This file is indexed.

/usr/lib/ruby/1.8/rational.rb is in libruby1.8 1.8.7.352-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#
#   rational.rb -
#       $Release Version: 0.5 $
#       $Revision: 1.7 $
#       $Date: 1999/08/24 12:49:28 $
#       by Keiju ISHITSUKA(SHL Japan Inc.)
#
# Documentation by Kevin Jackson and Gavin Sinclair.
# 
# When you <tt>require 'rational'</tt>, all interactions between numbers
# potentially return a rational result.  For example:
#
#   1.quo(2)              # -> 0.5
#   require 'rational'
#   1.quo(2)              # -> Rational(1,2)
# 
# See Rational for full documentation.
#


#
# Creates a Rational number (i.e. a fraction).  +a+ and +b+ should be Integers:
# 
#   Rational(1,3)           # -> 1/3
#
# Note: trying to construct a Rational with floating point or real values
# produces errors:
#
#   Rational(1.1, 2.3)      # -> NoMethodError
#
def Rational(a, b = 1)
  if a.kind_of?(Rational) && b == 1
    a
  else
    Rational.reduce(a, b)
  end
end

#
# Rational implements a rational class for numbers.
#
# <em>A rational number is a number that can be expressed as a fraction p/q
# where p and q are integers and q != 0.  A rational number p/q is said to have
# numerator p and denominator q.  Numbers that are not rational are called
# irrational numbers.</em> (http://mathworld.wolfram.com/RationalNumber.html)
#
# To create a Rational Number:
#   Rational(a,b)             # -> a/b
#   Rational.new!(a,b)        # -> a/b
#
# Examples:
#   Rational(5,6)             # -> 5/6
#   Rational(5)               # -> 5/1
# 
# Rational numbers are reduced to their lowest terms:
#   Rational(6,10)            # -> 3/5
#
# But not if you use the unusual method "new!":
#   Rational.new!(6,10)       # -> 6/10
#
# Division by zero is obviously not allowed:
#   Rational(3,0)             # -> ZeroDivisionError
#
class Rational < Numeric
  @RCS_ID='-$Id: rational.rb,v 1.7 1999/08/24 12:49:28 keiju Exp keiju $-'

  #
  # Reduces the given numerator and denominator to their lowest terms.  Use
  # Rational() instead.
  #
  def Rational.reduce(num, den = 1)
    raise ZeroDivisionError, "denominator is zero" if den == 0

    if den < 0
      num = -num
      den = -den
    end
    gcd = num.gcd(den)
    num = num.div(gcd)
    den = den.div(gcd)
    if den == 1 && defined?(Unify)
      num
    else
      new!(num, den)
    end
  end

  #
  # Implements the constructor.  This method does not reduce to lowest terms or
  # check for division by zero.  Therefore #Rational() should be preferred in
  # normal use.
  #
  def Rational.new!(num, den = 1)
    new(num, den)
  end

  private_class_method :new

  #
  # This method is actually private.
  #
  def initialize(num, den)
    if den < 0
      num = -num
      den = -den
    end
    if num.kind_of?(Integer) and den.kind_of?(Integer)
      @numerator = num
      @denominator = den
    else
      @numerator = num.to_i
      @denominator = den.to_i
    end
  end

  #
  # Returns the addition of this value and +a+.
  #
  # Examples:
  #   r = Rational(3,4)      # -> Rational(3,4)
  #   r + 1                  # -> Rational(7,4)
  #   r + 0.5                # -> 1.25
  #
  def + (a)
    if a.kind_of?(Rational)
      num = @numerator * a.denominator
      num_a = a.numerator * @denominator
      Rational(num + num_a, @denominator * a.denominator)
    elsif a.kind_of?(Integer)
      self + Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) + a
    else
      x, y = a.coerce(self)
      x + y
    end
  end

  #
  # Returns the difference of this value and +a+.
  # subtracted.
  #
  # Examples:
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r - 1                # -> Rational(-1,4)
  #   r - 0.5              # -> 0.25
  #
  def - (a)
    if a.kind_of?(Rational)
      num = @numerator * a.denominator
      num_a = a.numerator * @denominator
      Rational(num - num_a, @denominator*a.denominator)
    elsif a.kind_of?(Integer)
      self - Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) - a
    else
      x, y = a.coerce(self)
      x - y
    end
  end

