/usr/include/QtCrypto/qca_basic.h is in libqca2-dev 2.0.3-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 | /*
* qca_basic.h - Qt Cryptographic Architecture
* Copyright (C) 2003-2007 Justin Karneges <justin@affinix.com>
* Copyright (C) 2004-2007 Brad Hards <bradh@frogmouth.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*
*/
/**
\file qca_basic.h
Header file for classes for cryptographic primitives (basic operations).
\note You should not use this header directly from an
application. You should just use <tt> \#include \<QtCrypto>
</tt> instead.
*/
#ifndef QCA_BASIC_H
#define QCA_BASIC_H
#include "qca_core.h"
namespace QCA {
/**
\defgroup UserAPI QCA user API
This is the main set of QCA classes, intended for use
in standard applications.
*/
/**
\class Random qca_basic.h QtCrypto
Source of random numbers.
QCA provides a built in source of random numbers, which
can be accessed through this class. You can also use
an alternative random number source, by implementing
another provider.
The normal use of this class is expected to be through the
static members - randomChar(), randomInt() and randomArray().
\ingroup UserAPI
*/
class QCA_EXPORT Random : public Algorithm
{
public:
/**
Standard Constructor
\param provider the name of the provider library for the random
number generation
*/
Random(const QString &provider = QString());
/**
Copy constructor
\param from the %Random object to copy from
*/
Random(const Random &from);
~Random();
/**
Assignment operator
\param from the %Random object to copy state from
*/
Random & operator=(const Random &from);
/**
Provide a random byte.
This method isn't normally required - you should use
the static randomChar() method instead.
\sa randomChar
*/
uchar nextByte();
/**
Provide a specified number of random bytes.
This method isn't normally required - you should use
the static randomArray() method instead.
\param size the number of bytes to provide
\sa randomArray
*/
SecureArray nextBytes(int size);
/**
Provide a random character (byte)
This is the normal way of obtaining a single random char
(ie. 8 bit byte), as shown below:
\code
myRandomChar = QCA::Random::randomChar();
\endcode
If you need a number of bytes, perhaps randomArray() may be of use.
*/
static uchar randomChar();
/**
Provide a random integer.
This is the normal way of obtaining a single random integer,
as shown below:
\code
myRandomInt = QCA::Random::randomInt();
\endcode
*/
static int randomInt();
/**
Provide a specified number of random bytes.
\code
// build a 30 byte secure array.
SecureArray arry = QCA::Random::randomArray(30);
\endcode
\param size the number of bytes to provide
*/
static SecureArray randomArray(int size);
private:
class Private;
Private *d;
};
/**
\class Hash qca_basic.h QtCrypto
General class for hashing algorithms.
Hash is the class for the various hashing algorithms
within %QCA. SHA256, SHA1 or RIPEMD160 are recommended for
new applications, although MD2, MD4, MD5 or SHA0 may be
applicable (for interoperability reasons) for some
applications.
To perform a hash, you create a Hash object, call update()
with the data that needs to be hashed, and then call
final(), which returns a QByteArray of the hash result. An
example (using the SHA1 hash, with 1000 updates of a 1000
byte string) is shown below:
\code
if(!QCA::isSupported("sha1"))
printf("SHA1 not supported!\n");
else
{
QByteArray fillerString;
fillerString.fill('a', 1000);
QCA::Hash shaHash("sha1");
for (int i=0; i<1000; i++)
shaHash.update(fillerString);
QByteArray hashResult = shaHash.final();
if ( "34aa973cd4c4daa4f61eeb2bdbad27316534016f" == QCA::arrayToHex(hashResult) )
{
printf("big SHA1 is OK\n");
}
else
{
printf("big SHA1 failed\n");
}
}
\endcode
If you only have a simple hash requirement - a single
string that is fully available in memory at one time - then
you may be better off with one of the convenience
methods. So, for example, instead of creating a QCA::Hash
object, then doing a single update() and the final() call;
you could simply call QCA::Hash("algoName").hash() with the
data that you would otherwise have provided to the update()
call.
For more information on hashing algorithms, see \ref hashing.
