This file is indexed.

/usr/lib/ruby/1.8/complex.rb is in libruby1.8 1.8.7.352-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
#
#   complex.rb - 
#   	$Release Version: 0.5 $
#   	$Revision: 1.3 $
#   	$Date: 1998/07/08 10:05:28 $
#   	by Keiju ISHITSUKA(SHL Japan Inc.)
#
# ----
#
# complex.rb implements the Complex class for complex numbers.  Additionally,
# some methods in other Numeric classes are redefined or added to allow greater
# interoperability with Complex numbers.
#
# Complex numbers can be created in the following manner:
# - <tt>Complex(a, b)</tt>
# - <tt>Complex.polar(radius, theta)</tt>
#   
# Additionally, note the following:
# - <tt>Complex::I</tt> (the mathematical constant <i>i</i>)
# - <tt>Numeric#im</tt> (e.g. <tt>5.im -> 0+5i</tt>)
#
# The following +Math+ module methods are redefined to handle Complex arguments.
# They will work as normal with non-Complex arguments.
#    sqrt exp cos sin tan log log10
#    cosh sinh tanh acos asin atan atan2 acosh asinh atanh
#


#
# Numeric is a built-in class on which Fixnum, Bignum, etc., are based.  Here
# some methods are added so that all number types can be treated to some extent
# as Complex numbers.
#
class Numeric
  #
  # Returns a Complex number <tt>(0,<i>self</i>)</tt>.
  #
  def im
    Complex(0, self)
  end
  
  #
  # The real part of a complex number, i.e. <i>self</i>.
  #
  def real
    self
  end
  
  #
  # The imaginary part of a complex number, i.e. 0.
  #
  def image
    0
  end
  alias imag image
  
  #
  # See Complex#arg.
  #
  def arg
    Math.atan2!(0, self)
  end
  alias angle arg
  
  #
  # See Complex#polar.
  #
  def polar
    return abs, arg
  end
  
  #
  # See Complex#conjugate (short answer: returns <i>self</i>).
  #
  def conjugate
    self
  end
  alias conj conjugate
end


#
# Creates a Complex number.  +a+ and +b+ should be Numeric.  The result will be
# <tt>a+bi</tt>.
#
def Complex(a, b = 0)
  if b == 0 and (a.kind_of?(Complex) or defined? Complex::Unify)
    a
  else
    Complex.new( a.real-b.imag, a.imag+b.real )
  end
end

#
# The complex number class.  See complex.rb for an overview.
#
class Complex < Numeric
  @RCS_ID='-$Id: complex.rb,v 1.3 1998/07/08 10:05:28 keiju Exp keiju $-'

  undef step
  undef div, divmod
  undef floor, truncate, ceil, round

  def Complex.generic?(other) # :nodoc:
    other.kind_of?(Integer) or
    other.kind_of?(Float) or
    (defined?(Rational) and other.kind_of?(Rational))
  end

  #
  # Creates a +Complex+ number in terms of +r+ (radius) and +theta+ (angle).
  #
  def Complex.polar(r, theta)
    Complex(r*Math.cos(theta), r*Math.sin(theta))
  end

  #
  # Creates a +Complex+ number <tt>a</tt>+<tt>b</tt><i>i</i>.
  #
  def Complex.new!(a, b=0)
    new(a,b)
  end

  def initialize(a, b)
    raise TypeError, "non numeric 1st arg `#{a.inspect}'" if !a.kind_of? Numeric
    raise TypeError, "`#{a.inspect}' for 1st arg" if a.kind_of? Complex
    raise TypeError, "non numeric 2nd arg `#{b.inspect}'" if !b.kind_of? Numeric
    raise TypeError, "`#{b.inspect}' for 2nd arg" if b.kind_of? Complex
    @real = a
    @image = b
  end

  #
  # Addition with real or complex number.
  #
  def + (other)
    if other.kind_of?(Complex)
      re = @real + other.real
      im = @image + other.image
      Complex(re, im)
    elsif Complex.generic?(other)
      Complex(@real + other, @image)
    else
      x , y = other.coerce(self)
      x + y
    end
  end
  
  #
  # Subtraction with real or complex number.
  #
  def - (other)
    if other.kind_of?(Complex)
      re = @real - other.real
      im = @image - other.image
      Complex(re, im)
    elsif Complex.generic?(other)
      Complex(@real - other, @image)
    else
      x , y = other.coerce(self)
      x - y
    end
  end
  
  #
  # Multiplication with real or complex number.
  #
  def * (other)
    if other.kind_of?(Complex)
      re = @real*other.real - @image*other.image
      im = @real*other.image + @image*other.real
      Complex(re, im)
    elsif Complex.generic?(other)
      Complex(@real * other, @image * other)
    else
      x , y = other.coerce(self)
      x * y
    end
  end
  
