/usr/lib/ocaml/int32.mli is in ocaml-nox 3.12.1-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | (***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id: int32.mli 8768 2008-01-11 16:13:18Z doligez $ *)
(** 32-bit integers.
This module provides operations on the type [int32]
of signed 32-bit integers. Unlike the built-in [int] type,
the type [int32] is guaranteed to be exactly 32-bit wide on all
platforms. All arithmetic operations over [int32] are taken
modulo 2{^32}.
Performance notice: values of type [int32] occupy more memory
space than values of type [int], and arithmetic operations on
[int32] are generally slower than those on [int]. Use [int32]
only when the application requires exact 32-bit arithmetic. *)
val zero : int32
(** The 32-bit integer 0. *)
val one : int32
(** The 32-bit integer 1. *)
val minus_one : int32
(** The 32-bit integer -1. *)
external neg : int32 -> int32 = "%int32_neg"
(** Unary negation. *)
external add : int32 -> int32 -> int32 = "%int32_add"
(** Addition. *)
external sub : int32 -> int32 -> int32 = "%int32_sub"
(** Subtraction. *)
external mul : int32 -> int32 -> int32 = "%int32_mul"
(** Multiplication. *)
external div : int32 -> int32 -> int32 = "%int32_div"
(** Integer division. Raise [Division_by_zero] if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Pervasives.(/)}. *)
external rem : int32 -> int32 -> int32 = "%int32_mod"
(** Integer remainder. If [y] is not zero, the result
of [Int32.rem x y] satisfies the following property:
[x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)].
If [y = 0], [Int32.rem x y] raises [Division_by_zero]. *)
val succ : int32 -> int32
(** Successor. [Int32.succ x] is [Int32.add x Int32.one]. *)
val pred : int32 -> int32
(** Predecessor. [Int32.pred x] is [Int32.sub x Int32.one]. *)
val abs : int32 -> int32
(** Return the absolute value of its argument. *)
val max_int : int32
(** The greatest representable 32-bit integer, 2{^31} - 1. *)
val min_int : int32
(** The smallest representable 32-bit integer, -2{^31}. *)
external logand : int32 -> int32 -> int32 = "%int32_and"
(** Bitwise logical and. *)
external logor : int32 -> int32 -> int32 = "%int32_or"
(** Bitwise logical or. *)
external logxor : int32 -> int32 -> int32 = "%int32_xor"
(** Bitwise logical exclusive or. *)
val lognot : int32 -> int32
(** Bitwise logical negation *)
external shift_left : int32 -> int -> int32 = "%int32_lsl"
(** [Int32.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right : int32 -> int -> int32 = "%int32_asr"
(** [Int32.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= 32]. *)
external shift_right_logical : int32 -> int -> int32 = "%int32_lsr"
(** [Int32.shift_right_logical x y] shifts [x] to the right by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= 32]. *)
external of_int : int -> int32 = "%int32_of_int"
(** Convert the given integer (type [int]) to a 32-bit integer
(type [int32]). *)
external to_int : int32 -> int = "%int32_to_int"
(** Convert the given 32-bit integer (type [int32]) to an
integer (type [int]). On 32-bit platforms, the 32-bit integer
is taken modulo 2{^31}, i.e. the high-order bit is lost
during the conversion. On 64-bit platforms, the conversion
is exact. *)
external of_float : float -> int32 = "caml_int32_of_float"
(** Convert the given floating-point number to a 32-bit integer,
discarding the fractional part (truncate towards 0).
The result of the conversion is undefined if, after truncation,
the number is outside the range \[{!Int32.min_int}, {!Int32.max_int}\]. *)
external to_float : int32 -> float = "caml_int32_to_float"
(** Convert the given 32-bit integer to a floating-point number. *)
external of_string : string -> int32 = "caml_int32_of_string"
(** Convert the given string to a 32-bit integer.
The string is read in decimal (by default) or in hexadecimal,
octal or binary if the string begins with [0x], [0o] or [0b]
respectively.
Raise [Failure "int_of_string"] if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [int32]. *)
val to_string : int32 -> string
(** Return the string representation of its argument, in signed decimal. *)
external bits_of_float : float -> int32 = "caml_int32_bits_of_float"
(** Return the internal representation of the given float according
to the IEEE 754 floating-point ``single format'' bit layout.
Bit 31 of the result represents the sign of the float;
bits 30 to 23 represent the (biased) exponent; bits 22 to 0
represent the mantissa. *)
external float_of_bits : int32 -> float = "caml_int32_float_of_bits"
(** Return the floating-point number whose internal representation,
according to the IEEE 754 floating-point ``single format'' bit layout,
is the given [int32]. *)
type t = int32
(** An alias for the type of 32-bit integers. *)
val compare: t -> t -> int
(** The comparison function for 32-bit integers, with the same specification as
{!Pervasives.compare}. Along with the type [t], this function [compare]
allows the module [Int32] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
(**/**)
(** {6 Deprecated functions} *)
external format : string -> int32 -> string = "caml_int32_format"
(** Do not use this deprecated function. Instead,
used {!Printf.sprintf} with a [%l...] format. *)
|