\ingroup UserAPI
*/
class QCA_EXPORT Hash : public Algorithm, public BufferedComputation
{
public:
/**
Constructor
\param type label for the type of hash to be
created (for example, "sha1" or "md2")
\param provider the name of the provider plugin
for the subclass (eg "qca-ossl")
*/
explicit Hash(const QString &type, const QString &provider = QString());
/**
Copy constructor
\param from the Hash object to copy from
*/
Hash(const Hash &from);
~Hash();
/**
Assignment operator
\param from the Hash object to copy state from
*/
Hash & operator=(const Hash &from);
/**
Returns a list of all of the hash types available
\param provider the name of the provider to get a list from, if one
provider is required. If not specified, available hash types from all
providers will be returned.
*/
static QStringList supportedTypes(const QString &provider = QString());
/**
Return the hash type
*/
QString type() const;
/**
Reset a hash, dumping all previous parts of the
message.
This method clears (or resets) the hash algorithm,
effectively undoing any previous update()
calls. You should use this call if you are re-using
a Hash sub-class object to calculate additional
hashes.
*/
virtual void clear();
/**
Update a hash, adding more of the message contents
to the digest. The whole message needs to be added
using this method before you call final().
If you find yourself only calling update() once,
you may be better off using a convenience method
such as hash() or hashToString() instead.
\param a the byte array to add to the hash
*/
virtual void update(const MemoryRegion &a);
/**
\overload
\param a the QByteArray to add to the hash
*/
void update(const QByteArray &a);
/**
\overload
This method is provided to assist with code that
already exists, and is being ported to %QCA. You are
better off passing a SecureArray (as shown above)
if you are writing new code.
\param data pointer to a char array
\param len the length of the array. If not specified
(or specified as a negative number), the length will be
determined with strlen(), which may not be what you want
if the array contains a null (0x00) character.
*/
void update(const char *data, int len = -1);
/**
\overload
This allows you to read from a file or other
I/O device. Note that the device must be already
open for reading
\param file an I/O device
If you are trying to calculate the hash of
a whole file (and it isn't already open), you
might want to use code like this:
\code
QFile f( "file.dat" );
if ( f1.open( IO_ReadOnly ) )
{
QCA::Hash hashObj("sha1");
hashObj.update( &f1 );
QString output = hashObj.final() ) ),
}
\endcode
*/
void update(QIODevice *file);
/**
Finalises input and returns the hash result
After calling update() with the required data, the
hash results are finalised and produced.
Note that it is not possible to add further data (with
update()) after calling final(), because of the way
the hashing works - null bytes are inserted to pad
the results up to a fixed size. If you want to
reuse the Hash object, you should call clear() and
start to update() again.
*/
virtual MemoryRegion final();
/**
%Hash a byte array, returning it as another
byte array
This is a convenience method that returns the
hash of a SecureArray.
\code
SecureArray sampleArray(3);
sampleArray.fill('a');
SecureArray outputArray = QCA::Hash("md2")::hash(sampleArray);
\endcode
\param array the QByteArray to hash
If you need more flexibility (e.g. you are constructing
a large byte array object just to pass it to hash(), then
consider creating an Hash object, and then calling
update() and final().
*/
MemoryRegion hash(const MemoryRegion &array);
/**
%Hash a byte array, returning it as a printable
string
This is a convenience method that returns the
hash of a QSeecureArray as a hexadecimal
representation encoded in a QString.
\param array the QByteArray to hash
If you need more flexibility, you can create a Hash
object, call Hash::update() as required, then call
Hash::final(), before using the static arrayToHex() method.
*/
QString hashToString(const MemoryRegion &array);
private:
class Private;
Private *d;
};
/**
\page hashing Hashing Algorithms
There are a range of hashing algorithms available in
%QCA. Hashing algorithms are used with the Hash and
MessageAuthenticationCode classes.
The MD2 algorithm takes an arbitrary data stream, known as the
message and outputs a condensed 128 bit (16 byte)
representation of that data stream, known as the message
digest. This algorithm is considered slightly more secure than MD5,
but is more expensive to compute. Unless backward
compatibility or interoperability are considerations, you
are better off using the SHA1 or RIPEMD160 hashing algorithms.
For more information on %MD2, see B. Kalinski RFC1319 "The %MD2
Message-Digest Algorithm". The label for MD2 is "md2".
The MD4 algorithm takes an arbitrary data stream, known as the
message and outputs a condensed 128 bit (16 byte)
representation of that data stream, known as the message
digest. MD4 is not considered to be secure, based on
known attacks. It should only be used for applications where
collision attacks are not a consideration (for example, as
used in the rsync algorithm for fingerprinting blocks of
data). If a secure hash is required, you are better off using
the SHA1 or RIPEMD160 hashing algorithms. MD2 and MD5 are both
stronger 128 bit hashes. For more information on MD4, see
R. Rivest RFC1320 "The %MD4 Message-Digest Algorithm". The
label for MD4 is "md4".
