Get bounding rect including border in logical coordinates """
return self.context.log_rect
def set_border_rect(self, border_rect):
""" Set bounding rect including border in logical coordinates """
self.context.log_rect = border_rect
def get_canvas_rect(self):
""" Get bounding box in canvas coordinates """
return self.context.log_to_canvas_rect(self.get_rect())
def get_canvas_border_rect(self):
""" Get bounding rect including border in canvas coordinates """
return self.context.canvas_rect
def get_log_aspect_ratio(self):
"""
Return the aspect ratio of the visible logical extents
of the layout tree.
"""
size = self.get_log_extents()
return size[0] / float(size[1])
def get_log_extents(self):
"""
Get the logical extents of the layout tree.
Extents ignore invisible, "collapsed" items,
ie. an invisible click column is not included.
"""
return self.get_border_rect().get_size()
def get_canvas_extents(self):
"""
Get the canvas extents of the layout tree.
"""
size = self.get_log_extents()
return self.context.scale_log_to_canvas(size)
def fit_inside_canvas(self, canvas_border_rect, keep_aspect = False,
x_align = 0.5, y_align = 0.0):
"""
Scale item and its children to fit inside the given canvas_rect.
"""
# update items bounding boxes
for item in self.iter_depth_first():
item.update_log_rect()
# keep aspect ratio and align the result
if keep_aspect:
log_rect = self.context.log_rect
canvas_border_rect = log_rect.inscribe_with_aspect( \
canvas_border_rect, x_align, y_align)
# recursively fit inside canvas
self._fit_inside_canvas(canvas_border_rect)
def _fit_inside_canvas(self, canvas_border_rect):
"""
Scale item and its children to fit inside the given canvas_rect.
"""
self.context.canvas_rect = canvas_border_rect
def update_log_rect(self):
"""
Override this for layout items that have to calculate their
logical rectangle.
"""
pass
def is_point_within(self, canvas_point):
""" Returns true if the point lies within the items borders. """
rect = self.get_canvas_border_rect().inflate(1)
return rect.is_point_within(canvas_point)
def is_visible(self):
""" Returns visibility status """
return self.visible
def has_visible_key(self):
"""
Checks if there is any visible key in the
subtree starting at self.
"""
for item in self.iter_visible_items():
if item.is_key():
return True
return False
def get_layout_root(self):
""" Return the root layout item """
item = self
while item:
if item.parent is None:
return item
item = item.parent
def get_layer(self):
""" Return the first layer on the path from the tree root to self """
layer_id = None
item = self
while item:
if not item.layer_id is None:
layer_id = item.layer_id
item = item.parent
return layer_id
def set_visible_layers(self, layer_ids):
"""
Show all items of layer "layer", hide all items of the other layers.
"""
if not self.layer_id is None:
self.visible = self.layer_id in layer_ids
for item in self.items:
item.set_visible_layers(layer_ids)
def get_layer_ids(self, _layer_ids=None):
"""
Search the tree for layer ids and return them in order of appearance
"""
if _layer_ids is None:
_layer_ids = []
if not self.layer_id is None and \
not self.layer_id in _layer_ids:
_layer_ids.append(self.layer_id)
for item in self.items:
item.get_layer_ids(_layer_ids)
return _layer_ids
def get_key_groups(self):
"""
Traverse the tree and return all keys sorted by group.
"""
key_groups = {}
for key in self.iter_keys():
keys = key_groups.get(key.group, [])
keys.append(key)
key_groups[key.group] = keys
return key_groups
def raise_to_top(self):
""" raise self to the top of its siblings """
if self.parent:
self.parent.items.remove(self)
self.parent.items.append(self)
def lower_to_bottom(self):
""" lower self to the bottom of its siblings """
if self.parent:
self.parent.items.remove(self)
self.parent.items.insert(0, self)
def get_filename(self):
""" Recursively finds the closeset definition of the svg filename """
if self.filename:
return self.filename
if self.parent:
return self.parent.get_filename()
return None
def is_key(self):
""" Returns true if self is a key. """
return False
def iter_visible_items(self):
"""
Traverses top to bottom all visible layout items of the
layout tree. Invisible paths are cut short.
"""
if self.visible:
yield self
for item in self.items:
for visible_item in item.iter_visible_items():
yield visible_item
def iter_keys(self, group_name = None):
"""
Iterates through all keys of the layout tree.
"""
if self.is_key():
if group_name is None or key.group == group_name:
yield self
for item in self.items:
for key in item.iter_keys(group_name):
yield key
def iter_layer_keys(self, layer_id = None):
"""
Iterates through all keys of the given layer.
"""
for item in self.iter_layer_items(layer_id):
if item.is_key():
yield item
def iter_layer_items(self, layer_id = None, only_visible = True,
_found_layer_id = None):
"""
Iterates through all items of the given layer.
The first layer definition found in the path to each key wins.
layer=None iterates through all keys that don't have a layer
specified anywhere in their path.
