/usr/lib/ruby/1.8/rational.rb is in libruby1.8 1.8.7.352-2ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | #
# rational.rb -
# $Release Version: 0.5 $
# $Revision: 1.7 $
# $Date: 1999/08/24 12:49:28 $
# by Keiju ISHITSUKA(SHL Japan Inc.)
#
# Documentation by Kevin Jackson and Gavin Sinclair.
#
# When you <tt>require 'rational'</tt>, all interactions between numbers
# potentially return a rational result. For example:
#
# 1.quo(2) # -> 0.5
# require 'rational'
# 1.quo(2) # -> Rational(1,2)
#
# See Rational for full documentation.
#
#
# Creates a Rational number (i.e. a fraction). +a+ and +b+ should be Integers:
#
# Rational(1,3) # -> 1/3
#
# Note: trying to construct a Rational with floating point or real values
# produces errors:
#
# Rational(1.1, 2.3) # -> NoMethodError
#
def Rational(a, b = 1)
if a.kind_of?(Rational) && b == 1
a
else
Rational.reduce(a, b)
end
end
#
# Rational implements a rational class for numbers.
#
# <em>A rational number is a number that can be expressed as a fraction p/q
# where p and q are integers and q != 0. A rational number p/q is said to have
# numerator p and denominator q. Numbers that are not rational are called
# irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html)
#
# To create a Rational Number:
# Rational(a,b) # -> a/b
# Rational.new!(a,b) # -> a/b
#
# Examples:
# Rational(5,6) # -> 5/6
# Rational(5) # -> 5/1
#
# Rational numbers are reduced to their lowest terms:
# Rational(6,10) # -> 3/5
#
# But not if you use the unusual method "new!":
# Rational.new!(6,10) # -> 6/10
#
# Division by zero is obviously not allowed:
# Rational(3,0) # -> ZeroDivisionError
#
class Rational < Numeric
@RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'
#
# Reduces the given numerator and denominator to their lowest terms. Use
# Rational() instead.
#
def Rational.reduce(num, den = 1)
raise ZeroDivisionError, "denominator is zero" if den == 0
if den < 0
num = -num
den = -den
end
gcd = num.gcd(den)
num = num.div(gcd)
den = den.div(gcd)
if den == 1 && defined?(Unify)
num
else
new!(num, den)
end
end
#
# Implements the constructor. This method does not reduce to lowest terms or
# check for division by zero. Therefore #Rational() should be preferred in
# normal use.
#
def Rational.new!(num, den = 1)
new(num, den)
end
private_class_method :new
#
# This method is actually private.
#
def initialize(num, den)
if den < 0
num = -num
den = -den
end
if num.kind_of?(Integer) and den.kind_of?(Integer)
@numerator = num
@denominator = den
else
@numerator = num.to_i
@denominator = den.to_i
end
end
#
# Returns the addition of this value and +a+.
#
# Examples:
# r = Rational(3,4) # -> Rational(3,4)
# r + 1 # -> Rational(7,4)
# r + 0.5 # -> 1.25
#
def + (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
num_a = a.numerator * @denominator
Rational(num + num_a, @denominator * a.denominator)
elsif a.kind_of?(Integer)
self + Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) + a
else
x, y = a.coerce(self)
x + y
end
end
#
# Returns the difference of this value and +a+.
# subtracted.
#
# Examples:
# r = Rational(3,4) # -> Rational(3,4)
# r - 1 # -> Rational(-1,4)
# r - 0.5 # -> 0.25
#
def - (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
num_a = a.numerator * @denominator
Rational(num - num_a, @denominator*a.denominator)
elsif a.kind_of?(Integer)
self - Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) - a
else
x, y = a.coerce(self)
x - y
end
end
#
# Returns the product of this value and +a+.
#
# Examples:
# r = Rational(3,4) # -> Rational(3,4)
# r * 2 # -> Rational(3,2)
# r * 4 # -> Rational(3,1)
# r * 0.5 # -> 0.375
# r * Rational(1,2) # -> Rational(3,8)
#
def * (a)
if a.kind_of?(Rational)
num = @numerator * a.numerator
den = @denominator * a.denominator
Rational(num, den)
elsif a.kind_of?(Integer)
self * Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) * a
else
x, y = a.coerce(self)
x * y
end
end
#
# Returns the quotient of this value and +a+.
# r = Rational(3,4) # -> Rational(3,4)
# r / 2 # -> Rational(3,8)
# r / 2.0 # -> 0.375
# r / Rational(1,2) # -> Rational(3,2)
#
def / (a)
if a.kind_of?(Rational)
num = @numerator * a.denominator
den = @denominator * a.numerator
Rational(num, den)
elsif a.kind_of?(Integer)
raise ZeroDivisionError, "division by zero" if a == 0
self / Rational.new!(a, 1)
elsif a.kind_of?(Float)
Float(self) / a
else
x, y = a.coerce(self)
x / y
end
end
#
# Returns this value raised to the given power.
#
# Examples:
# r = Rational(3,4) # -> Rational(3,4)
# r ** 2 # -> Rational(9,16)
# r ** 2.0 # -> 0.5625
# r ** Rational(1,2) # -> 0.866025403784439
#
def ** (other)
if other.kind_of?(Rational)
Float(self) ** other
elsif other.kind_of?(Integer)
if other > 0
num = @numerator ** other
den = @denominator ** other
elsif other < 0
num = @denominator ** -other
den = @numerator ** -other
elsif other == 0
num = 1
den = 1
end
Rational.new!(num, den)
elsif other.kind_of?(Float)
Float(self) ** other
else
x, y = other.coerce(self)
x ** y
end
end
def div(other)