The MD5 takes an arbitrary data stream, known as the message
and outputs a condensed 128 bit (16 byte) representation of
that data stream, known as the message digest. MD5 is not
considered to be secure, based on known attacks. It should
only be used for applications where collision attacks are not
a consideration. If a secure hash is required, you are better
off using the SHA1 or RIPEMD160 hashing algorithms. For more
information on MD5, see R. Rivest RFC1321 "The %MD5
Message-Digest Algorithm". The label for MD5 is "md5".
The RIPEMD160 algorithm takes an arbitrary data stream, known
as the message (up to \f$2^{64}\f$ bits in length) and outputs
a condensed 160 bit (20 byte) representation of that data
stream, known as the message digest. The RIPEMD160 algorithm
is considered secure in that it is considered computationally
infeasible to find the message that produced the message
digest. The label for RIPEMD160 is "ripemd160".
The SHA-0 algorithm is a 160 bit hashing function, no longer
recommended for new applications because of known (partial)
attacks against it. The label for SHA-0 is "sha0".
The SHA-1 algorithm takes an arbitrary data stream, known as
the message (up to \f$2^{64}\f$ bits in length) and outputs a
condensed 160 bit (20 byte) representation of that data
stream, known as the message digest. SHA-1 is considered
secure in that it is considered computationally infeasible to
find the message that produced the message digest. For more
information on the SHA-1 algorithm,, see Federal Information
Processing Standard Publication 180-2 "Specifications for the
Secure %Hash Standard", available from
http://csrc.nist.gov/publications/. The label for SHA-1 is
"sha1".
The SHA-224 algorithm takes an arbitrary data stream, known as
the message (up to \f$2^{64}\f$ bits in length) and outputs a
condensed 224 bit (28 byte) representation of that data
stream, known as the message digest. SHA-224 is a "cut down"
version of SHA-256, and you may be better off using SHA-256 in
new designs. The SHA-224 algorithm is considered secure in
that it is considered computationally infeasible to find the
message that produced the message digest. For more information
on SHA-224, see Federal Information Processing Standard
Publication 180-2 "Specifications for the Secure %Hash
Standard", with change notice 1, available from
http://csrc.nist.gov/publications/. The label for SHA-224 is
"sha224".
The SHA-256 algorithm takes an arbitrary data stream, known as
the message (up to \f$2^{64}\f$ bits in length) and outputs a
condensed 256 bit (32 byte) representation of that data
stream, known as the message digest. The SHA-256 algorithm is
considered secure in that it is considered computationally
infeasible to find the message that produced the message
digest. For more information on SHA-256, see Federal
Information Processing Standard Publication 180-2
"Specifications for the Secure %Hash Standard", available from
http://csrc.nist.gov/publications/. The label for SHA-256 is
"sha256".
The SHA-384 algorithm takes an arbitrary data stream, known as
the message (up to \f$2^{128}\f$ bits in length) and outputs a
condensed 384 bit (48 byte) representation of that data
stream, known as the message digest. The SHA-384 algorithm is
a "cut down" version of SHA-512, and you may be better off
using SHA-512 in new designs. The SHA-384 algorithm is
considered secure in that it is considered computationally
infeasible to find the message that produced the message
digest. For more information on SHA-384, see Federal
Information Processing Standard Publication 180-2
"Specifications for the Secure %Hash Standard", available from
http://csrc.nist.gov/publications/. The label for SHA-384 is
"sha384".
The SHA-512 algorithm takes an arbitrary data stream, known as
the message (up to \f$2^{128}\f$ bits in length) and outputs a
condensed 512 bit (64 byte) representation of that data
stream, known as the message digest. The SHA-512 algorithm is
considered secure in that it is considered computationally
infeasible to find the message that produced the message
digest. For more information on SHA-512, see Federal
Information Processing Standard Publication 180-2
"Specifications for the Secure %Hash Standard", available from
http://csrc.nist.gov/publications/. The label for SHA-512 is
"sha512".
