/usr/lib/ruby/1.9.1/minitest/benchmark.rb is in libruby1.9.1 1.9.3.0-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | ######################################################################
# This file is imported from the minitest project.
# DO NOT make modifications in this repo. They _will_ be reverted!
# File a patch instead and assign it to Ryan Davis.
######################################################################
require 'minitest/unit'
require 'minitest/spec'
class MiniTest::Unit
attr_accessor :runner
def run_benchmarks # :nodoc:
_run_anything :benchmark
end
def benchmark_suite_header suite # :nodoc:
"\n#{suite}\t#{suite.bench_range.join("\t")}"
end
class TestCase
##
# Returns a set of ranges stepped exponentially from +min+ to
# +max+ by powers of +base+. Eg:
#
# bench_exp(2, 16, 2) # => [2, 4, 8, 16]
def self.bench_exp min, max, base = 10
min = (Math.log10(min) / Math.log10(base)).to_i
max = (Math.log10(max) / Math.log10(base)).to_i
(min..max).map { |m| base ** m }.to_a
end
##
# Returns a set of ranges stepped linearly from +min+ to +max+ by
# +step+. Eg:
#
# bench_linear(20, 40, 10) # => [20, 30, 40]
def self.bench_linear min, max, step = 10
(min..max).step(step).to_a
rescue LocalJumpError # 1.8.6
r = []; (min..max).step(step) { |n| r << n }; r
end
##
# Returns the benchmark methods (methods that start with bench_)
# for that class.
def self.benchmark_methods # :nodoc:
public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort
end
##
# Returns all test suites that have benchmark methods.
def self.benchmark_suites
TestCase.test_suites.reject { |s| s.benchmark_methods.empty? }
end
##
# Specifies the ranges used for benchmarking for that class.
# Defaults to exponential growth from 1 to 10k by powers of 10.
# Override if you need different ranges for your benchmarks.
#
# See also: ::bench_exp and ::bench_linear.
def self.bench_range
bench_exp 1, 10_000
end
##
# Runs the given +work+, gathering the times of each run. Range
# and times are then passed to a given +validation+ proc. Outputs
# the benchmark name and times in tab-separated format, making it
# easy to paste into a spreadsheet for graphing or further
# analysis.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# validation = proc { |x, y| ... }
# assert_performance validation do |x|
# @obj.algorithm
# end
# end
def assert_performance validation, &work
range = self.class.bench_range
io.print "#{__name__}"
times = []
range.each do |x|
GC.start
t0 = Time.now
instance_exec(x, &work)
t = Time.now - t0
io.print "\t%9.6f" % t
times << t
end
io.puts
validation[range, times]
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a constant rate (eg, linear slope == 0) within a given
# +threshold+. Note: because we're testing for a slope of 0, R^2
# is not a good determining factor for the fit, so the threshold
# is applied against the slope itself. As such, you probably want
# to tighten it from the default.
#
# See http://www.graphpad.com/curvefit/goodness_of_fit.htm for
# more details.
#
# Fit is calculated by #fit_linear.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_constant 0.9999 do |x|
# @obj.algorithm
# end
# end
def assert_performance_constant threshold = 0.99, &work
validation = proc do |range, times|
a, b, rr = fit_linear range, times
assert_in_delta 0, b, 1 - threshold
[a, b, rr]
end
assert_performance validation, &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a exponential curve within a given error +threshold+.
#
# Fit is calculated by #fit_exponential.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_exponential 0.9999 do |x|
# @obj.algorithm
# end
# end
def assert_performance_exponential threshold = 0.99, &work
assert_performance validation_for_fit(:exponential, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a straight line within a given error +threshold+.