  #
  # Division by real or complex number.
  #
  def / (other)
    if other.kind_of?(Complex)
      self*other.conjugate/other.abs2
    elsif Complex.generic?(other)
      Complex(@real/other, @image/other)
    else
      x, y = other.coerce(self)
      x/y
    end
  end
  
  def quo(other)
    Complex(@real.quo(1), @image.quo(1)) / other
  end

  #
  # Raise this complex number to the given (real or complex) power.
  #
  def ** (other)
    if other == 0
      return Complex(1)
    end
    if other.kind_of?(Complex)
      r, theta = polar
      ore = other.real
      oim = other.image
      nr = Math.exp!(ore*Math.log!(r) - oim * theta)
      ntheta = theta*ore + oim*Math.log!(r)
      Complex.polar(nr, ntheta)
    elsif other.kind_of?(Integer)
      if other > 0
	x = self
	z = x
	n = other - 1
	while n != 0
	  while (div, mod = n.divmod(2)
		 mod == 0)
	    x = Complex(x.real*x.real - x.image*x.image, 2*x.real*x.image)
	    n = div
	  end
	  z *= x
	  n -= 1
	end
	z
      else
	if defined? Rational
	  (Rational(1) / self) ** -other
	else
	  self ** Float(other)
	end
      end
    elsif Complex.generic?(other)
      r, theta = polar
      Complex.polar(r**other, theta*other)
    else
      x, y = other.coerce(self)
      x**y
    end
  end
  
  #
  # Remainder after division by a real or complex number.
  #
  def % (other)
    if other.kind_of?(Complex)
      Complex(@real % other.real, @image % other.image)
    elsif Complex.generic?(other)
      Complex(@real % other, @image % other)
    else
      x , y = other.coerce(self)
      x % y
    end
  end
  
#--
#    def divmod(other)
#      if other.kind_of?(Complex)
#        rdiv, rmod = @real.divmod(other.real)
#        idiv, imod = @image.divmod(other.image)
#        return Complex(rdiv, idiv), Complex(rmod, rmod)
#      elsif Complex.generic?(other)
#        Complex(@real.divmod(other), @image.divmod(other))
#      else
#        x , y = other.coerce(self)
#        x.divmod(y)
#      end
#    end
#++
  
  #
  # Absolute value (aka modulus): distance from the zero point on the complex
  # plane.
  #
  def abs
    Math.hypot(@real, @image)
  end
  
  #
  # Square of the absolute value.
  #
  def abs2
    @real*@real + @image*@image
  end
  
  #
  # Argument (angle from (1,0) on the complex plane).
  #
  def arg
    Math.atan2!(@image, @real)
  end
  alias angle arg
  
  #
  # Returns the absolute value _and_ the argument.
  #
  def polar
    return abs, arg
  end
  
  #
  # Complex conjugate (<tt>z + z.conjugate = 2 * z.real</tt>).
  #
  def conjugate
    Complex(@real, -@image)
  end
  alias conj conjugate
  
  #
  # Compares the absolute values of the two numbers.
  #
  def <=> (other)
    self.abs <=> other.abs
  end
  
  #
  # Test for numerical equality (<tt>a == a + 0<i>i</i></tt>).
  #
  def == (other)
    if other.kind_of?(Complex)
      @real == other.real and @image == other.image
    elsif Complex.generic?(other)
      @real == other and @image == 0
    else
      other == self
    end
  end

  #
  # Attempts to coerce +other+ to a Complex number.
  #
  def coerce(other)
    if Complex.generic?(other)
      return Complex.new!(other), self
    else
      super
    end
  end

  #
  # FIXME
  #
  def denominator
    @real.denominator.lcm(@image.denominator)
  end
  
  #
  # FIXME
  #
  def numerator
    cd = denominator
    Complex(@real.numerator*(cd/@real.denominator),
	    @image.numerator*(cd/@image.denominator))
  end
  
  #
  # Standard string representation of the complex number.
  #
  def to_s
    if @real != 0
      if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
	if @image >= 0
	  @real.to_s+"+("+@image.to_s+")i"
	else
	  @real.to_s+"-("+(-@image).to_s+")i"
	end
      else
	if @image >= 0
	  @real.to_s+"+"+@image.to_s+"i"
	else
	  @real.to_s+"-"+(-@image).to_s+"i"
	end
      end
    else
      if defined?(Rational) and @image.kind_of?(Rational) and @image.denominator != 1
	"("+@image.to_s+")i"
      else
	@image.to_s+"i"
      end
    end
  end
  
  #
  # Returns a hash code for the complex number.
  #
  def hash
    @real.hash ^ @image.hash
  end
  
  #
  # Returns "<tt>Complex(<i>real</i>, <i>image</i>)</tt>".
  #
  def inspect
    sprintf("Complex(%s, %s)", @real.inspect, @image.inspect)
  end

  
  #
  # +I+ is the imaginary number.  It exists at point (0,1) on the complex plane.
  #
  I = Complex(0,1)
  
  # The real part of a complex number.
  attr :real

  # The imaginary part of a complex number.
  attr :image
  alias imag image
  
end

class Integer

  unless defined?(1.numerator)
    def numerator() self end
    def denominator() 1 end

    def gcd(other)
      min = self.abs
      max = other.abs
      while min > 0
        tmp = min
        min = max % min
        max = tmp
      end
      max
    end

    def lcm(other)
      if self.zero? or other.zero?
        0
      else
        (self.div(self.gcd(other)) * other).abs
      end
    end

  end

end

module Math
  alias sqrt! sqrt
  alias exp! exp
  alias log! log
  alias log10! log10
  alias cos! cos
  alias sin! sin
  alias tan! tan
  alias cosh! cosh
  alias sinh! sinh
  alias tanh! tanh
  alias acos! acos
  alias asin! asin
  alias atan! atan
  alias atan2! atan2
  alias acosh! acosh
  alias asinh! asinh
  alias atanh! atanh  