The Whirlpool algorithm takes an arbitrary data stream, known as
the message (up to \f$2^{256}\f$ bits in length) and outputs a
condensed 512 bit (64 byte) representation of that data
stream, known as the message digest. The Whirlpool algorithm is
considered secure in that it is considered computationally
infeasible to find the message that produced the message
digest. For more information on Whirlpool, see
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
or ISO/IEC 10118-3:2004. The label for Whirlpool is
"whirlpool".
*/
/**
\page paddingDescription Padding
For those Cipher sub-classes that are block based, there are modes
that require a full block on encryption and decryption - %Cipher Block
Chaining mode and Electronic Code Book modes are good examples.
Since real world messages are not always a convenient multiple of a
block size, we have to adding <i>padding</i>. There are a number of
padding modes that %QCA supports, including not doing any padding
at all.
If you are not going to use padding, then you can pass
QCA::Cipher::NoPadding as the pad argument to the Cipher sub-class,
however it is then your responsibility to pass in appropriate data for
the mode that you are using.
The most common padding scheme is known as PKCS#7 (also PKCS#1), and
it specifies that the pad bytes are all equal to the length of the
padding ( for example, if you need three pad bytes to complete the block,
then the padding is 0x03 0x03 0x03 ).
On encryption, for algorithm / mode combinations that require
padding, you will get a block of ciphertext when the input plain
text block is complete. When you call final(), you will get out the
ciphertext that corresponds to the last part of the plain text,
plus any padding. If you had provided plaintext that matched up
with a block size, then the cipher text block is generated from
pure padding - you always get at least some padding, to ensure that
the padding can be safely removed on decryption.
On decryption, for algorithm / mode combinations that use padding,
you will get back a block of plaintext when the input ciphertext block
is complete. When you call final(), you will get a block that has been
stripped of ciphertext.
*/
/**
\class Cipher qca_basic.h QtCrypto
General class for cipher (encryption / decryption) algorithms.
Cipher is the class for the various algorithms that perform
low level encryption and decryption within %QCA.
AES128, AES192 and AES256 are recommended for new applications.
Standard names for ciphers are:
- Blowfish - "blowfish"
- TripleDES - "tripledes"
- DES - "des"
- AES128 - "aes128"
- AES192 - "aes192"
- AES256 - "aes256"
- CAST5 (CAST-128) - "cast5"
When checking for the availability of a particular kind
of cipher operation (e.g. AES128 in CBC mode with PKCS7
padding), you append the mode and padding type (in that
example "aes128-cbc-pkcs7"). CFB and OFB modes don't use
padding, so they are always just the cipher name followed
by the mode (e.g. "blowfish-cfb" or "aes192-ofb"). If
you are not using padding with CBC mode (i.e. you are
ensuring block size operations yourself), just use
the cipher name followed by "-cbc" (e.g. "blowfish-cbc"
or "aes256-cbc").
\ingroup UserAPI
*/
class QCA_EXPORT Cipher : public Algorithm, public Filter
{
public:
/**
Mode settings for cipher algorithms.
\note ECB is almost never what you want, unless you
are trying to implement a %Cipher variation that is not
supported by %QCA.
*/
enum Mode
{
CBC, ///< operate in %Cipher Block Chaining mode
CFB, ///< operate in %Cipher FeedBack mode
ECB, ///< operate in Electronic Code Book mode
OFB ///< operate in Output FeedBack Mode
};
/**
Padding variations for cipher algorithms.
See the \ref paddingDescription description for more details on
padding schemes.
*/
enum Padding
{
DefaultPadding, ///< Default for cipher-mode
NoPadding, ///< Do not use padding
PKCS7 ///< Pad using the scheme in PKCS#7
};
/**
Standard constructor
\param type the name of the cipher specialisation to use (e.g.
"aes128")
\param mode the operating Mode to use (e.g. QCA::Cipher::CBC)
\param pad the type of Padding to use
\param dir the Direction that this Cipher should use (Encode for
encryption, Decode for decryption)
\param key the SymmetricKey array that is the key
\param iv the InitializationVector to use (not used for ECB mode)
\param provider the name of the Provider to use
\note Padding only applies to CBC and ECB modes. CFB and OFB
ciphertext is always the length of the plaintext.