#
# Fit is calculated by #fit_linear.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_linear 0.9999 do |x|
# @obj.algorithm
# end
# end
def assert_performance_linear threshold = 0.99, &work
assert_performance validation_for_fit(:linear, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered curve
# fit to match a power curve within a given error +threshold+.
#
# Fit is calculated by #fit_power.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_power 0.9999 do |x|
# @obj.algorithm
# end
# end
def assert_performance_power threshold = 0.99, &work
assert_performance validation_for_fit(:power, threshold), &work
end
##
# Takes an array of x/y pairs and calculates the general R^2 value.
#
# See: http://en.wikipedia.org/wiki/Coefficient_of_determination
def fit_error xys
y_bar = sigma(xys) { |x, y| y } / xys.size.to_f
ss_tot = sigma(xys) { |x, y| (y - y_bar) ** 2 }
ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 }
1 - (ss_err / ss_tot)
end
##
# To fit a functional form: y = ae^(bx).
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
def fit_exponential xs, ys
n = xs.size
xys = xs.zip(ys)
sxlny = sigma(xys) { |x,y| x * Math.log(y) }
slny = sigma(xys) { |x,y| Math.log(y) }
sx2 = sigma(xys) { |x,y| x * x }
sx = sigma xs
c = n * sx2 - sx ** 2
a = (slny * sx2 - sx * sxlny) / c
b = ( n * sxlny - sx * slny ) / c
return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) }
end
##
# Fits the functional form: a + bx.
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFitting.html
def fit_linear xs, ys
n = xs.size
xys = xs.zip(ys)
sx = sigma xs
sy = sigma ys
sx2 = sigma(xs) { |x| x ** 2 }
sxy = sigma(xys) { |x,y| x * y }
c = n * sx2 - sx**2
a = (sy * sx2 - sx * sxy) / c
b = ( n * sxy - sx * sy ) / c
return a, b, fit_error(xys) { |x| a + b * x }
end
##
# To fit a functional form: y = ax^b.
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
def fit_power xs, ys
n = xs.size
xys = xs.zip(ys)
slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) }
slnx = sigma(xs) { |x | Math.log(x) }
slny = sigma(ys) { | y| Math.log(y) }
slnx2 = sigma(xs) { |x | Math.log(x) ** 2 }
b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2);
a = (slny - b * slnx) / n
return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) }
end
##
# Enumerates over +enum+ mapping +block+ if given, returning the
# sum of the result. Eg:
#
# sigma([1, 2, 3]) # => 1 + 2 + 3 => 7
# sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14
def sigma enum, &block
enum = enum.map(&block) if block
enum.inject { |sum, n| sum + n }
end
##
# Returns a proc that calls the specified fit method and asserts
# that the error is within a tolerable threshold.
def validation_for_fit msg, threshold
proc do |range, times|
a, b, rr = send "fit_#{msg}", range, times
assert_operator rr, :>=, threshold
[a, b, rr]
end
end
end
end
class MiniTest::Spec
##
# This is used to define a new benchmark method. You usually don't
# use this directly and is intended for those needing to write new
# performance curve fits (eg: you need a specific polynomial fit).
#
# See ::bench_performance_linear for an example of how to use this.
def self.bench name, &block
define_method "bench_#{name.gsub(/\W+/, '_')}", &block
end
def self.bench_range &block
return super unless block
meta = (class << self; self; end)
meta.send :define_method, "bench_range", &block
end
##
# Create a benchmark that verifies that the performance is linear.
#
# describe "my class" do
# bench_performance_linear "fast_algorithm", 0.9999 do
# @obj.fast_algorithm
# end
# end
def self.bench_performance_linear name, threshold = 0.99, &work
bench name do
assert_performance_linear threshold, &work
end
end
##
# Create a benchmark that verifies that the performance is constant.
#
# describe "my class" do
# bench_performance_constant "zoom_algorithm!" do
# @obj.zoom_algorithm!
# end
# end
def self.bench_performance_constant name, threshold = 0.99, &work
bench name do
assert_performance_constant threshold, &work
end
end
##
# Create a benchmark that verifies that the performance is exponential.
#
# describe "my class" do
# bench_performance_exponential "algorithm" do
# @obj.algorithm
# end
# end
def self.bench_performance_exponential name, threshold = 0.99, &work
bench name do
assert_performance_exponential threshold, &work
end
end
end
|