  # Redefined to handle a Complex argument.
  def sqrt(z)
    if Complex.generic?(z)
      if z >= 0
	sqrt!(z)
      else
	Complex(0,sqrt!(-z))
      end
    else
      if z.image < 0
	sqrt(z.conjugate).conjugate
      else
	r = z.abs
	x = z.real
	Complex( sqrt!((r+x)/2), sqrt!((r-x)/2) )
      end
    end
  end
  
  # Redefined to handle a Complex argument.
  def exp(z)
    if Complex.generic?(z)
      exp!(z)
    else
      Complex(exp!(z.real) * cos!(z.image), exp!(z.real) * sin!(z.image))
    end
  end
  
  # Redefined to handle a Complex argument.
  def cos(z)
    if Complex.generic?(z)
      cos!(z)
    else
      Complex(cos!(z.real)*cosh!(z.image),
	      -sin!(z.real)*sinh!(z.image))
    end
  end
    
  # Redefined to handle a Complex argument.
  def sin(z)
    if Complex.generic?(z)
      sin!(z)
    else
      Complex(sin!(z.real)*cosh!(z.image),
	      cos!(z.real)*sinh!(z.image))
    end
  end
  
  # Redefined to handle a Complex argument.
  def tan(z)
    if Complex.generic?(z)
      tan!(z)
    else
      sin(z)/cos(z)
    end
  end

  def sinh(z)
    if Complex.generic?(z)
      sinh!(z)
    else
      Complex( sinh!(z.real)*cos!(z.image), cosh!(z.real)*sin!(z.image) )
    end
  end

  def cosh(z)
    if Complex.generic?(z)
      cosh!(z)
    else
      Complex( cosh!(z.real)*cos!(z.image), sinh!(z.real)*sin!(z.image) )
    end
  end

  def tanh(z)
    if Complex.generic?(z)
      tanh!(z)
    else
      sinh(z)/cosh(z)
    end
  end
  
  # Redefined to handle a Complex argument.
  def log(z)
    if Complex.generic?(z) and z >= 0
      log!(z)
    else
      r, theta = z.polar
      Complex(log!(r.abs), theta)
    end
  end
  
  # Redefined to handle a Complex argument.
  def log10(z)
    if Complex.generic?(z)
      log10!(z)
    else
      log(z)/log!(10)
    end
  end

  def acos(z)
    if Complex.generic?(z) and z >= -1 and z <= 1
      acos!(z)
    else
      -1.0.im * log( z + 1.0.im * sqrt(1.0-z*z) )
    end
  end

  def asin(z)
    if Complex.generic?(z) and z >= -1 and z <= 1
      asin!(z)
    else
      -1.0.im * log( 1.0.im * z + sqrt(1.0-z*z) )
    end
  end

  def atan(z)
    if Complex.generic?(z)
      atan!(z)
    else
      1.0.im * log( (1.0.im+z) / (1.0.im-z) ) / 2.0
    end
  end

  def atan2(y,x)
    if Complex.generic?(y) and Complex.generic?(x)
      atan2!(y,x)
    else
      -1.0.im * log( (x+1.0.im*y) / sqrt(x*x+y*y) )
    end
  end

  def acosh(z)
    if Complex.generic?(z) and z >= 1
      acosh!(z)
    else
      log( z + sqrt(z*z-1.0) )
    end
  end

  def asinh(z)
    if Complex.generic?(z)
      asinh!(z)
    else
      log( z + sqrt(1.0+z*z) )
    end
  end

  def atanh(z)
    if Complex.generic?(z) and z >= -1 and z <= 1
      atanh!(z)
    else
      log( (1.0+z) / (1.0-z) ) / 2.0
    end
  end

  module_function :sqrt!
  module_function :sqrt
  module_function :exp!
  module_function :exp
  module_function :log!
  module_function :log
  module_function :log10!
  module_function :log10
  module_function :cosh!
  module_function :cosh
  module_function :cos!
  module_function :cos
  module_function :sinh!
  module_function :sinh
  module_function :sin!
  module_function :sin
  module_function :tan!
  module_function :tan
  module_function :tanh!
  module_function :tanh
  module_function :acos!
  module_function :acos
  module_function :asin!
  module_function :asin
  module_function :atan!
  module_function :atan
  module_function :atan2!
  module_function :atan2
  module_function :acosh!
  module_function :acosh
  module_function :asinh!
  module_function :asinh
  module_function :atanh!
  module_function :atanh
  
end

# Documentation comments:
#  - source: original (researched from pickaxe)
#  - a couple of fixme's
#  - RDoc output for Bignum etc. is a bit short, with nothing but an
#    (undocumented) alias.  No big deal.