*/
Cipher(const QString &type, Mode mode, Padding pad = DefaultPadding,
Direction dir = Encode, const SymmetricKey &key = SymmetricKey(),
const InitializationVector &iv = InitializationVector(),
const QString &provider = QString());
/**
Standard copy constructor
\param from the Cipher to copy state from
*/
Cipher(const Cipher &from);
~Cipher();
/**
Assignment operator
\param from the Cipher to copy state from
*/
Cipher & operator=(const Cipher &from);
/**
Returns a list of all of the cipher types available
\param provider the name of the provider to get a list from, if one
provider is required. If not specified, available cipher types from all
providers will be returned.
*/
static QStringList supportedTypes(const QString &provider = QString());
/**
Return the cipher type
*/
QString type() const;
/**
Return the cipher mode
*/
Mode mode() const;
/**
Return the cipher padding type
*/
Padding padding() const;
/**
Return the cipher direction
*/
Direction direction() const;
/**
Return acceptable key lengths
*/
KeyLength keyLength() const;
/**
Test if a key length is valid for the cipher algorithm
\param n the key length in bytes
\return true if the key would be valid for the current algorithm
*/
bool validKeyLength(int n) const;
/**
return the block size for the cipher object
*/
int blockSize() const;
/**
reset the cipher object, to allow re-use
*/
virtual void clear();
/**
pass in a byte array of data, which will be encrypted or decrypted
(according to the Direction that was set in the constructor or in
setup() ) and returned.
\param a the array of data to encrypt / decrypt
*/
virtual MemoryRegion update(const MemoryRegion &a);
/**
complete the block of data, padding as required, and returning
the completed block
*/
virtual MemoryRegion final();
/**
Test if an update() or final() call succeeded.
\return true if the previous call succeeded
*/
virtual bool ok() const;
/**
Reset / reconfigure the Cipher
You can use this to re-use an existing Cipher, rather than creating
a new object with a slightly different configuration.
\param dir the Direction that this Cipher should use (Encode for
encryption, Decode for decryption)
\param key the SymmetricKey array that is the key
\param iv the InitializationVector to use (not used for ECB Mode)
\note You should not leave iv empty for any Mode except ECB.
*/
void setup(Direction dir, const SymmetricKey &key, const InitializationVector &iv = InitializationVector());
/**
Construct a Cipher type string
\param cipherType the name of the algorithm (eg AES128, DES)
\param modeType the mode to operate the cipher in (eg QCA::CBC,
QCA::CFB)
\param paddingType the padding required (eg QCA::NoPadding,
QCA::PCKS7)
*/
static QString withAlgorithms(const QString &cipherType, Mode modeType, Padding paddingType);
private:
class Private;
Private *d;
};
/**
\class MessageAuthenticationCode qca_basic.h QtCrypto
General class for message authentication code (MAC) algorithms.
MessageAuthenticationCode is a class for accessing the various
message authentication code algorithms within %QCA.
HMAC using SHA1 ("hmac(sha1)") or HMAC using SHA256 ("hmac(sha256)")
is recommended for new applications.
Note that if your application is potentially susceptable to "replay
attacks" where the message is sent more than once, you should include a
counter in the message that is covered by the MAC, and check that the
counter is always incremented every time you receive a message and MAC.
For more information on HMAC, see H. Krawczyk et al. RFC2104
"HMAC: Keyed-Hashing for Message Authentication"
\ingroup UserAPI
*/
class QCA_EXPORT MessageAuthenticationCode : public Algorithm, public BufferedComputation
{
public:
/**
Standard constructor
\param type the name of the MAC (and algorithm, if applicable) to
use
\param key the shared key
\param provider the provider to use, if a particular provider is
required
*/
MessageAuthenticationCode(const QString &type, const SymmetricKey &key, const QString &provider = QString());
/**
Standard copy constructor
Copies the state (including key) from one MessageAuthenticationCode
to another
\param from the MessageAuthenticationCode to copy state from
*/
MessageAuthenticationCode(const MessageAuthenticationCode &from);
~MessageAuthenticationCode();
/**
Assignment operator.
Copies the state (including key) from one MessageAuthenticationCode
to another
\param from the MessageAuthenticationCode to assign from.
*/
MessageAuthenticationCode & operator=(const MessageAuthenticationCode &from);
/**
Returns a list of all of the message authentication code types
available
\param provider the name of the provider to get a list from, if one
provider is required. If not specified, available message authentication
codes types from all providers will be returned.