(self / other).floor
end
#
# Returns the remainder when this value is divided by +other+.
#
# Examples:
# r = Rational(7,4) # -> Rational(7,4)
# r % Rational(1,2) # -> Rational(1,4)
# r % 1 # -> Rational(3,4)
# r % Rational(1,7) # -> Rational(1,28)
# r % 0.26 # -> 0.19
#
def % (other)
value = (self / other).floor
return self - other * value
end
#
# Returns the quotient _and_ remainder.
#
# Examples:
# r = Rational(7,4) # -> Rational(7,4)
# r.divmod Rational(1,2) # -> [3, Rational(1,4)]
#
def divmod(other)
value = (self / other).floor
return value, self - other * value
end
#
# Returns the absolute value.
#
def abs
if @numerator > 0
self
else
Rational.new!(-@numerator, @denominator)
end
end
#
# Returns +true+ iff this value is numerically equal to +other+.
#
# But beware:
# Rational(1,2) == Rational(4,8) # -> true
# Rational(1,2) == Rational.new!(4,8) # -> false
#
# Don't use Rational.new!
#
def == (other)
if other.kind_of?(Rational)
@numerator == other.numerator and @denominator == other.denominator
elsif other.kind_of?(Integer)
self == Rational.new!(other, 1)
elsif other.kind_of?(Float)
Float(self) == other
else
other == self
end
end
#
# Standard comparison operator.
#
def <=> (other)
if other.kind_of?(Rational)
num = @numerator * other.denominator
num_a = other.numerator * @denominator
v = num - num_a
if v > 0
return 1
elsif v < 0
return -1
else
return 0
end
elsif other.kind_of?(Integer)
return self <=> Rational.new!(other, 1)
elsif other.kind_of?(Float)
return Float(self) <=> other
elsif defined? other.coerce
x, y = other.coerce(self)
return x <=> y
else
return nil
end
end
def coerce(other)
if other.kind_of?(Float)
return other, self.to_f
elsif other.kind_of?(Integer)
return Rational.new!(other, 1), self
else
super
end
end
#
# Converts the rational to an Integer. Not the _nearest_ integer, the
# truncated integer. Study the following example carefully:
# Rational(+7,4).to_i # -> 1
# Rational(-7,4).to_i # -> -1
# (-1.75).to_i # -> -1
#
# In other words:
# Rational(-7,4) == -1.75 # -> true
# Rational(-7,4).to_i == (-1.75).to_i # -> true
#
def floor()
@numerator.div(@denominator)
end
def ceil()
-((-@numerator).div(@denominator))
end
def truncate()
if @numerator < 0
return -((-@numerator).div(@denominator))
end
@numerator.div(@denominator)
end
alias_method :to_i, :truncate
def round()
if @numerator < 0
num = -@numerator
num = num * 2 + @denominator
den = @denominator * 2
-(num.div(den))
else
num = @numerator * 2 + @denominator
den = @denominator * 2
num.div(den)
end
end
#
# Converts the rational to a Float.
#
def to_f
@numerator.fdiv(@denominator)
end
#
# Returns a string representation of the rational number.
#
# Example:
# Rational(3,4).to_s # "3/4"
# Rational(8).to_s # "8"
#
def to_s
if @denominator == 1
@numerator.to_s
else
@numerator.to_s+"/"+@denominator.to_s
end
end
#
# Returns +self+.
#
def to_r
self
end
#
# Returns a reconstructable string representation:
#
# Rational(5,8).inspect # -> "Rational(5, 8)"
#
def inspect
sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
end
#
# Returns a hash code for the object.
#
def hash
@numerator.hash ^ @denominator.hash
end
attr :numerator
attr :denominator
private :initialize
end
class Integer
#
# In an integer, the value _is_ the numerator of its rational equivalent.
# Therefore, this method returns +self+.
#
def numerator
self
end
#
# In an integer, the denominator is 1. Therefore, this method returns 1.
#
def denominator
1
end
#
# Returns a Rational representation of this integer.
#
def to_r
Rational(self, 1)
end
#
# Returns the <em>greatest common denominator</em> of the two numbers (+self+
# and +n+).
#
# Examples:
# 72.gcd 168 # -> 24
# 19.gcd 36 # -> 1
#
# The result is positive, no matter the sign of the arguments.
#
def gcd(other)
min = self.abs
max = other.abs
while min > 0
tmp = min
min = max % min
max = tmp
end
max
end
#
# Returns the <em>lowest common multiple</em> (LCM) of the two arguments
# (+self+ and +other+).
#
# Examples:
# 6.lcm 7 # -> 42
# 6.lcm 9 # -> 18
#
def lcm(other)
if self.zero? or other.zero?
0
else
(self.div(self.gcd(other)) * other).abs
end
end
#
# Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments
# (+self+ and +other+). This is more efficient than calculating them
# separately.
#
# Example:
# 6.gcdlcm 9 # -> [3, 18]
#
def gcdlcm(other)
gcd = self.gcd(other)
if self.zero? or other.zero?
[gcd, 0]
else
[gcd, (self.div(gcd) * other).abs]
end
end
end
class Fixnum
remove_method :quo
# If Rational is defined, returns a Rational number instead of a Float.
def quo(other)
Rational.new!(self, 1) / other
end
alias rdiv quo
# Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
def rpower (other)
if other >= 0
self.power!(other)
else
Rational.new!(self, 1)**other
end
end
end
class Bignum
remove_method :quo
# If Rational is defined, returns a Rational number instead of a Float.
def quo(other)
Rational.new!(self, 1) / other
end
alias rdiv quo
# Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
def rpower (other)
if other >= 0
self.power!(other)
else
Rational.new!(self, 1)**other
end
end
end
unless defined? 1.power!
class Fixnum
alias power! **
alias ** rpower
end
class Bignum
alias power! **
alias ** rpower
end
end
|