  #
  # Returns the product of this value and +a+.
  #
  # Examples:
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r * 2                # -> Rational(3,2)
  #   r * 4                # -> Rational(3,1)
  #   r * 0.5              # -> 0.375
  #   r * Rational(1,2)    # -> Rational(3,8)
  #
  def * (a)
    if a.kind_of?(Rational)
      num = @numerator * a.numerator
      den = @denominator * a.denominator
      Rational(num, den)
    elsif a.kind_of?(Integer)
      self * Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) * a
    else
      x, y = a.coerce(self)
      x * y
    end
  end

  #
  # Returns the quotient of this value and +a+.
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r / 2                # -> Rational(3,8)
  #   r / 2.0              # -> 0.375
  #   r / Rational(1,2)    # -> Rational(3,2)
  #
  def / (a)
    if a.kind_of?(Rational)
      num = @numerator * a.denominator
      den = @denominator * a.numerator
      Rational(num, den)
    elsif a.kind_of?(Integer)
      raise ZeroDivisionError, "division by zero" if a == 0
      self / Rational.new!(a, 1)
    elsif a.kind_of?(Float)
      Float(self) / a
    else
      x, y = a.coerce(self)
      x / y
    end
  end

  #
  # Returns this value raised to the given power.
  #
  # Examples:
  #   r = Rational(3,4)    # -> Rational(3,4)
  #   r ** 2               # -> Rational(9,16)
  #   r ** 2.0             # -> 0.5625
  #   r ** Rational(1,2)   # -> 0.866025403784439
  #
  def ** (other)
    if other.kind_of?(Rational)
      Float(self) ** other
    elsif other.kind_of?(Integer)
      if other > 0
	num = @numerator ** other
	den = @denominator ** other
      elsif other < 0
	num = @denominator ** -other
	den = @numerator ** -other
      elsif other == 0
	num = 1
	den = 1
      end
      Rational.new!(num, den)
    elsif other.kind_of?(Float)
      Float(self) ** other
    else
      x, y = other.coerce(self)
      x ** y
    end
  end

  def div(other)
    (self / other).floor
  end

  #
  # Returns the remainder when this value is divided by +other+.
  #
  # Examples:
  #   r = Rational(7,4)    # -> Rational(7,4)
  #   r % Rational(1,2)    # -> Rational(1,4)
  #   r % 1                # -> Rational(3,4)
  #   r % Rational(1,7)    # -> Rational(1,28)
  #   r % 0.26             # -> 0.19
  #
  def % (other)
    value = (self / other).floor
    return self - other * value
  end

  #
  # Returns the quotient _and_ remainder.
  #
  # Examples:
  #   r = Rational(7,4)        # -> Rational(7,4)
  #   r.divmod Rational(1,2)   # -> [3, Rational(1,4)]
  #
  def divmod(other)
    value = (self / other).floor
    return value, self - other * value
  end

  #
  # Returns the absolute value.
  #
  def abs
    if @numerator > 0
      self
    else
      Rational.new!(-@numerator, @denominator)
    end
  end

  #
  # Returns +true+ iff this value is numerically equal to +other+.
  #
  # But beware:
  #   Rational(1,2) == Rational(4,8)          # -> true
  #   Rational(1,2) == Rational.new!(4,8)     # -> false
  #
  # Don't use Rational.new!
  #
  def == (other)
    if other.kind_of?(Rational)
      @numerator == other.numerator and @denominator == other.denominator
    elsif other.kind_of?(Integer)
      self == Rational.new!(other, 1)
    elsif other.kind_of?(Float)
      Float(self) == other
    else
      other == self
    end
  end

  #
  # Standard comparison operator.
  #
  def <=> (other)
    if other.kind_of?(Rational)
      num = @numerator * other.denominator
      num_a = other.numerator * @denominator
      v = num - num_a
      if v > 0
	return 1
      elsif v < 0
	return  -1
      else
	return 0
      end
    elsif other.kind_of?(Integer)
      return self <=> Rational.new!(other, 1)
    elsif other.kind_of?(Float)
      return Float(self) <=> other
    elsif defined? other.coerce
      x, y = other.coerce(self)
      return x <=> y
    else
      return nil
    end
  end

  def coerce(other)
    if other.kind_of?(Float)
      return other, self.to_f
    elsif other.kind_of?(Integer)
      return Rational.new!(other, 1), self
    else
      super
    end
  end