"""
if only_visible and not self.visible:
return
if self.layer_id == layer_id:
_found_layer_id = layer_id
if self.layer_id and self.layer_id != _found_layer_id:
return
if _found_layer_id == layer_id:
yield self
for item in self.items:
for item in item.iter_layer_items(layer_id, only_visible,
_found_layer_id):
yield item
class LayoutBox(LayoutItem):
"""
Container for one or more non-overlapping layout items.
Items can be layed out either horiuontally or vertically.
"""
# Spread out child items horizontally or vertically.
horizontal = True
# distance between items
spacing = 1
def update_log_rect(self):
self.context.log_rect = self._calc_bounds()
def _calc_bounds(self):
"""
Calculate the bounding rectangle over all items of this panel.
Include invisible items to stretch the visible ones into their
space too.
"""
# If there is no visible item return an empty rect
# if all(not item.is_visible() for item in self.items):
# return Rect()
bounds = None
for item in self.items:
rect = item.get_border_rect()
if not rect.is_empty():
if bounds is None:
bounds = rect
else:
bounds = bounds.union(rect)
if bounds is None:
return Rect()
return bounds
def _fit_inside_canvas(self, canvas_border_rect):
""" Scale items to fit inside the given canvas_rect """
LayoutItem._fit_inside_canvas(self, canvas_border_rect)
axis = 0 if self.horizontal else 1
items = self.items
# get canvas rectangle without borders
canvas_rect = self.get_canvas_rect()
# Find the combined length of all items, including
# invisible ones (logical coordinates).
length = 0.0
for i, item in enumerate(items):
rect = item.get_border_rect()
if not rect.is_empty():
if i:
length += self.spacing
length += rect[axis+2]
# Find the stretch factor, that fills the available canvas space with
# evenly distributed, all visible items.
fully_visible_scale = canvas_rect[axis+2] / length \
if length else 1.0
canvas_spacing = fully_visible_scale * self.spacing
# Transform items into preliminary canvas space, drop invisibles
# and find the total lengths of expandable and non-expandable
# items (preliminary canvas coordinates).
length_expandables = 0.0
num_expandables = 0
length_nonexpandables = 0.0
num_nonexpandables = 0
for i, item in enumerate(items):
length = item.get_border_rect()[axis+2]
if length and item.has_visible_key():
length *= fully_visible_scale
if item.expand:
length_expandables += length
num_expandables += 1
else:
length_nonexpandables += length
num_nonexpandables += 1
# Calculate a second stretch factor for expandable and actually
# visible items. This takes care of the part of the canvas_rect,
# that isn't covered by the first factor yet.
# All calculation is done in preliminary canvas coordinates.
length_target = canvas_rect[axis+2] - length_nonexpandables - \
canvas_spacing * (num_nonexpandables + num_expandables - 1)
expandable_scale = length_target / length_expandables \
if length_expandables else 1.0
# Calculate the final canvas rectangles and traverse
# the tree recursively.
position = 0.0
for i, item in enumerate(items):
rect = item.get_border_rect()
if item.has_visible_key():
length = rect[axis+2]
spacing = canvas_spacing
else:
length = 0.0
spacing = 0.0
scale = fully_visible_scale
if item.expand:
scale *= expandable_scale
canvas_length = length * scale
# set the final canvas rect
r = Rect(*canvas_rect)
r[axis] = canvas_rect[axis] + position
r[axis+2] = canvas_length
item._fit_inside_canvas(r)
position += canvas_length + spacing
def get_log_extents(self):
"""
Get the logical extents of the layout tree.
Extents ignore invisible, "collapsed" items,
ie. an invisible click column is not included.
"""
rect = None
for item in self.items:
r = item.get_border_rect()
if rect is None:
rect = r.copy()
else:
if self.horizontal:
rect.w += r.w
else:
rect.h += r.h
return rect.get_size()
class LayoutPanel(LayoutItem):
"""
Group of keys layed out at fixed positions relative to each other.
"""
def _fit_inside_canvas(self, canvas_border_rect):
"""
Scale panel to fit inside the given canvas_rect.
"""
LayoutItem._fit_inside_canvas(self, canvas_border_rect)
# Setup the childrens transformations, take care of the border.
if self.get_border_rect().is_empty():
# clear all items transformations if there are no visible items
for item in self.items:
item.context.canvas_rect = Rect()
else:
context = KeyContext()
context.log_rect = self.get_border_rect()
context.canvas_rect = self.get_canvas_rect()
for item in self.items:
rect = context.log_to_canvas_rect(item.context.log_rect)
item._fit_inside_canvas(rect)
def update_log_rect(self):
self.context.log_rect = self._calc_bounds()
def _calc_bounds(self):
""" Calculate the bounding rectangle over all items of this panel """
# If there is no visible item return an empty rect
if all(not item.is_visible() for item in self.items):
return Rect()
bounds = None
for item in self.items:
rect = item.get_border_rect()
if not rect.is_empty():
if bounds is None:
bounds = rect
else:
bounds = bounds.union(rect)
if bounds is None:
return Rect()
return bounds
|