*/
static QStringList supportedTypes(const QString &provider = QString());
/**
Return the MAC type
*/
QString type() const;
/**
Return acceptable key lengths
*/
KeyLength keyLength() const;
/**
Test if a key length is valid for the MAC algorithm
\param n the key length in bytes
\return true if the key would be valid for the current algorithm
*/
bool validKeyLength(int n) const;
/**
Reset a MessageAuthenticationCode, dumping all
previous parts of the message.
This method clears (or resets) the algorithm,
effectively undoing any previous update()
calls. You should use this call if you are re-using
a %MessageAuthenticationCode sub-class object
to calculate additional MACs. Note that if the key
doesn't need to be changed, you don't need to call
setup() again, since the key can just be reused.
*/
virtual void clear();
/**
Update the MAC, adding more of the message contents
to the digest. The whole message needs to be added
using this method before you call final().
\param array the message contents
*/
virtual void update(const MemoryRegion &array);
/**
Finalises input and returns the MAC result
After calling update() with the required data, the
hash results are finalised and produced.
Note that it is not possible to add further data (with
update()) after calling final(). If you want to
reuse the %MessageAuthenticationCode object, you
should call clear() and start to update() again.
*/
virtual MemoryRegion final();
/**
Initialise the MAC algorithm
\param key the key to use for the algorithm
*/
void setup(const SymmetricKey &key);
private:
class Private;
Private *d;
};
/**
\class KeyDerivationFunction qca_basic.h QtCrypto
General superclass for key derivation algorithms.
%KeyDerivationFunction is a superclass for the various
key derivation function algorithms within %QCA. You should
not need to use it directly unless you are
adding another key derivation capability to %QCA - you should be
using a sub-class. PBKDF2 using SHA1 is recommended for new applications.
\ingroup UserAPI
*/
class QCA_EXPORT KeyDerivationFunction : public Algorithm
{
public:
/**
Standard copy constructor
\param from the KeyDerivationFunction to copy from
*/
KeyDerivationFunction(const KeyDerivationFunction &from);
~KeyDerivationFunction();
/**
Assignment operator
Copies the state (including key) from one KeyDerivationFunction
to another
\param from the KeyDerivationFunction to assign from
*/
KeyDerivationFunction & operator=(const KeyDerivationFunction &from);
/**
Generate the key from a specified secret and salt value
\note key length is ignored for some functions
\param secret the secret (password or passphrase)
\param salt the salt to use
\param keyLength the length of key to return
\param iterationCount the number of iterations to perform
\return the derived key
*/
SymmetricKey makeKey(const SecureArray &secret, const InitializationVector &salt, unsigned int keyLength, unsigned int iterationCount);
/**
Construct the name of the algorithm
You can use this to build a standard name string.
You probably only need this method if you are
creating a new subclass.
\param kdfType the type of key derivation function
\param algType the name of the algorithm to use with the key derivation function
\return the name of the KDF/algorithm pair
*/
static QString withAlgorithm(const QString &kdfType, const QString &algType);
protected:
/**
Special constructor for subclass initialisation
\param type the algorithm to create
\param provider the name of the provider to create the key derivation function in.
*/
KeyDerivationFunction(const QString &type, const QString &provider);
private:
class Private;
Private *d;
};
/**
\class PBKDF1 qca_basic.h QtCrypto
Password based key derivation function version 1
This class implements Password Based Key Derivation Function version 1,
as specified in RFC2898, and also in PKCS#5.
\ingroup UserAPI
*/
class QCA_EXPORT PBKDF1 : public KeyDerivationFunction
{
public:
/**
Standard constructor
\param algorithm the name of the hashing algorithm to use
\param provider the name of the provider to use, if available
*/
explicit PBKDF1(const QString &algorithm = "sha1", const QString &provider = QString()) : KeyDerivationFunction(withAlgorithm("pbkdf1", algorithm), provider) {}
};
/**
\class PBKDF2 qca_basic.h QtCrypto
Password based key derivation function version 2
This class implements Password Based Key Derivation Function version 2,
as specified in RFC2898, and also in PKCS#5.
\ingroup UserAPI
*/
class QCA_EXPORT PBKDF2 : public KeyDerivationFunction
{
public:
/**
Standard constructor
\param algorithm the name of the hashing algorithm to use
\param provider the name of the provider to use, if available
*/
explicit PBKDF2(const QString &algorithm = "sha1", const QString &provider = QString()) : KeyDerivationFunction(withAlgorithm("pbkdf2", algorithm), provider) {}
};
}
#endif
|