  #
  # Converts the rational to an Integer.  Not the _nearest_ integer, the
  # truncated integer.  Study the following example carefully:
  #   Rational(+7,4).to_i             # -> 1
  #   Rational(-7,4).to_i             # -> -1
  #   (-1.75).to_i                    # -> -1
  #
  # In other words:
  #   Rational(-7,4) == -1.75                 # -> true
  #   Rational(-7,4).to_i == (-1.75).to_i     # -> true
  #


  def floor()
    @numerator.div(@denominator)
  end

  def ceil()
    -((-@numerator).div(@denominator))
  end

  def truncate()
    if @numerator < 0
      return -((-@numerator).div(@denominator))
    end
    @numerator.div(@denominator)
  end

  alias_method :to_i, :truncate

  def round()
    if @numerator < 0
      num = -@numerator
      num = num * 2 + @denominator
      den = @denominator * 2
      -(num.div(den))
    else
      num = @numerator * 2 + @denominator
      den = @denominator * 2
      num.div(den)
    end
  end

  #
  # Converts the rational to a Float.
  #
  def to_f
    @numerator.fdiv(@denominator)
  end

  #
  # Returns a string representation of the rational number.
  #
  # Example:
  #   Rational(3,4).to_s          #  "3/4"
  #   Rational(8).to_s            #  "8"
  #
  def to_s
    if @denominator == 1
      @numerator.to_s
    else
      @numerator.to_s+"/"+@denominator.to_s
    end
  end

  #
  # Returns +self+.
  #
  def to_r
    self
  end

  #
  # Returns a reconstructable string representation:
  #
  #   Rational(5,8).inspect     # -> "Rational(5, 8)"
  #
  def inspect
    sprintf("Rational(%s, %s)", @numerator.inspect, @denominator.inspect)
  end

  #
  # Returns a hash code for the object.
  #
  def hash
    @numerator.hash ^ @denominator.hash
  end

  attr :numerator
  attr :denominator

  private :initialize
end

class Integer
  #
  # In an integer, the value _is_ the numerator of its rational equivalent.
  # Therefore, this method returns +self+.
  #
  def numerator
    self
  end

  #
  # In an integer, the denominator is 1.  Therefore, this method returns 1.
  #
  def denominator
    1
  end

  #
  # Returns a Rational representation of this integer.
  #
  def to_r
    Rational(self, 1)
  end

  #
  # Returns the <em>greatest common denominator</em> of the two numbers (+self+
  # and +n+).
  #
  # Examples:
  #   72.gcd 168           # -> 24
  #   19.gcd 36            # -> 1
  #
  # The result is positive, no matter the sign of the arguments.
  #
  def gcd(other)
    min = self.abs
    max = other.abs
    while min > 0
      tmp = min
      min = max % min
      max = tmp
    end
    max
  end

  #
  # Returns the <em>lowest common multiple</em> (LCM) of the two arguments
  # (+self+ and +other+).
  #
  # Examples:
  #   6.lcm 7        # -> 42
  #   6.lcm 9        # -> 18
  #
  def lcm(other)
    if self.zero? or other.zero?
      0
    else
      (self.div(self.gcd(other)) * other).abs
    end
  end

  #
  # Returns the GCD _and_ the LCM (see #gcd and #lcm) of the two arguments
  # (+self+ and +other+).  This is more efficient than calculating them
  # separately.
  #
  # Example:
  #   6.gcdlcm 9     # -> [3, 18]
  #
  def gcdlcm(other)
    gcd = self.gcd(other)
    if self.zero? or other.zero?
      [gcd, 0]
    else
      [gcd, (self.div(gcd) * other).abs]
    end
  end
end

class Fixnum
  remove_method :quo

  # If Rational is defined, returns a Rational number instead of a Float.
  def quo(other)
    Rational.new!(self, 1) / other
  end
  alias rdiv quo

  # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
  def rpower (other)
    if other >= 0
      self.power!(other)
    else
      Rational.new!(self, 1)**other
    end
  end

end

class Bignum
  remove_method :quo

  # If Rational is defined, returns a Rational number instead of a Float.
  def quo(other)
    Rational.new!(self, 1) / other
  end
  alias rdiv quo

  # Returns a Rational number if the result is in fact rational (i.e. +other+ < 0).
  def rpower (other)
    if other >= 0
      self.power!(other)
    else
      Rational.new!(self, 1)**other
    end
  end

end

unless defined? 1.power!
  class Fixnum
    alias power! **
    alias ** rpower
  end
  class Bignum
    alias power! **
    alias ** rpower
  end
end